随机微分方程数值解在泄洪风险分析中的应用摘要: 根据泄洪过程中库水位过程的随机微分方程,利用数值解方法,模拟了随机干扰下的库水位及其波动状况.采用相应公式计算了洪水漫越坝顶事件的概率以及库水位过程在不同时刻的样本均值.并通过比较在同样强度的随机干扰下库水位的高低状况,确定出各种泄洪方案的优劣,从而对防洪工作具有重要的指导意义.关键词: 随机微分方程;数值解;欧拉法;泄洪风险1 引 言收稿日期:2005-06-27基金项目:国家自然科学基金(60474037);教育部新世纪优秀人才支持计划(NCET-04-415) 对于洪水,风暴潮等自然灾害事件,风险分析是一种极为有效的工具[1].由于洪水过程具有很多种不确定性因素,随机性便很自然地被引入到防洪过程的分析.近年来,这方面的很多研究工作都认为洪水过程是一随机点过程[2—4];Sen以一阶马尔科夫过程为工具对具有线性相关结构的水文系列风险进行计算[5].特别地,随机微分方程被引入防洪风险分析,由此建立了水库调洪演算的随机数学模型[6,7].由于随机微分方程本身的复杂性,除了一些线性的或者特殊结构的方程以外,可求出显示解的随机微分方程很少[8,9].本文中讨论的随机微分方程不具有上述性质,因此无法求出显示解.姜树海根据其解过程的一阶概率密度函数满足Fokker-Plank向前方程,而这一方程又是一偏微分方程,从而利用偏微分方程的有限差分法求出其数值解[6],但这种方法不能求得概率特征,于是JC计算方法被用于近似地算出洪水漫越坝顶的概率[7].不难看出,这种方法由于采用多次转化,误差比较大.本文利用随机微分方程数值解方法,结合实际例子,分析总结了库水位在布朗运动干扰下的随机波动状况;直接求出了洪水漫坝的风险概率和库水位过程在不同时刻的数学期望.并且还对不同的方案进行分析比较,以确定哪种方案的效果更好,从而可对防洪决策过程提供一定的依据.2 调洪过程的随机微分方程调洪过程中入库洪水和出库泄量是随机过程,其库容水位满足随机微分方程[6]:dH(t) =Q-(t) -q-(H,c)G(H)dt+dB(t)G(H)H(t0) =H0(1)H(t)为库水位过程;H0为初始库水位,它是一个随机变量;Q(t)为任意时刻入库洪水量;q(h,c)为相应时刻的泄洪流量;Q-,q-分别为来流和泄洪的均值过程线;c为流量系数等水利参数.G(H) =dW(H)dH,W(H)是水库的库容量,B(t)是一均值为零的Wiener过程,dB(t)/dt是一正态白噪声,B(t)的一维概率密度函数f(B)为:f(B) =12πt·σexp -B22σ2t.由上式可以看出,E[B(t)] = 0,D[B(t)] =σ2t.洪水漫越坝顶的泄洪风险率定义为Pf=Pf[H Z],其中,Z为相应的坝高.3 计算方法由于随机微分方程很少可求出显示解,故其数值解方法得到广泛的研究和应用.相对于常微分方程数值法而言,随机微分方程数值解方法引入了随机增量,它将所考虑的时间区间做有限划分,一步一步地在节点处生成样本轨道的逼近值,其数值解方法主要有:Eu-ler法、Milstein法、Runge-Kutta法等.这里采用Euler法. 随机微分方程解的欧拉逼近法考虑一般随机微分方程:dXt=a(t,Xt)dt+b(t,Xt)dWt(2)其中,t0 t T,初始条件是Xt0=X0.我们对时间区间[t0,T]进行离散化:t0=τ0<τ1<…<τn<…<τN=T. 采用Euler逼近法[8],构造一连续过程Y= {Y(t),t0 t T}满足以下迭代格式:Yn+1=Yn+a(τn,Yn)(τn+1-τn) +b(τn,Yn)(Wτn+1-Wτn)其中,n= 0,1,2,…,N- 1,Y0=X0.将通过逐步迭代得出的有限个离散的随机变量作为原随机微分方程在相应时间节点的近似解.显然,如果扩散项系数为零,则原随机微分方程退化为一般的常微分方程,于是随机微分方程的Euler法就退化为常微分方程的Euler法.就数值方法而言,一般讨论其强收敛性.定义1[8] 对于一个最大步长为δ的离散逼近序列Yδ,它在时刻T强收敛于一个Ito∧过 你好,我有相关论文资料(博士硕士论文、期刊论文等)可以对你提供相关帮助,需要的话请加我,7 6 1 3 9 9 4 5 7(扣扣),谢谢。
