首页

> 论文发表知识库

首页 论文发表知识库 问题

天文学论文3000字范文

发布时间:

天文学论文3000字范文

是否有另一个你正在阅读和本文完全一样的一篇文章?那个家伙并非你自己,却生活在一个有着云雾缭绕的高山、一望无际的原野、喧嚣嘈杂的城市,和其它7颗行星一同围绕一颗恒星旋转,并且也叫做“地球”的行星上?他(她)一生的经历和你每秒钟都相同。然而也许她此刻正准备放下这篇文章而你却打算看下去。就像看到一个场景好像以前看过。

论文方面的问题,建议你看下品学论文网,之前我就在那里写的论文,非常不错,遇到的问题和格式都挺快给我了。最关键的是品学论文有很多在线的辅导老师帮你解决问题,不用费劲心思查资料。

宇宙是有限的?镜像是无限的?宇宙是有限的还是无限的?有没有中心?有没有边/有没有生老病死?有没有年龄?这些恐怕是自从有人类活动以来一直被关心的问题。宇宙学——它是从整体角度探讨宇宙结构与演化的天文学分支学科,其主要目的是利用已有的物理定律,或利用一些局部成立的定律,合情理地对宇宙作出推论。早在20世纪以前就有有关宇宙的记载。西方有关宇宙的研究可以分为四各时期。第一个时期是启蒙时期,主要是远古时代有关宇宙的神话传说。第二个时期是从公元前6世纪到公元前1世纪以至到中世纪(15世纪)为止,那时地心学主宰宇宙学。第三个时期是从16~世纪到17世纪,16世纪哥白尼的日心学说,开始把宇宙学从神话中解放出来,到17世纪,牛顿开辟了了以力学方法研究宇宙学的新经验,形成了经典宇宙学。第四时期,18世纪到19世纪,把研究扩大到银河系和河外星系,为现代宇宙学的发展奠定了基础。作为世界上四大文明古国之一的中国,在天文学方面有着灿烂的历史在天象记载、天文仪器制作和宇宙理论方面都为我们留下了珍贵的记录。现代宇宙学是从爱恩思坦1917年发表的论文《对广意相对论的宇宙学的考察》开始的,1922~1927年,原苏联数学家佛里得曼()、比利时科学家勒梅特()提出和发展了宇宙膨胀模型。1948年,邦迪(Bondi,H)、哥尔德(Gold,T)、霍伊尔(Huyle,F.)提出完善的宇宙学原理与稳恒的宇宙学原理模型。还有一些宇宙论研究者,把总星系的膨胀同万有引力常数G联系起来,1975年美国范佛兰登认为G正以每年百分之一的速度减少。有人提出了引力常数G的减少是总星系膨胀的原因。哈勃膨胀、微波辐射、轻元素的合成以及宇宙的测量被认为是现代宇宙学的四大基石。今天的宇宙学研究更依赖于观测技术以及科学水平的提高。这些观测事实都支持了目前流行的大爆炸宇宙学的理论观点现代宇宙学认为宇宙没有中心。现代宇宙模型中主要有五种模型:牛顿无限、静止宇宙模型、爱恩思坦静态模型、佛里得曼宇宙模型、稳恒态宇宙模型和大爆炸宇宙模型。美国数学家杰弗里·威克斯的最新宇宙模型令科学界震惊:一个大小有限、形状如同足球的镜子迷宫;宇宙之所以令人产生无边无界的“错觉”, 是因为这个有限空间通过“返转”效应无限重复映现自身。宇宙是有限的还是无限的?一个争论不休的古老问题。今天,根据天文观察资料和理论分析,多数天文学家都认定宇宙是无限的。 日前,根据美国国家航空航天局(NASA)2001年发射升空的WMAP宇宙微波背景辐射探测器获得的资料,美国数学家杰弗里·威克斯推断,宇宙其实是有限的,相对说来其实并不大,大约只有70亿光年宽度,形状为五边形组成的12面体,有如足球。人们之所以感觉宇宙是无限的,是因为宇宙就像一个镜子迷宫,光线传过来又传过去,让人们发生错觉,误以为宇宙在无限伸展

写星星,行星,地球,都可以呀

天文学论文范文3000字

如果你是初次接触者,请用Google搜索"Max Tegmark",这位MIT教授的文章会给你一个感性的认知。基本上现今流行文化中平行宇宙的概念都是发扬自他的理论。平行宇宙目前仍然是一个潜科学的概念,很难找到大量的科学文献。

同学你好,平行宇宙这个概念,在很多其他作品中都有所描述,譬如电影,科普纪录片,小说等等。目前该方面并没有一个准确的描述,其相关领域论文也都是描述其细节方面的东西,因为成千上万个完善的细节才能构建起一个完整的理论。所以要通过一线论文去了解平行宇宙,是需要相当大的时间和专业背景。我不建议你去参考网上类似于百度百科之类的,原因在于,那些小编实在水平有限。我个人估计,全中国的科学家,在平行宇宙方面有进展的,不超过3个。不过出于求知欲和好奇心(其实我和你一样),我有以下建议(也是我个人的经验):我这里建议你去看两本书,史蒂夫霍金的《时间简史》和《大设计》。霍金是谁我相信不用我去介绍了。我这里就不归纳总结了,巨匠写的书,我觉得我不配去总结。总之,希望你抽时间去看看吧。

写星星,行星,地球,都可以呀

93年,楼主应该迈入大学的校门了吧?那应该充分的利用好学校提供的资源。向楼主这个问题,完全可以到文献库中搜索。无论学校的质量如何,必定会购买几个文献库的使用权,国内的数据库中,CNKI和万方使用的人数最多。在文献库中搜索“平行宇宙”,相信能得到数以千级的论文。说实话,国内文献虽然不乏精品,但是总体水平比起国外的文献还是低了一个档次的。可以到一些国外的数据库搜索,比如Web of Science,相信楼主读过几篇之后能比较出国内与国外的差距。海阔凭鱼跃,天高任鸟飞。知道这个平台可能没有满足楼主的需求,不妨到更宽阔的空间中放飞自己的梦想。