基于创新人才培养模式的数值计算教学研究与实践 论文 关键词: 数值计算 问题教学 实验教学 论文摘要: 从推动教改研究和我校培养创新人才模式出发,数值计算教学尝试以“问题教学”为主线,以理论与Matlab实验教学相结合,通过动手实践来掌握数值计算方法解决实际问题的基本过程、思考方式和规律,做到学以致用。 随着计算机的发展及其在科学技术领域的应用、推广与深化,科学计算已成为理论推演和实验证明之外的第三种科学论证手段,而作为其基础与核心内容的数值计算 (或称计算方法)已被广泛应用于科学技术和国民经济的各个领域。 数值计算科学以“高等数学”“线性代数”和“微分方程”等课程的基本内容为基础,以“程序语言设计”为手段,以计算机为解题工具,介绍求解工程和科学实验中常见的数学问题的数值方法和理论。因此数值计算属于应用学科,不是纯数学,理论上的完美并不代表实用。其每个算法除了理论上要正确可行外,还要通过数值试验证明是行之有效的,学生学了每个算法后都应该以解决实际问题为目的,通过编程或借助成熟的数学软件完成数值计算的训练,不仅要学会“怎样算”而且必须做到“真会算”,即不仅要知道问题的解是存在的,还必须求出具体的结果,尽管在很大程度上只是近似解。 目前,数值计算课程的教学中一般存在以下两个方面的问题:①重理论,轻实践。数值计算传统的教学模式注重讲授原理和数学理论,过分强调为后续课程奠定基础这一作用,而学生因基础课程的薄弱,或对算法物理背景的不甚了解,往往感到过于抽象、枯燥和难以掌握,学习兴趣不高,自然无法深入理解课堂理论内容,更不能自觉地运用于实际中。另外本课程的考核方式通常仅以笔试方式进行,对于引导学生动手实践不利。这也是学生不重视实验,不注重所学知识的编程实现的原因之一。②学时少,内容多。数值分析课程涉及大量推导过程繁琐的复杂公式,算法分析,程序及计算框图等,但我校计算机信息专业授课计划仅为48学时,教师往往不得不采取“满堂灌”的形式授课,每节课都在讲新内容,每节课也都在用新内容,而学生则经常处于被动学习的地位,负担较重,容易产生思维上的疲劳和情绪上的抵触,学习的积极性、创造性、主动性和灵活性得不到充分发挥,难以提高探索和获取知识的能力。其结果是学生学完本课程后,除了应付考试大多不知道数值分析还有什么用以及如何用。 如何引导学生从枯燥的数学推理过程中走出来,并基于数学建模的思想和方法,以数值计算为工具,解决实际问题,做到学以致用,这是基于我校创新人才培养模式下不断思索且急需解决的问题。 1. 教学应从问题出发,注重工程应用思想 数值计算是实际问题的数值模拟方法的设计分析和软件实现的理论基础,解决具体的实际问题,需要采用数学建模的思想和方法教学,即从生产实践所要解决的实际问题出发,通过归纳、分析、提炼等手段建立数学模型,从而提出相应的数学问题;然后从理论上研究解决问题的基本思想和方法;分析方法的优缺点及所能解决问题的类型,进而给出解决实际问题的数学方法;最后让学生亲自动手编程做实验,用所学的知识来解决简单的实际问题,通过这种“问题教学”法,学生运用数值分析知识解决实际问题,做到学以致用。采取这一方式不仅可激发学生学习数值分析的兴趣和欲望,而且有利于教师将理论知识实践能力和解决实际问题的心得体会通过授课与指导实验这两个环节传授给学生。更重要的是这样的教学过程能够体现数值方法的价值和意义,使得我们的教学不再是无源之水,无本之木。 2. 加强数值试验教学,强化计算能力培养 传统的学习方法是从课本理论到实践。这种验证的思路使学生产生 “盲信” 课本的思维模式,而实验设计是一个主动的创造过程,实验设计和实施中遇到的种种困难,靠学生自己通过文献检索、查阅资料去寻找解决的方法。数值试验是检验旧算法,建立新算法并研制相应软件的重要途径,算法及数值软件的正确性﹑可靠性和有效性,必须通过数值试验来检验。同时,数值试验更是探索新的物理现象的主要手段。为使学生掌握各种数值计算方法,积累计算经验,提高应用数值计算方法和计算机解决实际问题的兴趣和能力,必须加强数值试验课程的教学。通过选择算法、编写程序、上机调试、分析数值结果、写出试验报告和开展课堂讨论等数值试验教学各环节的综合训练,不仅可使学生较好地掌握常用的工程计算方法和技巧,而且提高他们的.程序设计能力和上机操作能力,从而培养学生的创新和工程实践精神。 3. 计算机多媒体教学与传统教学相结合 数值计算的教学方式应与传统的理论教学不同,应采用多媒体教学与板书有机结合,尤其要利用多媒体技术动态地演示近似计算序列的推进过程,使学生直观地理解计算方法的收敛性与收敛速度问题,将抽象的数学知识直观地呈现在学生们面前,极大地提高学生的学习兴趣。 4. 改革考试方法 考试是评估教学质量和学习水平的重要环节,对促进学生更好地掌握所学知识、强化他们的数学思维能力有极其重要的作用。数值计算课程的考试通常为笔试,但这不利于引导学生动手编程实算法。为培养学生理论联系实际的意识,增强他们应用所学知识解决解决实际问题的能力和上机实践的能力,应该将考试方法改革。不仅重视笔试成绩,更要强调上机实践的重要性,即学生本课程的最终成绩应由笔试和上机实验两部分按比例计算。 总之,从推动教改研究和我校培养创新人才模式出发,数值分析课程的学习我们尝试以“问题教学”为主线,以理论与实验相结合,以学生动手为主,在教师指导下运用学到的数值方法和计算机技术,选择合适的数学软件(如MATLAB),分析解决一些实际问题。从而优化课堂教学与实验教学,使枯燥难懂的理论知识易于接受,能真正实现教与学的良性互动。更为如何开拓学生思维和培养具有创新能力与素质的技术性人才的课程建设和教学研究进行可行性的探索。 参考文献: [1]孙亮.数值分析方法课程的特点与思想[J].工程数学,2002,1:84-86 [2]令峰.关于数值分析课程教学的思考[J].肇庆学院学报,2004,5:76-79 [3]周凤麟.数值分析教学初探[J].华东交通大学学报,2007,S1:47-48 [4]周乾智. 数值计算方法实验教学改革初探[J].科技信息,2007,36:342-344论文相关查阅: 毕业论文范文 、 计算机毕业论文 、 毕业论文格式 、 行政管理论文 、 毕业论文 ;
先修课程:数学与应用数学专业主要课程、教育类课程等适用专业:数学与应用数学(本科、师范)一、目的培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。使学生获得科学、教学研究方法的初步训练。培养学生的独立研究能力和重视开发学生的创新能力。二、论文选题论文选题应贯彻为我国社会主义物质文明和精神文明建设服务的方针,在基础数学、应用数学和数学教育等学科的以下几个方面加以考虑:1.结合自己所学的专业知识,进行某一专业方向上的学术探讨;2.结合自己所学的专业知识,进行教学研究方面的专题研究或专题综合;3.结合自己所学的专业知识,联系实际解决一些应用问题;4.对中学有关数学课程的教材、教学方法进行专题研究;5.结合本人所教数学课程,对中等教育的教育理论和教育实践进行探讨;6.对新课程改革的理论与实践进行探讨。论文课题不宜过大,难易程度要适当。两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。三、对毕业论文的基本要求1.立论、观点要符合马克思主义基本原理;2.对学术的探讨要符合科学性和逻辑性;3.对论述的主要问题要正确地运用所学专业、基础理论、基本知识和基本方法;4.论证严谨,结论明确。所运用的研究方法基本正确,所收集的数据资料完整、充分,所设计的实验方法、步骤、正确可行,所提出的观点正确;5.文字通顺,表达确切,书写规范,独立完成;6.论文一般以3000字到6000字为宜,每篇论文的正文前应有300字左右的论文摘要(概括论文的中心论题以及基本观点、方法、结论)3到5个关键词。论文中所引用的定义、定理、论述都要注明出处。论文后应附有作者在写论文时所阅读的文献、参考书目录以及页码;7.论文应包括英文名、英文摘要和英文关键词;8.论文要按照统一格式进行排版(见江苏大学学报自然科学版)。四、毕业论文成绩评定1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。2.成绩分5个等级:优秀、良好、中等、及格、不及格。毕业生毕业论文统一格式要求一、论文用纸:B5纸打印。二、论文标题:1、主标题:用小二号黑体字,置于首页第一行,居中。2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。三、论文正文:1、字体:用四号仿宋体。2、段落:行距为24磅。3、页码:居中。四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。五、注释:如有注释,皆在正文之后注明。