天文学论文3000字

(4)量子引力理论20世纪基础物理研究的巨大成就,当归功于相对论、量子论与引力论的建立。相对论、量子论和引力论都具有普适性,它们的普适性的一个重要体现分别表现在c、h和G这三个普适常数上。然而,三个理论是否真的具有普适性,还在于它们彼此间的相容性,广义相对论的建立证实了引力论与相对论的相容性。量子理论的发展证明,物质的各种运动形态都遵从量子化的要求,与此同时,一切相对论性场,如电磁场也应是量子化的。在场量子化研究的初期,曾出现了一系列的发散困难。在40年代末,量子化电磁场的发散困难初步通过重正化理论得以解决。发散困难的最根本解决是在60年代完成。弱电统一理论的建立,不仅解决了弱相互作用中的发散困难,而且在类似弱相互作用的框架之中,还可望在强相互作用领域解决相对论与量子论的相容性。最困难的一步就是引力论与量子论的相容,这一步骤的一个主要目标就是建立量子化的引力理论。量子引力理论的研究还起源于广义相对论的奇点问题。由彭罗塞提出,后经霍金和杰罗奇等人最终建立的奇点定理表明,在相当宽的物态条件下,引力场方程的解必定具有奇性。奇性的存在表明,广义相对论属于服从因果律的经典物理范畴,在奇点处,这一理论不再适用。有可能在考虑到引力场的量子性之后,奇性自然消失,这一猜测随后在霍金黑洞蒸发理论中得到了支持。迫使人们研究量子引力理论的第三个动机来源于大统一理论。弱电统一理论已经建成,弱电与强相互作用的大统一理论正是当前的热门课题,研究过程表明,必须同时考虑到它们与引力作用的统一,而这一统一的实质就是建立量子引力理论。经典物理学的理论框架是建立在因果律的基础上的,经典物理学依赖于物理定律和它相应的边界条件,然而当问题涉及到奇点,而这个奇点又不是数学或模型的缺陷由人为造成的时,奇点很难消除,又很难给出合理的边界条件,这就迫使人们必须重新考虑原有的理论。沿着膨胀和暴涨的宇宙反向历程,应用经典宇宙学所给出的框架,回溯宇宙在暴涨之前的状态,很自然地会得到宇宙的尺度将趋于零。这意味着,引力场的强度以及物质场的能量密度将趋于无限大,宇宙是从一个奇点演化而来的,而这个奇点并非由于模型的缺陷人为引起的。早在60年代,彭罗塞和霍金就曾利用整体微分几何证明过①,奇点不仅是高度对称的,而且是广义相对论的必然产物。这意味着,在广义相对论的理论框架之中,不可能找到解决奇点的方案,或者说,尽管广义相对论揭示了时空的引力弯曲,但它对于极高曲率的空间并不适用。量子论的鼻祖普朗克很早就主张,应在所有的自然力之间建立联系。1899年,他首先提出了“普朗克长度”这一普适的这一最小长度Lp,以后又陆续提出了“普朗克时间”tp、“普朗克温度”Tp与“普朗克质量”Mp,它们分别为Lp=(hG/c3)1/2=×10-33cm, tp=(hG/c5)1/2=×10-43s,Mp=(hc/G)1/2=×10-5g,Tp=(hc5/k2G)1/2=×1032K。由于h、c和G三个常量都是相对论不变量,以它们为基准的普朗克自然单位将是不变和唯一的,这一点具有深刻意义。审查上述量的大小不难看出,温度Tp极高,甚至比宇宙大爆炸时刻的温度还高,长度Lp、时间tp却极小,质量Mp也不很大,虽然这些值都是实验室条件下无法得到的,它们却使人们想到,在暴涨之前的宇宙这些是否是可以接近的尺度,因此,应该由一个量子化的广义相对论取代经典广义相对论。本世纪初,量子力学诞生之后,量子力学原理首先用于解释微小系统——原子结构方面的困难,确立了薛定谔方程,同时也得到了有关原子特征的一系列量子力学描述。本世纪60年代以来,当人们试图用量子力学解释巨大的体系——宇宙结构时,却发现它们之间有着惊人的相似①。首先,在具有电磁作用的质子与电子微小体系中,重要自由度r(t)在趋于零时,产生奇点的经典困难,而在具有引力作用的大物质体系中,重要自由度标度因子R(t)在趋于零时,也产生奇点的经典困难;微小电磁体系具有玻尔半径10-8cm的量子长度,而引力作用体系则具有普朗克长度10-33cm的量子长度;微小体系服从薛定谔方程的动力学规律,而引力体系则有惠勒-德维特方程。关于这两个体系间的相似与联系,近年来的研究又有了新的进展。本世纪60~70年代,德维特(DeWitt,.)、米斯纳(Misner,.)和惠勒等人在量子宇宙学方面做出了重要的基础性工作,他们建立了描述宇宙量子特征的惠勒-德维特方程,然而求解这个方程却面临边界条件的确立。因为最初宇宙究竟处于什么状态仍然不能确定。D、宇宙学的进展在物理学研究深入发展的同时,人们也在力求对时空大尺度上,即从整体上认识宇宙。宇宙的起源、结构和演化都是人们关心的课题。物理学与高科技的结合,创造了口径相当于25米的巨型光学望远望、空间X射线和红外线望远镜以及地域甚大的天线阵列射电望远镜,这不仅使人们观测宇宙的窗口从红外、可见光一直延伸到X射线和γ射线整个波段,还使观测宇宙的时空尺度伸展到了170亿光年。如今,在人类面前,已展现出一幅生动壮丽的宇宙画面。以现代高能粒子物理与广义相对论为基础建立起来的理论宇宙学,已能从理论上描述出从原始火球大爆炸,到星系形成和演化的整个过程。大爆炸模型已经由现代天文学的观测,如河外星系谱线红移、3K微波背景辐射以及氦丰度等得到了一定的证实。与此同时,在解决这一模型自身的问题,如视界问题、平坦性问题和磁单极问题等的过程中,与高能物理真空相变理论相结合,又发展成更为完善的暴胀宇宙模型。虽然具有暴胀机制的大爆炸模型为宇宙学的发展奠定了基础,然而随着量子引力理论的发展,有关量子宇宙学的一系列更深层次的问题,如宇宙时空拓扑结构、基本耦合常数的真空参数问题、宇宙常数的动力学解释等,又引起了更新一轮的激烈争论。这场理论研究的重要进展的源头,即把世人的目光从一般天体引向宇宙整体的就是哈勃定律的建立。1.哈勃定律与膨胀的宇宙研究表明,宇宙的年龄、演变及结局,在很大的程度上决定于它的膨胀速率。对宇宙膨胀的观测大体分成两个方面,这就是测定星系的运动速率与测定地球到星系的距离。前者关系到宇宙的形成模型及有关理论的发展,而后者则是估算天体亮度、质量和大小的重要依据,然而无论哪一种,都取决于哈勃常数的测量。哈勃常数已成为近代宇宙学中最重要的基本常数之一。20世纪初,几台口径1米的大型望远镜陆续建造成功,它们为河外星系的系统观测创造了条件。美国天文学家哈勃(Hubble,EdwinPowell1889~1953)在这种条件下,为现代天文学与宇宙学做出了重要的贡献。哈勃1910年毕业于芝加哥大学天文学系,后到英国牛津大学读书,在那里获得法律学硕士学位。1914年至1917年在耶基斯天文台攻读天文学博士学位。第一次世界大战期间,曾在法国服役,战后在威尔逊山天文台从事星系的观测研究。当时的威尔逊山天文台已建成100英寸的天文望远镜。利用这台望远镜,哈勃把观测的目标集中在他所称的“一片片的亮雾”之上,这就是星云。与哈勃同时代的一些天文学家也在对这些星云做了大量的观测工作,例如在里克天文台工作的美国天文学家柯蒂斯(Curtis,HeberDoust1872~1942)致力于河外星系的研究,他借助对新星的观测及利用星系角大小估算距离,认为所观测到的绝大部分星云都属于河外星系。热衷于星系观测与研究的还有美国天文学家沙普利(Shap-ley,Harlow1885~1972),他曾任美国哈佛大学天文台台长,1915~1920年间,曾用威尔逊山天文台100英寸望远镜研究旋涡星云,他利用勒维特(Leavitt,HenriettaSwan1868~1921)发现的造父变星作为量天尺,确定了这些星云的距离,认为它们大约距太阳5万光年左右,应该属于银河系,因此将银河系的尺度扩展到原有的3倍。沙普利还第一个提出,太阳系不处在银河系的中心,虽然他把太阳从银河系的中心地位赶了下来,却又把银河系放到了宇宙的中心之上。柯蒂斯的看法则不同,他认为宇宙中充满着大量的像银河系那样的恒星系统。1920年,在美国国家科学院,柯蒂斯与沙普利的两种不同观点正式交锋,虽然在这场论战中柯蒂斯占了上风,却并未有得出公认一致的结论,直到三年后,哈勃给出的观测事实,才使上述论战有了决定性的结果。1923年,威尔逊山天文台建成了米口径的天文望远镜,哈勃利用它在仙女座星云外缘找到一颗造父变星,根据其光变周期与光度之间的关系,他推断出该星的距离为15万秒差距(实际为80万秒差距),比沙普利的银河系要大得多。这表明,仙女座大星云是一个河外星系,从而结束了河外天体是否存在的辩论,使天文学家的研究领域迈出了银河系。与哈勃同时代的另一位天文学家斯里弗(Slipher,VestoMelvin 1875~1969)也对星云研究感兴趣。他对星系光谱做了大量的观测。1921年,他首先把多普勒-斐索效应用于仙女座大星云,发现所观测到的星系光谱波长大多比实验室观测到的要长,这表明,这些星云都在远离地球退行,其退行速度大大地高于恒星的视向速度。 1929年,在同行们研究成果的基础上,哈勃仅以24个已知距离星系的观测资料为依据,做出了速率-距离的关系图。图中显示速率与距离值成正比,即vr=H0r,vr为星系对银河系的视向速率,上式即为哈勃定律,式中的常数H0就是哈勃常数,由这一常数得到的宇宙年龄H0-1=×108年,该值恰与当时用散射方法观察到的地壳中古老岩石年龄×108年惊人地一致,哈勃的结果,很快地得到认同。哈勃的这一结果,不仅证明了整个宇宙处于膨胀之中,而且这种膨胀速度与距离r成正比,因而既是处处没有中心又是处处为中心的。为了扩展观测的范围,需要能观测到更为遥远星系团中的星系。由于工作量的骤增,哈勃开始与赫马逊(Huma-son,MiltonLaSalle1891~1972)合作。哈勃负责测量星系的亮度,赫马逊负责测量红移量。赫马逊并非科班出身,最初只是威尔逊山天文台的一位看门人,工作之便使他热爱上了天文学,在为别人假期代班的天文观测中,显示了他出众的才华和娴熟的观测技巧,不久即正式投入天文学研究。在哈勃去世后,他继续了哈勃的天文观测事业,1956年,他又与其他人合作,利用观测到的资料,改进了哈勃定律,因而与勒梅特和盖莫夫的大爆炸理论取得了一致。2.哈勃常数值修正的三次高潮从原理上看,似乎哈勃常数的测定是简单的,即只要测出星系距离与退行速率,即可由哈勃定律得到哈勃常数。然而在实际上并非如此,星系的速率可以直接从谱线红移获得,可是距离的测量却是既困难又复杂的。对于1000万光年以内附近星系的距离,天文学家们的测量结果都比较一致,这种测量以造父变星为量天尺进行。1908年,在哈佛天文台工作的勒维特在南非观测时发现,造父变星的亮度周期性变化,光变周期越长,平均亮度也越大。这一发现具有不寻常的意义,因为观察亮度变化的整个过程,就可以得到光变周期和视亮度,随后即可计算得到它的绝对亮度。再根据距离加大,视亮度递减的关系,即可由绝对亮度与视亮度之比,确定造父变星的距离。因此,把造父变星作为量天尺,利用三角视差法,逐步扩大测量范围,不仅可以量出银河系的大小,还能测量出各河外星系的大小和距离。在20年代,哈勃用造父变星证实了银河系以外还存在有其它星系以后,从30年代到50年代,哈勃与桑德奇(Sandage,Allen Rex 1926~)等人,又在附近星系中寻找更多的造父变星以确立更新的量天尺,为此做了大量的工作。他们成功地测量了十几个星系的距离,改进了确定哈勃常数的基础。最初的哈勃常数值为H0=550千米/秒/百万秒差距(以下单位略)。1936年,考虑到星际消光因素,哈勃常数被修定为H0=526。在最初,这一数值被认为是准确的,因为按H0-1得到的宇宙年龄恰好与当时的地质观测结果相一致。二战之后,利用造父变星为量天尺,使哈勃常数逐渐得到了修正。1952年,在威尔逊山帕洛马文天台工作的旅美德国天文学家巴德(Baade,Walter 1893~1960)掀起了哈勃常数修正的第一个高潮。这次高潮是由修改量天尺引起的。此时,帕洛马天文台5米口径天文望远镜建成并开始运转。巴德利用他的精确而系统的测量,不仅在仙女星座中找到了300个以上的造父变星,而且还发现恒星分为两种星族,每一星族都有自己的造父变星,它们只适用于附近星系,而原有哈勃定律所针对的则都是建立在第一星族基础上的造父变星。随着对造父变星周光曲线的修定,随着观测尺度的加大,必须更换原有哈勃常数测定中的量天尺。经巴德计算,遥远星系的距离比原来的估计值增加了一倍,哈勃常数将比原来减小一倍。1952年,巴德在罗马举行的第8届国际天文学大会上,宣布了他的结果,H0=260。哈勃常数修正的第二个高潮由哈勃的接班人桑德奇掀起。桑德奇是一位著名的实测天文学家,从1956年开始,他在帕洛马天文台对哈勃常数进行了系统的测量工作。在几年的时间内,他得到了600多个星系的数据,最大的红移量值达到Z=,所得到的哈勃常数值为H0=180。在此基础上,桑德奇又对哈勃常数做了进一步的修正,他们再度更换量天尺并把观测范围进一步加大,此时原有确定距离的方法已不再适用,因为当星系距离达到了几百万秒差距时,望远镜已无法区分星系中单个的星,必须寻找代替造父变星做为新距离标准的“指示体”。他们通过天体的绝对星等和视星等的关系,先确定指示体的距离,再由指示体确定星系距离。他们认为能作为距离指示体的有,造父变星、HⅡ区、球状星云、超新星和椭圆星系等。1961年,桑德奇在美国伯克利召开的国际天文学大会上宣布,总估各种测量结果,哈勃常数值应在75与113之间,最或然值为H=98±15,一般可取为100。这一结果表明,宇宙的尺度要比人们早期预期结果远大得多。进入70年代以来,哈勃常数的测定日益受到天文学家们的重视,对它的测量方法也更加系统,测量的精度也日益提高,因而形成了哈勃常数修正的第三次高潮。然而,这次修正高潮之后,局面却日益复杂化。哈勃常数的各次测量值越来越多地接近高低两个值上。桑德奇和他的合作者塔曼得到的值是50,而德克萨斯大学的德瓦科列尔(de Vaucouleurs)的结果却是100,两个值的测量方法都是以造父变星为起点,其后选用不同距离的指示体进行的,结果竟然相差一倍,不仅出现了哈勃常数纷争的局面,也使人们在实际运算中,出现了任意选择的局面,有人选取50,有人选取100,还有人选择平均值75,虽然这些值的选取都具有权威性,但是仍无法最后判定哪一个最准确。目前,对哈勃常数做出裁决为时尚早,但是,从其它方面得到的佐证中,仍然可以提出带有倾向性的意见。根据哈勃常数值,宇宙的哈勃年龄应为t0=×109年和t9=×109年。然而宇宙的年龄还有其它的估算方法。一种方法是测量矿石中放射性元素的含量,根据其半衰期加以估算。对各种放射性元素综合测量的结果,所给出的宇宙年龄是1×1010另一种较为有效的方法是测定球状星团的年龄。根据球状星团的赫罗图,得出它们的年龄在(10~20)×1010综合这些从不同角度得到的估算结果,宇宙的年龄不超过200亿年,这表明取小值哈勃常数更符合实际。由于哈勃常数已成为近代宇宙学中最重要也最基本的常数之一,近年来,对它的研究已成为十分活跃的课题。正式发表的有关哈勃常数的论文已有数百篇。1989年,著名天体物理学家范登堡(Van den Bergh)为天文学和天体物理评论杂志撰写了一篇权威性论文①,它综述了截止到80年代末所有关于哈勃常数的测量和研究结果,最后认为,哈勃常数的取值应为H0=67±8。3.多余天线温度的发现1963年初,在贝尔实验室工作的年青物理学家彭齐亚斯(Penzias,Arno Allan 1933~)和射电天文学家威尔逊(Wilson,Robert Woodrow 1936~)合作,测量银河系内高纬星系的银晕辐射。他们所使用的射电望远镜原是用于接收人造卫星“回声号”回波用的大喇叭口天线加辐射计制成。他们还采用了当时噪音最低的红宝石行波微波激射器,并利用液氦致冷的波导管作为参考噪音源,因为它能产生功率确定的噪音以作为噪音的基准,使噪音的功率可以用等效的温度表示。由于当时的手头正好有一台的红宝石行波微波激射器,他们就先在7cm波段上开始了天线的测试工作。彭齐亚斯和威尔逊的测量结果①表明,天线的等效温度约为±,天线自身的温度为±,其中大气贡献为±,天线自身欧姆损耗和背瓣响应的贡献约为1K,扣除这些因素,最后得到,天线存在有多余噪音,它的等效温度约为±1K。尽管他们采用了各种措施,把各种估计到的噪音来源尽量消除,这个多余噪音的等效温度值依然存在,它不仅稳定,而且均匀无偏振,在任何方向都能接收到。彭齐亚斯和威尔逊观测到天线多余噪音温度现象,带有一定的偶然性,因为实验并没有在理论的预言或指导下进行。然而可贵的是,他们重视观测的结果,忠实于原始资料,不但没有轻易放弃偶然观测到的现象,反而抓住它们一追到底。并想方设法挖掘观测事实背后的意义,这就使他们能不失时机地做出重大发现。在这一成功之中,更难能可贵的是贝尔实验室对实验工作的支持。这一当今最大的工业实验室,拥有数千名才华出众的科技工作者,他们在进行电话、电报技术发展与开发业务的同时,始终重视基础科学,特别是基础物理学的研究工作。它在世界通讯事业中起着中流砥柱的作用,在物理学的研究中,也取得了许多令世人瞩目的成果,例如,在天体物理学方面,1931年,贝尔实验室的电信工程师央斯基(Jansky,Kart Guthe 1905~1950)首先发现了来自银心的周期性噪音射电辐射,从此开创了射电天文学的新领域。这次彭齐亚斯与威尔逊的观测是贝尔实验室与国家射电天文观测台合作进行,贝尔实验室远见卓识地从人力、设备与资金上给予了大力支持,提供了当时世界一流的灵敏毫米波谱线射电望远镜、热电子辐射计、液氦致冷参照噪音源,为实验的成功起到了至关重要的作用。4.宇宙微波背景辐射的证实在与彭齐亚斯、威尔逊实验观测的同时,另一些人也在对同一目标搜寻着。他们是以迪克(Dicke,Robert Henry 1916~)为首的普林斯顿大学的一个研究小组,正在开展一项有关宇宙学的探索性研究。1941年,迪克从罗彻斯特大学获得博士学位。1946年前,他在普林斯顿大学物理系执教。迪克成名于他的一项重要成果——标量-张量场论的提出①。这一理论与爱因斯坦的引力理论并驾齐驱,也能成功地解释引力研究中的一些观测现象,以致在引力场研究中,谁是谁非还一时难见分晓。在60年代,随着宇宙学研究的兴起,迪克对伽莫夫的宇宙原始大爆炸理论产生了浓厚的兴趣。他曾设想,至今宇宙应残存有大爆炸的遗迹,例如宇宙早期炽热高密时期残留的某种辐射。他与他的合作者认为,这种辐射有可能是一种可观测到的射电波②。迪克建议罗尔(Roll,.)和威尔金森(Wilkinson,.)进行观测,还建议皮布尔斯(Peebles,.)对此进行理论分析。皮布尔斯等人在1965年3月所发表的论文中①明确指出,残存的辐射是一种可观测的微波辐射。叙述了极早期宇宙中重元素分解后,轻元素重新产生的图景。皮布尔斯后来在霍普金斯大学做过的一次学术报告中,也阐明了这个想法。1965年,彭齐亚斯在给麻省理工学院射电天文学家伯克(Burke,B.)的电话中,告之他们难以解释的多余天线噪音,伯克立即想起了在卡内基研究所工作的一个同事特纳(Turner,K.)曾提到过的皮布尔斯的那次演讲,就建议彭齐亚斯与迪克小组联系。就这样,实验上和理论上的两大发现由此汇合并推动事态迅速地发展起来。先是彭齐亚斯与迪克通了电话,随即迪克寄来一份皮布尔斯等人论文的预印本,接着迪克及其同事访问了彭齐亚斯和威尔逊的实验基地,他们在离普林斯顿大学只有几英里之遥的克劳福德山讨论了观测的结果之后,双方协议共同在《天体物理学》杂志上发表了两篇简报,一篇是迪克小组的理论文章《宇宙黑体辐射》②,另一篇是彭齐亚斯与威尔逊的实验报导《在4080MHz处天线多余温度的测量》③,虽然后一篇论文考虑到自己尚未在宇宙论方面做出什么工作,出于慎重,论文并未涉及背景辐射宇宙起源的理论,只是提到“所观察到的多余噪音温度的一种可能解释,由本期Dicke、Peebles、Roll和Wikinson所写的另一篇简讯中给出”,但是,两篇论文分别从理论与实验的不同角度表述的研究成果竟如此珠联璧合,不能不令人惊叹。两篇论文发表后,引起了极大的反响。人们意识到,如果能给出天线多余温度确实来自宇宙背景辐射的证明,这个成果对宇宙学的发展的影响将是不可估量的。根据理论分析,早期宇宙极热状态下的光辐射是处于热平衡状态下的,它应具有各向同性且热辐射能量密度分布遵守普朗克定律等特点。随着宇宙的热膨胀,宇宙逐渐冷却,残存的光辐射谱仍应保持普朗克分布。彭齐亚斯与威尔逊所检验到的辐射是否遵从这一分布,应是检验天线多余温度是否来源于宇宙背景辐射的一项重要标准。从1965年到70年代的中期的近十年时间里,不少研究小组相继完成了各种测试。迪克小组在波段上得到了±,夏克斯哈夫特和赫威尔在上测得±,彭齐亚斯和威尔逊在上测得±。然而3K黑体辐射的峰值应在附近,为取得附近的测量值,康奈尔大学的火箭小组和麻省理工学院的气球小组的高空观测结果是,在远红外区有相当于3K的黑体辐射。加州大学伯克利分校的伍迪小组用高空气球测出,在到波段,有的黑体辐射。至此,实验结果与理论已得到极好的符合,彭齐亚斯和威尔逊观测到的多余天线温度确实是宇宙微波背景辐射,这种辐射在宇宙各处的各向同性、无偏振、具有大约3K的黑体谱。这项成果对宇宙学的研究具有重大意义,为此,彭齐亚斯和威尔逊获得了1978年诺贝尔物理学奖。