一下的这些的选题你看下,你自己参考下,一1.极值的讨论及其应用2.课程改革中未来初中数学教师角色的扮演3.(xx部分)新旧教材的对比与研究4.师范生高等数学课程内容设置的探讨5.浅谈高等数学的类比迁移法6.让生活走进数学,将数学应用于生活7.初中数学新课程教学设计的策略8.数学分析的直观与严密二1.小教大专数学的课程设置和教材建设的建议2.新课改对小学数学教师的能力与素质要求3.小学数学教学中现代化教学手段的使用4.如何评价新形式下的师范学生5.数学学习与创新能力的培养三1.农村小学教师的现状的调查2.农村小学教学的现状的评估4.留守儿童的学习状况5.我对师范现行课程设置的几点思考6.班级管理的探讨7.小学数学课教学的探讨8.在师范学习的几点回顾9.走上“三尺讲台”的体会10.对某个“差生”的转变历程的思考四1.营造积极参与氛围,为自主探索创造条件2.浅谈小学数学作业的批改3.让作业批改“活”起来4.注重数学过程教学,提高学生综合素质5.浅谈中学数学课堂语言的艺术性6.活”用教材,实现数学教育目标7.浅谈数学课的几种导入方法8.初探分类思想在初中数学教学中的渗透9.优化复习教学,提高复习效率10.合理运用教具,提高数学课堂教学效率11.在数学教学中,培养学生的创新意识
这是一个学生的毕业论文后的参考文献[1] 裴礼文.数学分析中的典型问题与方法究(第二版)[M].北京:高等教育出版社,2006[2] 陈纪修等.数学分析第二版[M].北京:高等教育出版社,[3] 翟连林,姚正安.数学分析方法论[M].北京:北京农业大学出版社,1992[4] 龚冬保.高等数学典型题解法、技巧、注释[M].西安:西安交通大学出版社,2000[5] 郭乔.如何作辅助函数解题[J].高等数学研究, (5),48- 49[6] Patrick M.Fitzpatrick.AdvancedCalculus: A Course in Mathematical Analysis [M].北京:中国工业出版社,2003[7] 林远华.浅谈辅助函数在数学分析中的作用[J].河池师范高等专科学校学报,[8] 肖平.辅助函数的构造方法探寻.西昌师范高等专科学校学报[J],供参考。
1. James W. Cooley and John W. Tukey, "An algorithm for the machinecalculation of complex Fourier series," Mathematics of Computation 19(1965), . R. Courant, K. O. Friedrichs and H. Lewy, "Ueber die partiellenDifferenzengleichungen der mathematischen Physik," Mathematische Annalen100 (1928), 32-74. Translated as: "On the partial difference equations ofmathematical physics," IBM Journal of Resarch and Development 11 (1967),. A. S. Householder, "Unitary triangularization of a nonsymmetric matrix,"Journal of the Association of Computing Machinery 5 (1958), . C. F. Curtiss and J. O. Hirschfelder, "Integration of stiff equations,"Proceedings of the National Academy of Sciences 38 (1952), . C. de Boor, "On calculating with B-splines," Journal of ApproximationTheory 6 (1972), . R. Courant, "Variational methods for the solution of problems ofequilibrium and vibrations," Bulletin of the American Mathematical Society49 (1943), . G. Golub and W. Kahan, "Calculating the singular values and pseudo-inverseof a matrix," SIAM Journal on Numerical Analysis 2 (1965), . A. Brandt, "Multi-level adaptive solutions to boundary-value problems,"Mathematics of Computation 31 (1977), . Magnus R. Hestenes and Eduard Stiefel, "Methods of conjugate gradients forsolving linear systems," Journal of Research of the National Bureau ofStandards 49 (1952), . R. Fletcher and M. J. D. Powell, "A rapidly convergent descent method forminimization," Computer Journal 6 (1963), . G. Wanner, E. Hairer and S. P. Norsett, "Order stars and stabilitytheorems," BIT 18 (1974), . N. Karmarkar, "A new polynomial-time algorithm for linear programming,"Combinatorica 4 (1984), . L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations,"Journal of Computational Physics 72 (1987), 325-348.
基于创新人才培养模式的数值计算教学研究与实践 论文 关键词: 数值计算 问题教学 实验教学 论文摘要: 从推动教改研究和我校培养创新人才模式出发,数值计算教学尝试以“问题教学”为主线,以理论与Matlab实验教学相结合,通过动手实践来掌握数值计算方法解决实际问题的基本过程、思考方式和规律,做到学以致用。 随着计算机的发展及其在科学技术领域的应用、推广与深化,科学计算已成为理论推演和实验证明之外的第三种科学论证手段,而作为其基础与核心内容的数值计算 (或称计算方法)已被广泛应用于科学技术和国民经济的各个领域。 数值计算科学以“高等数学”“线性代数”和“微分方程”等课程的基本内容为基础,以“程序语言设计”为手段,以计算机为解题工具,介绍求解工程和科学实验中常见的数学问题的数值方法和理论。因此数值计算属于应用学科,不是纯数学,理论上的完美并不代表实用。其每个算法除了理论上要正确可行外,还要通过数值试验证明是行之有效的,学生学了每个算法后都应该以解决实际问题为目的,通过编程或借助成熟的数学软件完成数值计算的训练,不仅要学会“怎样算”而且必须做到“真会算”,即不仅要知道问题的解是存在的,还必须求出具体的结果,尽管在很大程度上只是近似解。 目前,数值计算课程的教学中一般存在以下两个方面的问题:①重理论,轻实践。数值计算传统的教学模式注重讲授原理和数学理论,过分强调为后续课程奠定基础这一作用,而学生因基础课程的薄弱,或对算法物理背景的不甚了解,往往感到过于抽象、枯燥和难以掌握,学习兴趣不高,自然无法深入理解课堂理论内容,更不能自觉地运用于实际中。另外本课程的考核方式通常仅以笔试方式进行,对于引导学生动手实践不利。这也是学生不重视实验,不注重所学知识的编程实现的原因之一。②学时少,内容多。