弯曲曲线是引力系数和四唯位置定力系数不断变化的物质运动图假设有连续的两点A B.两点的切线与X轴形成角cosA cosB引力系数为F"A-FB F"==FcosA--FcosB

不知道同学你有没有相关书籍, 我是天文系的学生,专业论文什么的有写过。你指的不很深的论文个人认为可以有以下几个方向一、天文学进展从人类对宇宙的认识和深化(从中国古代宇宙观开始,古希腊天文学 哥白尼日心说的建立 万有引力和太阳系模型 到建立在观测基础上的银河系模型 再写些当今宇宙学的内容)二、 如果对宇宙模型很感兴趣,可以讨论下你所了解的宇宙模型大爆炸宇宙模型(主要) 米尔恩宇宙模型 乔丹宇宙模型 狄拉克宇宙模型 布朗斯-迪克宇宙模型 与稳恒态宇宙模型(次主要) 的优劣三、 可以写写你对于天体距离测距的了解基本方法有 对于河内天体,三角视差法 分光视差法 星团视差法 造父视差法 对于河外天体, 通过挑选距离指示体测定其光度(即绝对星等)根据距离模数公式来测定距离(指示体有造父变星、行星状星云、红超巨星、HII区、球状星团、新星与超新星) 土利-费什尔方法 直接测量方法以上三个角度来写你对天文学的理解 或是偷懒的话把上面3种都写进去充字数也行,呵呵~希望能有帮助~