数值分析课程涉及大量推导过程繁琐的复杂公式,算法分析,程序及计算框图等,但我校计算机信息专业授课计划仅为48学时,教师往往不得不采取“满堂灌”的形式授课,每节课都在讲新内容,每节课也都在用新内容,而学生则经常处于被动学习的地位,负担较重,容易产生思维上的疲劳和情绪上的抵触,学习的积极性、创造性、主动性和灵活性得不到充分发挥,难以提高探索和获取知识的能力。其结果是学生学完本课程后,除了应付考试大多不知道数值分析还有什么用以及如何用。 如何引导学生从枯燥的数学推理过程中走出来,并基于数学建模的思想和方法,以数值计算为工具,解决实际问题,做到学以致用,这是基于我校创新人才培养模式下不断思索且急需解决的问题。 1. 教学应从问题出发,注重工程应用思想 数值计算是实际问题的数值模拟方法的设计分析和软件实现的理论基础,解决具体的实际问题,需要采用数学建模的思想和方法教学,即从生产实践所要解决的实际问题出发,通过归纳、分析、提炼等手段建立数学模型,从而提出相应的数学问题;然后从理论上研究解决问题的基本思想和方法;分析方法的优缺点及所能解决问题的类型,进而给出解决实际问题的数学方法;最后让学生亲自动手编程做实验,用所学的知识来解决简单的实际问题,通过这种“问题教学”法,学生运用数值分析知识解决实际问题,做到学以致用。采取这一方式不仅可激发学生学习数值分析的兴趣和欲望,而且有利于教师将理论知识实践能力和解决实际问题的心得体会通过授课与指导实验这两个环节传授给学生。更重要的是这样的教学过程能够体现数值方法的价值和意义,使得我们的教学不再是无源之水,无本之木。 2. 加强数值试验教学,强化计算能力培养 传统的学习方法是从课本理论到实践。这种验证的思路使学生产生 “盲信” 课本的思维模式,而实验设计是一个主动的创造过程,实验设计和实施中遇到的种种困难,靠学生自己通过文献检索、查阅资料去寻找解决的方法。数值试验是检验旧算法,建立新算法并研制相应软件的重要途径,算法及数值软件的正确性﹑可靠性和有效性,必须通过数值试验来检验。同时,数值试验更是探索新的物理现象的主要手段。为使学生掌握各种数值计算方法,积累计算经验,提高应用数值计算方法和计算机解决实际问题的兴趣和能力,必须加强数值试验课程的教学。通过选择算法、编写程序、上机调试、分析数值结果、写出试验报告和开展课堂讨论等数值试验教学各环节的综合训练,不仅可使学生较好地掌握常用的工程计算方法和技巧,而且提高他们的.程序设计能力和上机操作能力,从而培养学生的创新和工程实践精神。 3. 计算机多媒体教学与传统教学相结合 数值计算的教学方式应与传统的理论教学不同,应采用多媒体教学与板书有机结合,尤其要利用多媒体技术动态地演示近似计算序列的推进过程,使学生直观地理解计算方法的收敛性与收敛速度问题,将抽象的数学知识直观地呈现在学生们面前,极大地提高学生的学习兴趣。 4. 改革考试方法 考试是评估教学质量和学习水平的重要环节,对促进学生更好地掌握所学知识、强化他们的数学思维能力有极其重要的作用。数值计算课程的考试通常为笔试,但这不利于引导学生动手编程实算法。为培养学生理论联系实际的意识,增强他们应用所学知识解决解决实际问题的能力和上机实践的能力,应该将考试方法改革。不仅重视笔试成绩,更要强调上机实践的重要性,即学生本课程的最终成绩应由笔试和上机实验两部分按比例计算。 总之,从推动教改研究和我校培养创新人才模式出发,数值分析课程的学习我们尝试以“问题教学”为主线,以理论与实验相结合,以学生动手为主,在教师指导下运用学到的数值方法和计算机技术,选择合适的数学软件(如MATLAB),分析解决一些实际问题。从而优化课堂教学与实验教学,使枯燥难懂的理论知识易于接受,能真正实现教与学的良性互动。更为如何开拓学生思维和培养具有创新能力与素质的技术性人才的课程建设和教学研究进行可行性的探索。 参考文献: [1]孙亮.数值分析方法课程的特点与思想[J].工程数学,2002,1:84-86 [2]令峰.关于数值分析课程教学的思考[J].肇庆学院学报,2004,5:76-79 [3]周凤麟.数值分析教学初探[J].华东交通大学学报,2007,S1:47-48 [4]周乾智. 数值计算方法实验教学改革初探[J].科技信息,2007,36:342-344论文相关查阅: 毕业论文范文 、 计算机毕业论文 、 毕业论文格式 、 行政管理论文 、 毕业论文 ;
通常来说,大学生(研究生)在确定论文研究方向的时候,需要先考虑三件事,其一是自身的知识结构和能力特点;其二是目前拥有的研究资源;其三行业发展趋势。
自身的知识结构和能力特点是选择研究方向的基础,因为要想完成一篇合格的论文,有三个基本的要求,其一是具有一定的创新性;其二是具有一定的落地可行性;其三是论述的完整性和可靠性。要想让论文有所创新,首先就要从知识结构上寻求突破,所以自身的知识结构是论文研究方向首先应该考虑的因素。
研究资源对于论文方向的选择也有非常直接的影响,写论文一定离不开大量研究资源的支撑,涉及到导师资源、课堂资源、实验室资源(设备)、行业资源等等,所以在选择论文方向的时候,要根据目前能够整合的研究资源进行细分方向的选择。通常来说,导师对于论文研究方向的选择有比较直接的影响,选择导师比较擅长的研究领域会更容易获得突破。
论文研究方向还应该考虑一下当前的行业发展趋势,在产业结构升级的大背景下,如果研究方向能够与大环境相契合,不仅能够获得更多的研究资源,同时对于未来的发展空间也有较大程度的促进作用。以计算机领域为例,当前选择大数据、云计算、边缘计算、人工智能等方向都是不错的选择。
最后,要想完成一篇高质量论文往往需要做大量的基础工作,同时一定要尊重实验结果,否则在进行落地应用的过程中会遇到很多障碍,这一点一定要注意。如果论文中的实验是无法重现的,那么这样的研究成果是没有意义的。
毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。
从文体而言,它也是对某一专业领域的现实问题或理论问题进行 科学研究探索的具有一定意义的论文。一般安排在修业的最后一学年(学期)进行。学生须在教师指导下,选定课题进行研究,撰写并提交论文。目的在于培养学生的科学研究能力;加强综合运用所学知识、理论和技能解决实际问题的训练;从总体上考查学生学习所达到的学业水平。
论文题目由教师指定或由学生提出,经教师同意确定。均应是本专业学科发展或实践中提出的理论问题和实际问题。通过这一环节,应使学生受到有关科学研究选题,查阅、评述文献,制订研究方案,设计进行科学实验或社会调查,处理数据或整理调查结果,对结果进行分析、论证并得出结论,撰写论文等项初步训练。
2020年12月24日,《本科毕业论文(设计)抽检办法(试行)》提出,本科毕业论文抽检每年进行一次,抽检比例原则上应不低于2%。
***统计方法的应用
如果你想写一篇好论文,最基本、最重要的一点就是选题。如果选定的题目是创新的,有特色的;如果你能写作和创作自己。对于硕士毕业生来说,这可能还是一个麻烦的问题,那么如何选择硕士论文的选题呢?paperfree论文查重网站小编给大家讲解。 一、如何选择硕士毕业论文选题? 1.毕业论文是对过去学习和实践经验的总结,因此论文的主题选择也应该有实际内容,可以让我们发挥和进一步扩展。 2.每年都有很多毕业论文。过于重复的内容往往会使人感到疲劳。因此,在选择主题时,我们应该具有一定的独特性。所选主题不应重复太多,否则也不利于我们的表现。 3.除了创新,还要注意选题的可操作性,即选题是否有能力和写作空间。对于很多人来说,很难在不熟悉的领域发挥自己的优势,所以在选题的时候要尽量选择自己擅长的方向。 二、硕士毕业设计论文选题有哪些方面要求? 1.毕业论文的选题一直注重前沿性、应用性和可行性,要求学生的选题具有实际的应用价值。 2.硕士的培养侧重于培养,需要培养他们的系统研究能力。因此,他们写的论文应该具备数据分析能力。创新应该与应该达到的水平相结合。 3.硕士论文要在学术上分析别人的命题,尽量填补前人研究领域的空白,起到实际作用,要求学生根据自身条件和研究资源调整论文选题难度。
我给你分享几个统计学与应用这本期刊的题目吧,你参考参考:产业集聚对江苏省制造业全要素生产率的影响研究、基于文献计量分析的企业论文发表情况评价——以宁波市安全生产协会会员为例、基于泰尔指数的城乡收入差距的分析与预测、卡方分布下FSI CUSUM和VSI CUSUM控制图的比较、新冠肺炎疫情对中国旅游业的冲击影响研究——基于修正的TGARCH-M模型
你可以写写:“数学与生活之间的关联”当然,要复杂一点的,把你专业知识全都用上,来解决生活中各种实际问题。