基础天文学论文3000字

浅谈天文学 摘要:宇宙中有第二个地球吗?宇宙是如何形成的?为什么地球能产生生命?玛雅人为什么会消失?天文学中的十万个为什么总能勾起人们的求知欲望!天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。它同数学、物理、化学、生物、地学同为六大基础学科。天文学家观测从行星、恒星、星系等各种天体来的辐射,小到星际的分子,大到整个宇宙。天文学家测量它们的位置,计算它们的轨道,研究它们的诞生,演化和死亡,探讨它们的能源机制。由于科技的不断发展,人们对天文学的定义,研究对象,研究范畴,学科分支,论研究等方面都取得了突破性的进展。天文学正朝着高、精、尖的方向发展。我们期待着天文学的进一步发展为科学事业和人们的社会生活造福。天文学是自然科学中的一门基础学科,它和人类历史同样悠久。天文学的研究内容和许多概念总是伴随着人类社会的文明和进步而不断发展的。 在望远镜发明以前,天文观测采用的是目视方法,直接观测天体在天空的视位置和视运动,另外也粗略的估计星星的亮度和颜色。17世纪以后相继有了望远镜、分光镜和光度计,不仅提高了天体位置观测的准确度,而且扩大了人们对宇宙的认识。到了20世纪,由于大口径望远镜的问世,使得人类探测宇宙的深度和广度与日俱增,不少模型、学说由观测得到证实,新天体、新发现大量涌现。20世纪30年代以后,人们越来越广泛的使用无线电方法研究天体和宇宙间的辐射,从而诞生了射电天文学。20世纪50年代人造地球卫星发射成功,人类把观测范围由地面扩展到地外空间,天文学家可以自由地探测天体的各种辐射。现代,天文空间探测已经有了长足的发展,人类不仅把望远镜送上天,而且借助太空飞行器踏上月球,或把仪器送到其他行星上进行直接观测或实验。 我一直都觉得天文学是一门很神秘的学科,对于天文学,我最感兴趣的是以下几个方面: 一、宇宙大爆炸 宇宙大爆炸(Big Bang)是一种学说,是根据天文观测研究后得到的一种设想。 大约在150亿年前,宇宙所有的物质都高度密集在一点,有着极高的温度,因而发生了巨大的爆炸。大爆炸以后,物质开始向外大膨胀,就形成了今天我们看到的宇宙。 比利时牧师、物理学家乔治·勒梅特①首先提出了关于宇宙起源的大爆炸理论,但他本人将其称作“原生原子的假说”。 这一模型的框架基于了爱因斯坦的广义相对论,并在场方程的求解上作出了一定的简化。描述这一模型的场方程由苏联物理学家亚历山大·弗里德曼②于1922年将广义相对论应用在流体上给出。1929年,美国物理学家埃德温·哈勃③通过观测发现从地球到达遥远星系的距离正比于这些星系的红移,这一膨胀宇宙的观点也在1927年被勒梅特在理论上通过求解弗里德曼方程而提出,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星团在视线速度上都在远离我们这一观察点,并且距离越远退行视速度越大。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去的距离曾经很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个极高密度且极高温度的状态,在类似条件下大型粒子加速器上所进行的实验结果则有力地支持了这一理论。 2003 年 2 月 12 日,美国宇航局公布了探测器拍到的宇宙“婴儿期照片”,为宇宙大爆炸理 论提供了新的依据。根据这张照片科学家还精确地测量出了宇宙的实际年龄是 137 亿年。图 片中的微波光线来自宇宙大爆炸后的38万年,大约是在130多亿年前。美国宇航局的科学家说, 这张照片中可以观测到的辐射是一种电磁波,它充满了整个宇宙。电磁波里包含的微观模型信息,显示了形成星系以及我们周围一切结构的萌芽的特征。这次公开的宇宙“婴儿期照片”清晰地显示了这个遗迹的存在,有力地支持了宇宙大爆炸理论。另外, 图片还显示宇宙中最早的恒星诞生于宇宙大爆炸发生的2亿年后,比许多科学家认为的要早 得多。宇宙起初是由不断相互影响的粒子和射线所构成的一团炽热且无定形的云状物组成的:大爆炸后又过了40万年,宇宙膨胀和冷却到一定程度时,电子和质子结合成中性原子,它们再 与周围的射线相互影响。 经过科学研究,目前被绝大多数人接受的结论是:宇宙诞生之前,没有时间,没有空间,也没有物质和能量。大约150亿年前,在这片四大皆空的“无”中,一个体积无限小的点爆炸了。时空从这一刻开始,物质和能量也由此产生,这就是宇宙创生的大爆炸。但,若真是四大皆空的状态,那么宇宙为何会爆炸?爆炸后的物质又是从哪里来的?不是说自然界的一切物质都是守恒的,那么这个宇宙大爆炸是如何无中生有的呢? 二、黑洞 黑洞(black hole)是由一个只允许外部物质和辐射进入而不允许物质和辐射从中逃离的边界即视界所规定的时空区域。 根据第七节课影片的介绍,黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。物质将不可阻挡地向着中心点进军,直至成为一个体积很小、密度趋向很大。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径④),巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。2010年11月16日凌晨1点30分,美国宇航局宣称,科学家通过美国宇航局钱德拉X射线望远镜在距地球5000万光年处发现了仅诞生30年的黑洞。这是有史以来所发现的最年轻的黑洞。 据科学家揣测,银河系的中心是一个超巨型黑洞。超巨黑洞位于星系中心,据推测每个星系都有,质量一般约为星系总质量的。目前,关于超巨黑洞的形成主要有两种理论。一种观点认为,它可能是随着星系的诞生一次性产生的。但也有推测说,超巨黑洞是以质量更小的黑洞为基础形成的,后者就好比是一些“种子”,随着时间的推移进化成了巨型黑洞。 因为所有的能量都是守恒的,科学家们提出设想,既然宇宙中有黑洞,那么一定存“白洞”。黑洞可以用强大的吸力把任何物体都吸进去,而白洞可以把这些东西都吐出来。科学家们设想,黑洞与白洞是连在一起的,黑洞把物质吸进去,物质在里面会经过一个叫做“奇异点”的东西,然后物质就到达了白洞的“管辖范围”,会被白洞“吐”出来。然后物质就到达了另一个宇宙(第一平行宇宙到达第二平行宇宙)。但是,如果白洞存在,所有的物体将会以极快的速度离开。这会是我们这个宇宙形成的原因吗?我们是否就生活在被白洞所抛出的物质至上呢? 三、玛雅预言 关于玛雅人预言的2012世界末日是我最感兴趣的一个部分。地球上有多处迹象表明玛雅人曾经生活在这个地球上过,可是他们为什么消失了?在过去的时间里,也曾有许多关于世界末日的说法,但当所被预言的那一刻真正到来时,所有的预言就不攻自破了。那么玛雅预言也是这样吗?随着2012的渐渐来临,关于玛雅预言的有关事迹、传闻、猜测越来越多。玛雅预言受到了前所未有的关注! 根据玛雅历法的预言传说,我们所生存的世界,共有五次毁灭和重生周期——每一周期即所谓的“太阳纪”。按照这一传说,现在我们正处在第四个“太阳纪”,而2012年左右将是“第5太阳纪”的开始;并且,当时的玛雅人认为,在每一纪结束时,都会在我们生存的家园上演一出惊心动魄的毁灭悲剧。 玛雅预言为何会受到如此多的关注呢? 玛雅人认为一个月等于20天,一年等于18个月,再加上每年之中有5未列在内的忌日:一年实际的天数为365天,这正好与现代人对地球自转时程的认识相吻合。玛雅民族在天文学方面的成就是十分突出的。 玛雅古国有五大预言:1:玛雅文明的终结。也就是他自己的末日,自己预测到了。却改变不了。 2:汽车,飞机,火箭的出现时期。 3:大魔头(希特勒)的出生和死亡的大致时期。 4:毁灭性战争的爆发时期(一二战)。 5:2012年12月21日太阳落下以后。将不会出现。 这五大预言中的前四个都已准确的实现,如今就差世界末日这一预言。它会像前四个预言一样准确的实现吗? 科学家对玛雅预言并不信以为然,他们首先利用玛雅历法来揭穿所谓的“世界末日”预言。玛雅历法并没有结束于2012年,因此玛雅人自己也没有把这一年当作是世界的末日。不过,2012年12月21日(冬至)肯定是玛雅人的一个重要日子。美国科尔盖特大学考古天文学家安东尼-阿维尼是一名玛雅文化研究专家。阿维尼表示,“在玛雅历法中,1872000天算是一个轮回,即年。” 玛雅人对于时间的计算比其他许多文化都要精细。阿维尼介绍说,玛雅人曾经发明了所谓的“长历法”,这种历法把最初的计算时间一直追溯到玛雅文化的起源时间,即公元前3114年8月11日。根据“长历法”,到2012年冬至时,就意味着当前时代的时间结束,即完成了年的一个轮回。长历法于是重新开始从“零天”计算,又开始一个新的轮回。阿维尼认为,“这仅仅是一个重新计时的思想,与我们每年元旦或周一早上重新开始一年或一周生活完全一样。” 也有一种这样的说法,地球环境正在遭受前所未有的破坏,2012世界末日说纯粹是为了提醒人类保护地球的重要性。最近世界总是不太平静,地震、暴雨不停侵袭着人类的家园,造成人类巨大的损失。无论2012是否真的存在,我们都应该珍惜每一天的美好生活! 四、外星文明 茫茫宇宙中,地球上的人类建立的文明是微不足道的。因为地球文明是如此短暂,人类开始创造文明才不过几万年,发展科学技术不过几百年,探索航天技术不过几十年,这和地球年龄的46亿年、银河系年龄100亿至150亿年相比,何异于沧海一粟。因此,我始终坚信外星人是真实存在的,他们就在我们的周围,在某一个星球上,只是我们的科学技术还不够发达,我们无法发现对方。 早在19世纪,人们就在想办法和外星文明联系上。在20世纪的四分之一的时间中,我们已在不停地用电波轰击太空,现在电波在所有方向上已经传播了70光年,覆盖了数千个恒星系统。我们可以设想,某个星球上的智慧生命,现在已经打开收音机,正在收听地球上的一些流行歌曲。 目前科学家一直不懈的努力着、假设着外星人的一切,外星人居住的环境或许与地球相似,但由于大气比例不同,他们生活的星球或许比地球高温,或许比地球潮湿,或许比地球压强大。或许那个存在生物的星球的环境真的会像视频中那样,有飞鲸、跟踪鸟、气球草! 天文学的一切以其未知性和不确定性不停的勾起人们的求知欲望。人们不停假设、不停研究,想要知道宇宙是如何形成的?黑洞究竟是怎么一回事?外星文明是否存在?外星人是什么模样?在几千年的天文研究中,我们看到了各种天文学家的努力和人类社会的进步。从他们的结论中,我们对自己、对自己居住的环境、对自己的来历有了进一步的了解。 在宇宙中,地球是一个十分年轻的生命,我们还有很长的路要走! ①乔治·爱德华·勒梅特:1894年7月17日—1966年6月20日,比利时牧师、宇宙学家。 ②亚历山大·亚历山大洛维奇·弗里德曼:1888年6月16日-1925年9月16日,苏联数学家、气象学家、宇宙学家。现代动力气象学的奠基人之一。1910年毕业于圣彼得堡大学。 ③埃德温·哈勃:1889年—1953年,美国天文学家,第一个使用霍尔望远镜的天文学家。哈勃的研究引导了对宇宙诞生的新研究。 ④史瓦西半径:是任何具重力的质量之临界半径。1916年卡尔·史瓦西首次发现了史瓦西半径的存在,一个物体的史瓦西半径与其质量成正比。我对天文学的定义、研究方向、研究领域、研究理论以及矮行星和中子星等重要的天体有了系统的了解。它也丰富了我的知识体系,拓宽了我的知识面。我期待天文学取得更大的进展,也期待我国的科学事业的发展越来越好。

宇宙是有限的?镜像是无限的?宇宙是有限的还是无限的?有没有中心?有没有边/有没有生老病死?有没有年龄?这些恐怕是自从有人类活动以来一直被关心的问题。宇宙学——它是从整体角度探讨宇宙结构与演化的天文学分支学科,其主要目的是利用已有的物理定律,或利用一些局部成立的定律,合情理地对宇宙作出推论。早在20世纪以前就有有关宇宙的记载。西方有关宇宙的研究可以分为四各时期。第一个时期是启蒙时期,主要是远古时代有关宇宙的神话传说。第二个时期是从公元前6世纪到公元前1世纪以至到中世纪(15世纪)为止,那时地心学主宰宇宙学。第三个时期是从16~世纪到17世纪,16世纪哥白尼的日心学说,开始把宇宙学从神话中解放出来,到17世纪,牛顿开辟了了以力学方法研究宇宙学的新经验,形成了经典宇宙学。第四时期,18世纪到19世纪,把研究扩大到银河系和河外星系,为现代宇宙学的发展奠定了基础。作为世界上四大文明古国之一的中国,在天文学方面有着灿烂的历史在天象记载、天文仪器制作和宇宙理论方面都为我们留下了珍贵的记录。现代宇宙学是从爱恩思坦1917年发表的论文《对广意相对论的宇宙学的考察》开始的,1922~1927年,原苏联数学家佛里得曼()、比利时科学家勒梅特()提出和发展了宇宙膨胀模型。1948年,邦迪(Bondi,H)、哥尔德(Gold,T)、霍伊尔(Huyle,F.)提出完善的宇宙学原理与稳恒的宇宙学原理模型。还有一些宇宙论研究者,把总星系的膨胀同万有引力常数G联系起来,1975年美国范佛兰登认为G正以每年百分之一的速度减少。有人提出了引力常数G的减少是总星系膨胀的原因。哈勃膨胀、微波辐射、轻元素的合成以及宇宙的测量被认为是现代宇宙学的四大基石。今天的宇宙学研究更依赖于观测技术以及科学水平的提高。这些观测事实都支持了目前流行的大爆炸宇宙学的理论观点现代宇宙学认为宇宙没有中心。现代宇宙模型中主要有五种模型:牛顿无限、静止宇宙模型、爱恩思坦静态模型、佛里得曼宇宙模型、稳恒态宇宙模型和大爆炸宇宙模型。美国数学家杰弗里·威克斯的最新宇宙模型令科学界震惊:一个大小有限、形状如同足球的镜子迷宫;宇宙之所以令人产生无边无界的“错觉”, 是因为这个有限空间通过“返转”效应无限重复映现自身。宇宙是有限的还是无限的?一个争论不休的古老问题。今天,根据天文观察资料和理论分析,多数天文学家都认定宇宙是无限的。 日前,根据美国国家航空航天局(NASA)2001年发射升空的WMAP宇宙微波背景辐射探测器获得的资料,美国数学家杰弗里·威克斯推断,宇宙其实是有限的,相对说来其实并不大,大约只有70亿光年宽度,形状为五边形组成的12面体,有如足球。人们之所以感觉宇宙是无限的,是因为宇宙就像一个镜子迷宫,光线传过来又传过去,让人们发生错觉,误以为宇宙在无限伸展

这个方面我知道,可以但是你没题目吗说清晰

浅论天文 天文学历史 天文学的起源可以追溯到人类文化的萌芽时代。远古时代,人们为了指示方向、确定时间和季节,而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法。从这一点上来说,天文学是最古老的自然科学学科之一。 古时候,人们通过用肉眼观察太阳、月亮、星星来确定时间和方向,制定历法,指导农业生产,这是天体测量学最早的开端。早期天文学的内容就其本质来说就是天体测量学。从十六世纪中期哥白尼提出日心体系学说开始,天文学的发展进入了全新的阶段。此前包括天文学在内的自然科学,受到宗教神学的严重束缚。哥白尼的学说使天文学摆脱宗教的束缚,并在此后的一个半世纪中从主要纯描述天体位置、运动的经典天体测量学,向着寻求造成这种运动力学机制的天体力学发展。 十八、十九世纪,经典天体力学达到了鼎盛时期。同时,由于分光学、光度学和照相术的广泛应用,天文学开始朝着深入研究天体的物理结构和物理过程发展,诞生了天体物理学。 二十世纪现代物理学和技术高度发展,并在天文学观测研究中找到了广阔的用武之地,使天体物理学成为天文学中的主流学科,同时促使经典的天体力学和天体测量学也有了新的发展,人们对宇宙及宇宙中各类天体和天文现象的认识达到了前所未有的深度和广度。 天文学就本质上说是一门观测科学。天文学上的一切发现和研究成果,离不开天文观测工具——望远镜及其后端接收设备。在十七世纪之前,人们尽管已制作了不少天文观测仪器,如中国的浑仪、简仪,但观测工作只能靠肉眼。1608年,荷兰人李波尔赛发明了望远镜,1609年伽里略制成第一架天文望远镜,并作出许多重要发现,从此天文学跨入了用望远镜时代。在此后人们对望远镜的性能不断加以改进,以期观测到更暗的天体和取得更高的分辨率。1932年美国人央斯基用他的旋转天线阵观测到了来自天体的射电波,开创了射电天文学。1937年诞生第一台抛物反射面射电望远镜。之后,随着射电望远镜在口径和接收波长、灵敏度等性能上的不断扩展、提高,射电天文观测技术为天文学的发展作出了重要的贡献。二十世纪后50年中,随着探测器和空间技术的发展以及研究工作的深入,天文观测进一步从可见光、射电波段扩展到包括红外、紫外、X射线和γ射线在内的电磁波各个波段,形成了多波段天文学,并为探索各类天体和天文现象的物理本质提供了强有力的观测手段,天文学发展到了一个全新的阶段。而在望远镜后端的接收设备方面,十九世纪中叶,照相、分光和光度技术广泛应用于天文观测,对于探索天体的运动、结构、化学组成和物理状态起了极大的推动作用,可以说天体物理学正是在这些技术得以应用后才逐步发展成为天文学的主流学科。 人类很早以前就想到太空畅游一番了。1903年人类在地球上开设了第一家月亮公园。花50美分就能登上一个雪茄状、带翼的车,然后车身剧烈摇晃,最后登上一个月亮模型。 同一年,莱特兄弟在空中哒哒作响地飞行了59秒,同时一位名为康斯坦丁·焦乌科夫斯基、自学成才的俄罗斯人发表了题为《利用反作用仪器进行太空探索》的文章。他在文内演算,一枚导弹要克服地球引力就必须以1.8万英里的时速飞行。他还建议建造一枚液体驱动的多级火箭。 50年代,有一个公认的基本思想是,哪个国家第一个成功地建立永久性宇宙空间站,它迟早就能控制整个地球。冯·布劳恩向美国人描述了洲际导弹、潜艇导弹、太空镜和可能的登月旅行。他曾设想建立一个经常载人的、并能发射核导弹的宇宙空间站。他说:“如果考虑到空间站在地球上所有有人居住的地区上空飞行,那么人们就能认识到,这种核战争技术会使卫星制造者在战争中处于绝对优势地位。 1961年,加加林成为进入太空的第一人。俄国人用他说明,在天上飞来飞去的并不是天使,也不是上帝。美国约翰·肯尼迪竞选的口号是“新边疆”。他解释说:“我们又一次生活在一个充满发现的时代。宇宙空间是我们无法估量的新边疆。”对肯尼迪来说,苏联人首先进入宇宙空间是“多年来美国经历的最惨痛的失败”。唯一的出路是以攻为守。1958年美国成立了国家航空航天局,并于同年发射了第一颗卫星“探险者”号。1962年约翰·格伦成为进入地球轨道的第一位美国人。 许多科学家本来就对危险的载人太空飞行表示怀疑,他们更愿意用飞行器来探测太阳系。 而美国人当时实现了突破:三名宇航员乘“阿波罗号”飞船绕月球飞行。在这种背景下,计划在1969年1月实现的两艘载人飞船的首次对接具有特殊的意义。 补充回答: 20世纪的80年代,苏联的第三代空间站“和平”号轨道站使其航天活动达到高峰,都让美国人感到眼热。“和平”号被誉为“人造天宫”,1986年2月20日发射上天,是迄今人类在近地空间能够长期运行的唯一载人空间轨道站。它与其相对接的“量子1号”、“量子2号”、“晶体”舱、“光谱”舱、“自然”舱等舱室形成一个重达140吨、工作容积400立方米的庞大空间轨道联合体。在这一“太空小工厂”相继考察的俄罗斯和外国宇航员有106名,进行的科考项目多达万个,重点项目600个。 在“和平”号进行的最吸引人的实验是延长人在太空的逗留时间。延长人在空间的逗留时间是人类飞出自己的摇篮地球、迈向火星等天体最为关键的一步,要解决这一难题需克服失重、宇宙辐射及人在太空所产生的心理障碍等。俄宇航员在这方面取得重大进展,其中宇航员波利亚科夫在“和平”号上创造了单次连续飞行438天的纪录,这不能不被视为20世纪航天史上的一项重要成果。在轨道站上进行了诸如培养鹌鹑、蝾螈和种植小麦等大量的生命科学实验。 如果将和平号空间站看作人类的第三代空间站,国际空间站则属于第四代空间站了。国际空间站工程耗资600多亿美元,是人类迄今为止规模最大的载人航天工程。它从最初的构想和最后开始实施既是当年美苏竞争的产物,又是当前美俄合作的结果,从侧面折射出历史的一段进程。 国际空间站计划的实施分3个阶段进行。第一阶段是从1994年开始的准备阶段,现已完成。这期间,美俄主要进行了一系列联合载人航天活动。美国航天飞机与俄罗斯“和平”号轨道站8次对接与共同飞行,训练了美国宇航员在空间站上生活和工作的能力;第二阶段从1998年11月开始:俄罗斯使用“质子-K”火箭把空间站主舱——功能货物舱送入了轨道。它还担负着一些军事实验任务,因此该舱只允许美国宇航员使用。实验舱的发射和对接的完成,将标志着第二阶段的结束,那时空间站已初具规模,可供3名宇航员长期居住;第三阶段则是要把美国的居住舱、欧洲航天局和日本制造的实验舱和加拿大的移动服务系统等送上太空。当这些舱室与空间站对接后,则标志着国际空间站装配最终完成,这时站上的宇航员可增至7人。 补充回答: 美、俄等15国联手建造国际空间站,预示着一个各国共同探索和和平开发宇宙空间的时代即将到来。不过,几十年来载人航天活动的成果还远未满足他们对太空的渴求。“路漫漫其休远兮,吾将上下而求索”,人类一直都心怀征服太空的欲望和和平利用太空资源的决心。1998年11月,人类第一个进入地球轨道的美国宇航员、77岁的老格伦带着他未泯的雄心再次踏上了太空征程,这似乎在告诉人类:照此下去,征服太空不是梦。

关于天文学的论文3000字

古代天文学的论文

古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,下面是关于古代天文学的论文的内容,欢迎阅读!