1、数学中的研究性学习2、数字危机4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、 的变形推广及应用19、网络优化20、泰勒公式及其应用22、数学选择题的利和弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练和培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博和概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、 方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;76、数学中的美;77、数学的和谐和统一----谈论数学中的美;78、推测和猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;86、关于培养和提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、 广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;93、最优增长模型94、学生数学素养的培养初探96、 城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、 多媒体课件教学设计----若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研105、数列运算的顺序交换及条件106、歇定理的推广和应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx111、数学竟赛中的数论问题112、新旧教材的对比与研究114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义118、例谈培养数学思维的深刻性120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问和思维能力的培养125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练 130、简述期望的性质及其作用131、简述概率论与数理统计的思想和方法132、穷乘积133、递推式求数列的通项及和134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明140、充分挖掘例题的数学价值和智力开发功能141、数学思想方法的一支奇葩-----数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用 151、复均方可积随机变量空间的讨论155、欧几里得第五公设产生背景及其对数学发展影响160、函数性质的应用163、中数学新课程空间与图形学习策略与研究167、函数的凸性及其在不等式中的应用171、数学归纳法教学探究174、关于全概率公式及其应用的研究176、变量代换法与常微分方程的求解188、不等式解法大观189、谈谈“ 隐函数 ”190、有限维矩阵的范数计算与估计191、数学奥赛中数论问题的解题方法研究193、微分方程积分因子的研究195、关于泰勒公式196、解析函数的孤立奇点的分类及其判断方法197、最大模原理的推广及其应用198、π的奥秘——从圆周率到统计199、对现代信息技术辅助数学及其发展的几点思考200、无理数e的发现及其应用202、闭区间套定理的推广和应用203、函数的上下极限及其应用205、关于多值函数的解析理论探讨208、比较函数法在常微分方程中的应用209、数学分析的直观与严密303、求随机函数的分布函数和分布密度的方法304、条件期望的性质及其应用308、凸函数的等价命题及其应用310、有界变差函数的定义及其性质311、初等函数的极值
我觉得可以写数学与生活的关系,还有就是数学对人类的作用等等,主要是看你怎么写的问题,其他的还好吧应该。
教育专业毕业论文题目只是需要题目吗?论文呢?