摘要: 中国古代天文学有着上千年的悠久历史,自神话时期兴起,绵延千年不衰。但中外学者对于中国古代天文学的质疑也从未停止过。本文从科学哲学角度,叙述中国古代天文学的兴起与发展,详细分析其功能效用与历史影响,从而辨别中国古代天文学是否为真科学。

关键词: 中国古代天文学;科学哲学;真科学

一、中国古代天文学的兴起

从众多资料来看,中国古代天文学的历史之悠久,可以追溯到上古时期。传说在少昊氏时,人人私下研习天文,都搞起了沟通上天的巫术,致使天下大乱。颛顼帝命令重、黎二人“绝地天通”,禁止了平民与上天沟通交流。之后与天交流的权利就专属于天子,也只有天子钦定的巫觋才有资格去沟通上天。从此天文学在古代中国就成了皇家的专属品,而天子也开始拥有了对“天命”的解读权。这也就是中国漫长天文学史的开端。

二、中国古代天文学的发展

我国天文学至于夏商周代时已经有了一定水准的历法。特别是到了周代,已经有人开始观测流星、行星等天象及星辰。相比于上古时代,这已经有了很大的进步。

传统的天文学体系是在春秋战国时期正式完成的。在这一时期,不仅二十八星宿体系确立,而且在历法方面有了重大的进步。我们古人开始通过观测日影长短的周年变化来确定冬至和夏至的日期。并且在这一时期流传了大量人们观测流星、彗星等天象的详细记录。这些都成了我国历史上的宝贵资料。

自从春秋战国时期传统天文学大框架建立之后,秦、汉、魏晋南北朝、隋、唐、宋时期,天文学进一步蓬勃发展。不仅历法得到统一,二十四节气,浑天仪等天文知识以及天文学仪器的进一步发明使得我国的天文学一路高歌猛进。到了元朝,由于铁木真缔造了一个横跨欧亚大陆的辉煌帝国,我国古代天文学甚至传到阿拉伯等国,可谓是盛极一时。明清时期,中国开放了千年来“严禁私习天文”的禁令,使得我国古代天文学有机会走向一个新的巅峰。

三、对中国古代天文学的质疑

也正是因为我国古代天文学在很长一段时间是服务于皇室,很多中西方学者就质疑中国古代天文学是否是真正的科学。甚至有些激进派的学者直接将中国古代天文学打入伪科学的深渊。在此,笔者持有不同看法。

马克思主义的科学观认为,科学是历史发展总过程的产物,它抽象地表现了这一历史发展总过程的精华,这个精华显然包括自然科学与社会科学。每一种不同的运动形式都构成每一门具体科学的研究对象,而整个物质世界和精神世界在总体上便构成总体科学的研究对象。因此,所谓科学就是对自然界和人类社会运动、变化规律的概括,都是人们在感觉经验基础之上用“理性方法”整理概括的结果。此外在科学的本质与功能上,马克思还突出强调了科学技术是生产力,科学是一种在人类历史上起推动作用的、革命力量的思想。

按照马克思的观念,我们反观中国古代天文学,这是一门有着上千年悠久历史的学科,毫无疑问它也是历史发展的产物。无数古代先贤们定历法、造仪器、编文献来研究这浩渺天空中天体运转的奥秘。这分明就是在研究自然界的运动变化规律。更为重要的是,我国古代天文学对社会发展变革起了很大的推动作用。

中国古代天文学最重要的应用领域之一便是航海。早在战国时期中国人就根据天文学中观测到的星辰位置,发明了具有指向性功能的“司南”。这在当时的'世界上是独一无二的。这为日后开辟海上丝绸之路做出了不可磨灭的贡献。

如果大家觉得航海之术离我们日常生活过于遥远,不能说对社会变革起了决定性的作用。那么,中国作为一个传统的农业大国,农业该是我们的立身之本了吧。中国古代天文学对我国农业的发展也起到巨大的推动作用。在石器时代,人们保持着刀耕火种的农业经营方式,这种粗放的耕作模式导致了极端的低产。不过正是伴随着天文学的发展,历法的完善,节气的确立,使得传统农业高度关注农时后,精耕细作的优良方式才逐步趋于成熟,造福了无数黎民百姓。

如果说马克思的观点太过于阳春白雪,那当代科学哲学界的泰斗吴国盛教授在《什么是科学》一书中精辟分析了科学的两种基本用法,堪称下里巴人式的真知灼见。第一种是可以依靠它来振兴国家,第二种是某种积极意义上的价值判断。根据这种观点,中国古代天文学及推动了航海时代的发展,促进了国家的繁荣发展。同时,它又大力推动了农业的进步,在价值意义上来讲也是毋容置疑的“好东西”。那么我们为什么不能承认中国古代天文学是真正的科学呢?

参考文献:

[1]江晓原,钮卫星.中国天学史[M].上海人民出版社,2005.

[2]遵妫.中国天文学史[M].上海人民出版社,2007.

[3]张之沧.科学哲学导论[M].人民出版社,2004.

[4]吴国盛.什么是科学[M].民出版社,2016.

天文 [太阳系](注:在2006年8月24日于布拉格举行的第26界国际天文联会中通过的第5号决议中,冥王星被划为矮行星,并命名为小行星134340号,从太阳系九大行星中被除名。所以现在太阳系只有八大行星。文中所有涉及“九大行星”的都已改为“八大行星”。)太阳系(solar system)是由太阳、9颗大行星、66颗卫星以及无数的小行星、彗星及陨星组成的。 行星由太阳起往外的顺序是:水星(mercury)、金星(venus)、地球(earth)、火星(mars)、木星(jupiter)、土星(saturn)、天王星(uranus)、海王星(neptune)和冥王星(pluto)。离太阳较近的水星、金星、地球及火星称为类地行星(terrestrial planets)。宇宙飞船对它们都进行了探测,还曾在火星与金星上着陆,获得了重要成果。它们的共同特征是密度大(>克/立方厘米),体积小,自转慢,卫星少,内部成分主要为硅酸盐(silicate),具有固体外壳。离太阳较远的木星、土星、天王星、海王星及冥王星称为类木行星(jovian planets)。宇宙飞船也都对它们进行了探测,但未曾着陆。它们都有很厚的大气圈,其表面特征很难了解,一般推断,它们都具有与类地行星相似的固体内核。在火星与木星之间有100000个以上的小行星(asteroid)(即由岩石组成的不规则的小星体)。推测它们可能是由位置界于火星与木星之间的某一颗行星碎裂而成的,或者是一些未能聚积成为统一行星的石质碎块。陨星存在于行星之间,成分是石质或者铁质。 星,距离(AU),半径(地球),质量(地球),轨道倾角(度),轨道偏心率,倾斜度,密度(g/cm3)太 阳,0 ,109 ,332,800 ,--- ,--- ,--- , 水 星 , , , ,7 , ,° , 金 星 , , , , , ,° , 地 球 , , ,, , ,° , 火 星 ,, , , ,, ° , 木 星 , , ,318 , , ,° , 土 星 ,, ,95 , , ,° , 天王星 ,, ,17 , , ,° , 海王星 , , ,17 , , ,° , 冥王星 , , , , , ,° , 九大行星中,一般把水星、金星、地球和火星称为类地行星,它们的共同特点是其主要由石质和铁质构成,半径和质量较小,但密度较高。把木星、土星、天王星和海王星称为类木行星,它们的共同特点是其主要由氢、氦、冰、甲烷、氨等构成,石质和铁质只占极小的比例,它们的质量和半径均远大于地球,但密度却较低。冥王星是特殊的一颗行星。 行星离太阳的距离具有规律性,即从离太阳由近到远计算,行星到太阳的距离(用a表示)a=*2n-2(天文单位)其中n表示由近到远第n个行星(详见上表) 地球、火星、木星、土星、天王星、海王星的自转周期为12小时到一天左右,但水星、金星、冥王星自转周期很长,分别为天、243天和天,多数行星的自转方向和公转方向相同,但金星则相反。 除了水星和金星,其它行星都有卫星绕转,构成卫星系。 在太阳系中,现已发现1600多颗彗星,大致一半彗星是朝同一方向绕太阳公转,另一半逆向公转的。彗星绕太阳运行中呈现奇特的形状变化。 太阳系中还有数量众多的大小流星体,有些流星体是成群的,这些流星群是彗星瓦解的产物。大流星体降落到地面成为陨石。 太阳系是银河系的极微小部分,它只是银河系中上千亿个恒星中的一个,它离银河系中心约千秒差距,即不到3万光年。太阳带着整个太阳系绕银河系中心转动。可见,太阳系不在宇宙中心,也不在银河系中心。 太阳是50亿年前由星际云瓦解后的一团小云塌缩而成的,它的寿命约为100亿年。[宇宙航天]宇宙是广漠空间和其中存在的各种天体以及弥漫物质的总称。 宇宙是物质世界,它处于不断的运动和发展中。 千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。直到今天,科学家们才确信,宇宙是由大约150亿年前发生的一次大爆炸形成的。 在爆炸发生之前,宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,之后发生了大爆炸。 大爆炸使物质四散出击,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命,都是在这种不断膨胀冷却的过程中逐渐形成的。 然而,大爆炸而产生宇宙的理论尚不能确切地解释,“在所存物质和能量聚集在一点上”之前到底存在着什么东西? “大爆炸理论”是伽莫夫于1946年创建的。 大爆炸理论 (big-bang cosmology)现代宇宙系中最有影响的一种学说,又称大爆炸宇宙学。与其他宇宙模型相比,它能说明较多的观测事实。它的主要观点是认为我们的宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系并不是静止的,而是在不断地膨胀,使物质密度从密到稀地演化。这一从热到冷、从密到稀的过程如同一次规模巨大的爆发。根据大爆炸宇宙学的观点,大爆炸的整个过程是:在宇宙的早期,温度极高,在100亿度以上。物质密度也相当大,整个宇宙体系达到平衡。宇宙间只有中子、质子、电子、光子和中微子等一些基本粒子形态的物质。但是因为整个体系在不断膨胀,结果温度很快下降。当温度降到10亿度左右时,中子开始失去自由存在的条件,它要么发生衰变,要么与质子结合成重氢、氦等元素;化学元素就是从这一时期开始形成的。温度进一步下降到100万度后,早期形成化学元素的过程结束(见元素合成理论)。宇宙间的物质主要是质子、电子、光子和一些比较轻的原子核。当温度降到几千度时,辐射减退,宇宙间主要是气态物质,气体逐渐凝聚成气云,再进一步形成各种各样的恒星体系,成为我们今天看到的宇宙。大爆炸模型能统一地说明以下几个观测事实: (1)大爆炸理论主张所有恒星都是在温度下降后产生的,因而任何天体的年龄都应比自温度下降至今天这一段时间为短,即应小于200亿年。各种天体年龄的测量证明了这一点。 (2)观测到河外天体有系统性的谱线红移,而且红移与距离大体成正比。如果用多普勒效应来解释,那么红移就是宇宙膨胀的反映。 (3)在各种不同天体上,氦丰度相当大,而且大都是30%。用恒星核反应机制不足以说明为什么有如此多的氦。而根据大爆炸理论,早期温度很高,产生氦的效率也很高,则可以说明这一事实。 (4)根据宇宙膨胀速度以及氦丰度等,可以具体计算宇宙每一历史时期的温度。大爆炸理论的创始人之一伽莫夫曾预言,今天的宇宙已经很冷,只有绝对温度几度。1965年,果然在微波波段上探测到具有热辐射谱的微波背景辐射,温度约为3K。........................................................................................................................................... 人类很早以前就想到太空畅游一番了。1903年人类在地球上开设了第一家月亮公园。花50美分就能登上一个雪茄状、带翼的车,然后车身剧烈摇晃,最后登上一个月亮模型。 同一年,莱特兄弟在空中哒哒作响地飞行了59秒,同时一位名为康斯坦丁·焦乌科夫斯基、自学成才的俄罗斯人发表了题为《利用反作用仪器进行太空探索》的文章。他在文内演算,一枚导弹要克服地球引力就必须以1.8万英里的时速飞行。他还建议建造一枚液体驱动的多级火箭。 50年代,有一个公认的基本思想是,哪个国家第一个成功地建立永久性宇宙空间站,它迟早就能控制整个地球。冯·布劳恩向美国人描述了洲际导弹、潜艇导弹、太空镜和可能的登月旅行。他曾设想建立一个经常载人的、并能发射核导弹的宇宙空间站。他说:“如果考虑到空间站在地球上所有有人居住的地区上空飞行,那么人们就能认识到,这种核战争技术会使卫星制造者在战争中处于绝对优势地位。 1961年,加加林成为进入太空的第一人。俄国人用他说明,在天上飞来飞去的并不是天使,也不是上帝。美国约翰·肯尼迪竞选的口号是“新边疆”。他解释说:“我们又一次生活在一个充满发现的时代。宇宙空间是我们无法估量的新边疆。”对肯尼迪来说,苏联人首先进入宇宙空间是“多年来美国经历的最惨痛的失败”。唯一的出路是以攻为守。1958年美国成立了国家航空航天局,并于同年发射了第一颗卫星“探险者”号。1962年约翰·格伦成为进入地球轨道的第一位美国人。 许多科学家本来就对危险的载人太空飞行表示怀疑,他们更愿意用飞行器来探测太阳系。 而美国人当时实现了突破:三名宇航员乘“阿波罗号”飞船绕月球飞行。在这种背景下,计划在1969年1月实现的两艘载人飞船的首次对接具有特殊的意义。 20世纪的80年代,苏联的第三代空间站“和平”号轨道站使其航天活动达到高峰,都让美国人感到眼热。“和平”号被誉为“人造天宫”,1986年2月20日发射上天,是迄今人类在近地空间能够长期运行的唯一载人空间轨道站。它与其相对接的“量子1号”、“量子2号”、“晶体”舱、“光谱”舱、“自然”舱等舱室形成一个重达140吨、工作容积400立方米的庞大空间轨道联合体。在这一“太空小工厂”相继考察的俄罗斯和外国宇航员有106名,进行的科考项目多达万个,重点项目600个。 在“和平”号进行的最吸引人的实验是延长人在太空的逗留时间。延长人在空间的逗留时间是人类飞出自己的摇篮地球、迈向火星等天体最为关键的一步,要解决这一难题需克服失重、宇宙辐射及人在太空所产生的心理障碍等。俄宇航员在这方面取得重大进展,其中宇航员波利亚科夫在“和平”号上创造了单次连续飞行438天的纪录,这不能不被视为20世纪航天史上的一项重要成果。在轨道站上进行了诸如培养鹌鹑、蝾螈和种植小麦等大量的生命科学实验。 如果将和平号空间站看作人类的第三代空间站,国际空间站则属于第四代空间站了。国际空间站工程耗资600多亿美元,是人类迄今为止规模最大的载人航天工程。它从最初的构想和最后开始实施既是当年美苏竞争的产物,又是当前美俄合作的结果,从侧面折射出历史的一段进程。 国际空间站计划的实施分3个阶段进行。第一阶段是从1994年开始的准备阶段,现已完成。这期间,美俄主要进行了一系列联合载人航天活动。美国航天飞机与俄罗斯“和平”号轨道站8次对接与共同飞行,训练了美国宇航员在空间站上生活和工作的能力;第二阶段从1998年11月开始:俄罗斯使用“质子-K”火箭把空间站主舱——功能货物舱送入了轨道。它还担负着一些军事实验任务,因此该舱只允许美国宇航员使用。实验舱的发射和对接的完成,将标志着第二阶段的结束,那时空间站已初具规模,可供3名宇航员长期居住;第三阶段则是要把美国的居住舱、欧洲航天局和日本制造的实验舱和加拿大的移动服务系统等送上太空。当这些舱室与空间站对接后,则标志着国际空间站装配最终完成,这时站上的宇航员可增至7人。 美、俄等15国联手建造国际空间站,预示着一个各国共同探索和和平开发宇宙空间的时代即将到来。不过,几十年来载人航天活动的成果还远未满足他们对太空的渴求。“路漫漫其休远兮,吾将上下而求索”,人类一直都心怀征服太空的欲望和和平利用太空资源的决心。1998年11月,人类第一个进入地球轨道的美国宇航员、77岁的老格伦带着他未泯的雄心再次踏上了太空征程,这似乎在告诉人类:照此下去,征服太空不是梦。天文学的起源可以追溯到人类文化的萌芽时代。远古时代,人们为了指示方向、确定时间和季节,而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法。从这一点上来说,天文学是最古老的自然科学学科之一。早期天文学的内容就其本质来说就是天体测量学。从十六世纪中哥白尼提出日心体系学说开始,天文学的发展进入了全新的阶段。此前包括天文学在内的自然科学,受到宗教神学的严重束缚。哥白尼的学说使天文学摆脱宗教的束缚,并在此后的一个半世纪中从主要纯描述天体位置、运动的经典天体测量学,向着寻求造成这种运动力学机制的天体力学发展。波兰天文学家、日心说的创立者哥白尼(1473-1543)。 制成第一架天文望远镜的意大利天文学家伽利略(1564-1642)。 伽利略和助手们在一起。 德国著名天文学家开普勒(1571-1630)。 发明反射式望远镜的著名物理学家牛顿(1642-1727)。 英国天文学家哈雷(1656-1742)。 法国天文学家梅西耶(1730-1817)。 天王星的发现者、英国天文学家威廉·赫歇耳(1738-1822)。 美国天文学家埃德温·哈勃(1889-1953)。 著名物理学家爱因斯坦(1879-1955)。 射电天文学的奠基人、从事无线电工作的美国工程师央斯基。 天文学家苏布拉马尼扬·钱德拉塞卡(1910-1995)。 十八、十九世纪,经典天体力学达到了鼎盛时期。同时,由于分光学、光度学和照相术的广泛应用,天文学开始朝着深入研究天体的物理结构和物理过程发展,诞生了天体物理学。二十世纪现代物理学和技术高度发展,并在天文学观测研究中找到了广阔的用武之地,使天体物理学成为天文学中的主流学科,同时促使经典的天体力学和天体测量学也有了新的发展,人们对宇宙及宇宙中各类天体和天文现象的认识达到了前所未有的深度和广度。天文学就本质上说是一门观测科学。天文学上的一切发现和研究成果,离不开天文观测工具——望远镜及其后端接收设备。在十七世纪之前,人们尽管已制作了不少天文观测仪器,如中国的浑仪、简仪,但观测工作只能靠肉眼。1608年,荷兰人李波尔赛发明了望远镜,1609年伽里略制成第一架天文望远镜,并作出许多重要发现,从此天文学跨入了用望远镜时代。在此后人们对望远镜的性能不断加以改进,以期观测到更暗的天体和取得更高的分辨率。1932年美国人央斯基用他的旋转天线阵观测到了来自天体的射电波,开创了射电天文学。1937年诞生第一台抛物反射面射电望远镜。之后,随着射电望远镜在口径和接收波长、灵敏度等性能上的不断扩展、提高,射电天文观测技术为天文学的发展作出了重要的贡献。二十世纪后50年中,随着探测器和空间技术的发展以及研究工作的深入,天文观测进一步从可见光、射电波段扩展到包括红外、紫外、X射线和γ射线在内的电磁波各个波段,形成了多波段天文学,并为探索各类天体和天文现象的物理本质提供了强有力的观测手段,天文学发展到了一个全新的阶段。而在望远镜后端的接收设备方面,十九世纪中叶,照相、分光和光度技术广泛应用于天文观测,对于探索天体的运动、结构、化学组成和物理状态起了极大的推动作用,可以说天体物理学正是在这些技术得以应用后才逐步发展成为天文学的主流学科。天文和气象不同,它的研究对象是地球大气层外各类天体的性质和天体上发生的各种现象——天象,而气象研究的对象是地球大气层内发生的各种现象——气象。香港天文台也经常发播台风警报,是个例外。天文学所研究的对象涉及宇宙空间的各种物体,大到月球、太阳、行星、恒星、银河系、河外星系以至整个宇宙,小到小行星、流星体以至分布在广袤宇宙空间中的大大小小尘埃粒子。天文学家把所有这些物体统称为天体。地球也是一个天体,不过天文学只研究地球的总体性质而一般不讨论它的细节。另外,人造卫星、宇宙飞船、空间站等人造飞行器的运动性质也属于天文学的研究范围,可以称之为人造天体。宇宙中的天体由近及远可分为几个层次:(1)太阳系天体:包括太阳、行星(包括地球)、行星的卫星(包括月球)、小行星、彗星、流星体及行星际介质等。(2)银河系中的各类恒星和恒星集团:包括变星、双星、聚星、星团、星云和星际介质。太阳是银河系中的一颗普通恒星。(3)河外星系,简称星系,指位于我们银河系之外、与我们银河系相似的庞大的恒星系统,以及由星系组成的更大的天体集团,如双星系、多重星系、星系团、超星系团等。此外还有分布在星系与星系之间的星系际介质。天文学还从总体上探索目前我们所观测到的整个宇宙的起源、结构、演化和未来的结局,这是天文学的一门分支学科——宇宙学的研究内容。天文学按照研究的内容还可分为天体测量学、天体力学和天体物理学三门分支学科。天文学始终是哲学的先导,它总是站在争论的最前列。作为一门基础研究学科,天文学在不少方面是同人类社会密切相关的。时间、昼夜交替、四季变化的严格规律都须由天文学的方法来确定。人类已进入空间时代,天文学为各类空间探测的成功进行发挥着不可替代的作用。天文学也为人类和地球的防灾、减灾作着自己的贡献。天文学家也将密切关注灾难性天文事件——如彗星与地球可能发生的相撞,及时作出预防,并作出相应的对策。九大行星天文学研究的对象和内容 天文学所研究的对象涉及宇宙空间的各种星星和物体,大到月球、太阳、行星、恒星、银河系、河外星系以至整个宇宙,小到小行星、流星体以至分布在广袤宇宙空间中的大大小小尘埃粒子。天文学家把所有这些星星和物体统称为天体。从这个意义上讲,地球也应该是一个天体,不过天文学只研究地球的总体性质而一般不讨论它的细节。另一方面,人造卫星、宇宙飞船、空间站等人造飞行器的运动性质也属于天文学的研究范围,可以称之为人造天体。 不少人往往分不清天文和气象有什么区别,电话打到天文台来问天气情况是常有的事。也许天文和气象都是研究"天上"的东西而使人产生混淆,而香港天文台经常发播台风警报更使人误认为天文台就是研究天气情况。其实,天文学研究的"天"和气象学研究的"天"是两个完全不同的概念。天文学上的"天"是指宇宙空间,气象学上的"天"是地球大气层。天文学家研究地球大气层以外各类天体的性质和天体上发生的各种现象——天象,气象学家则研究地球大气层内发生的各种现象——气象。所以,预报日食、月食的发生和流星雨的出现是天文学家的事,而预报台风、高温、寒潮则是气象学家的职责。记着这一点,天文和气象就不难区别开来了。 我们可以把宇宙中的天体由近及远分类为几个层次: (1)太阳系天体:包括太阳、行星(其中包括地球)、行星的卫星(其中包括月球)、小行星、彗星、流星体及行星际介质等。 (2)银河系中的各类恒星和恒星集团:包括变星、双星、聚星、星团、星云和星际介质。太阳是银河系中的一颗普通恒星。 (3)河外星系,简称星系,指位于我们银河系之外、与我们银河系相似的庞大的恒星系统,以及由星系组成的更大的天体集团,如双星系、多重星系、星系团、超星系团等。此外还有分布在星系与星系之间的星系际介质。 天文学还从总体上探索目前我们所观测到的整个宇宙的起源、结构、演化和未来的结局,这是天文学的一门分支学科——宇宙学的研究内容。 天文学按照研究的内容可分为天体测量学、天体力学和天体物理学三门分支学科。天体测量学是天文学中发展最早的一个分支,它的主要内容是研究和测定各类天体的位置和运动,建立天球参考系等。利用天体测量方法取得的观测资料,不仅可以用于天体力学和天体物理研究,而且具有应用价值,比如用以确定地面点的位置。目前,天体测量的手段已从早期单一的可见光波段,发展到射电、红外等其他电磁波段,精度也不断提高,并且从地面扩展到空间,这就是空间天体测量。 天体力学主要研究天体的相互作用、运动和形状,其中运动应包括天体的自转。早期的研究对象是太阳系天体,目前已扩展到恒星、星团和星系。牛顿万有引力定律和运动三定律的建立奠定了天体力学的基础,使研究工作从运动学发展到动力学。因此,实际上可以说牛顿是天体力学的创始人。今天,我们可以准确地预报日食、月食等天象,和天体力学的发展是分不开的。 天体物理是天文学中最年轻的一门分支学科,它应用物理学的技术、方法和理论,来研究各类天体的形态、结构、分布、化学组成、物理状态和性质以及它们的演化规律。十八世纪赫歇尔开创恒星天文学可谓天体物理学的孕育时期。十九世纪中叶,随着天文观测技术的发展,天体物理成为天文学一个独立的分支学科,并促使天文观测和研究不断作出新发现和新成果。就其研究内容来说,有太阳物理、太阳系物理、恒星物理、银河系天文、星系天文、宇宙化学、天体演化及宇宙学等;就其研究方法而言又可分为实测天体物理和理论天体物理。天文学发展简史 天文学的起源可以追溯到人类文化的萌芽时代。远古时候,人们为了指示方向,确定时间和季节,就自然会观察太阳、月亮和星星在天空中的位置,找出它的随时间变化的规律,并在此基础上编制历法,用于生活和农牧业生产活动。从这一点上来说,天文学是最古老的自然科学学科之一。早期天文学的内容就其本质来说就是天体测量学。 从十六世纪中哥白尼提出日心体系学说开始,天文学的发展进入了全新的阶段。在这之前,包括天文学在内的自然科学,受到宗教神学的严重束缚。哥白尼的学说使天文学摆脱宗教的束缚,并在嗣后的一个半世纪中从主要纯描述天体位置、运动的经典天体测量学,向着寻求造成这种运动力学机制的天体力学发展。十八、十九世纪,经典天体力学达到了鼎盛时期。同时,由于分光学、光度学和照相术的广泛应用,天文学开始朝着深入研究天体的物理结构和物理过程发展,诞生了天体物理学。二十世纪现代物理学和技术高度发展,并在天文学观测研究中找到了广阔的用武之地,使天体物理学成为天文学中的主流学科,同时促使经典的天体力学和天体测量学也有了新的发展,人们对宇宙及宇宙中各类天体和天文现象的认识达到了前所未有的深度和广度。 天文学就本质上说是一门观测科学。天文学上的一切发现和研究成果,离不开天文观测工具——望远镜和望远镜后端的接收设备。在十七世纪之前,人们尽管已制作了不少天文观测仪器,如在中国有浑仪、简仪等,但观测工作只能靠人的肉眼。1608年,荷兰人李波尔赛发明望远镜,1609年伽里略制成第一架天文望远镜,并很快作出许多重要发现,从此天文学跨入了用望远镜观测、研究天象的新时代。在此后的近400年中,人们对望远镜的性能不断加以改进,并且越做越大,以期观测到更暗的天体和取得更高的分辨率。目前世界上最大光学望远镜的口径已达到10米。1932年美国人央斯基用他的旋转天线阵观测到了来自天体的射电波,开创了射电天文学。1937年诞生第一台抛物反射面射电望远镜。之后,随着射电望远镜在口径和接收波长、灵敏度等性能上的不断扩展、提高,射电天文观测技术为天文学的发展作出了重要的贡献。目前世界上最大的全可动射电望远镜直径为100米,最大固定式射电望远镜直径达300米。二十世纪后50年中,随着探测器和空间技术的发展以及研究工作的深入,天文观测进一步从可见光、射电波段扩展到包括红外、紫外、X射线和γ射线在内的电磁波各个波段,形成了多波段天文学,并为探索各类天体和天文现象的物理本质提供了强有力的观测手段,天文学发展到了一个全新的阶段。 在望远镜后端的接收设备方面,十九世纪中叶,照相、分光和光度技术广泛应用于天文观测,对于探索天体的运动、结构、化学组成和物理状态起了极大的推动作用,可以说天体物理学正是在这些技术得以应用后才逐步发展成为天文学的主流学科。二十世纪中,偏振观测、干涉测量、斑点干涉、CCD探测器以及多光纤等技术在天文观测中发挥了越来越大的作用。毫无疑问,天文研究中取得的重要成果与后端探测设备的发展和改进是紧密联系在一起的。可能有人会问,既然天文学的研究对象是星星、太阳、月亮,那么天文学和我们地球上人类的生活、工作又有什么关系呢?其实,作为一门基础研究学科,目前天文学学科研究的许多内容,在短时间内与我们人类似乎关系不大。比如,银河系在如何运动这类基本问题的研究显然同我们生活没有什么关系。但是,另一方面,天文学家的工作在不少方面又是同人类社会密切相关的。 人类的生活和工作离不开时间,而昼夜交替、四季变化的严格规律须由天文方法来确定,这就是时间和历法的问题。如果没有全世界统一的标准时间系统,没有完善的历法,人类的各种社会活动将无法有序进行,一切都会处在混乱状态之中。 人类已经进入空间时代。发射各种人造地球卫星、月球探测器或行星探测器,除了技术保证外,这些飞行器要按预定目标发射并取得成功,离不开它们运动轨道的计算和严格的时间表安排,而这些恰恰正是天文学在发挥着不可替代的作用。 太阳是离我们最近的一颗恒星,它的光和热在几十亿年时间内哺育了地球上万物的成长,其中包括人类。太阳一旦发生剧烈活动,对地球上的气候、无线电通讯、宇航员的生活和工作等将会产生重大影响,天文学家责无旁贷地承担着对太阳活动的监测、预报工作。不仅如此,地球上发生的一些重大自然灾害,比如地震、厄尔尼诺现象等,天文学家也在为之努力工作,并为防灾、减灾做出自己的贡献。 特殊天象的出现,比如日食、月食、

自己写吧,给你些说明文的材料....1.中国古代天文方面取得的哪些突出成就? 我国古代天文历法的成就与农业生产密切相关,如:夏历,廿四节气,十二气历,授时历等. 天文气象的成就: 中国古代最早的较为科学的天文知识,可能当 属《夏小正》中所描述的天象,其中有一年内各月里 的早晨或黄昏时北斗斗柄的指向和若干恒星的见, 伏或中天等的记载. 春秋战国时期,关于金,木,水,火,土五大行星 的知识大量出现.如:"古历五星之推,无逆行者,至 甘氏,石氏经,以荧惑(火星),太白(金星)为有逆 行."(《汉书 天文志》)春秋时期,沿黄,赤道带将临 近天区划分成二十八个区域的二十八宿体系已经 齐备. 汉代,盖天,宣夜,浑天三种论天学说已成形. 盖天说认为天如一顶斗笠,地则如倒扣的盘子,太阳 绕北极旋转…….宣夜说的理论则为:'旧月众星, 自然浮生虚空之中.其行其止,皆需气焉.是以七 耀或逝或往,或顺或逆,伏见无常,进退不同,……迟 疾任情,其无所系著可知矣,若缀附天体,不得尔 也."(《晋书 天文志》)张衡是浑天说的集大成者,他 指出:"浑天如鸡子,天体圆如弹丸,地如鸡中黄,孤 居于内,天大而地小,天表里有水,天之包地,犹壳之 裹黄.天地各乘气而立,载水而浮."(《浑天仪图 注》) 对于气候的变化规律,《尚书 洪范》说:"庶征: 日雨,曰肠,曰懊,日寒,曰风.曰时五者来备,各以 其叙(序),庶草蕃庞."《尚书大传》中阐明了这些因 素在作物生长过程中的具体作用:"雨以润物,肠以 干物,暖以长物,寒以成物,风以动物,五者各以其 时,所以为众验." 汉代已用多种风信器观测风向.最简单的一种 叫做"视":"视之见风,无须臾之间定矣."(《淮南 子 齐俗》)在战国和汉代著作中常见八方风名,而由 八个天干,十二地支和四个卦名组成的二十四个方 向在汉代已经出现,《乙巳占》中的占风图,亦列有二 十四个风向.对于风速的观测,认为风力大,"其来 远",风力小,"其发近",并根据树木受风的影响而带 来的变化和损坏程度把风力分为八级:动叶,鸣条, 摇枝,堕叶,折小枝,折大枝,折木和飞沙石,拔下树 及根. 对于湿度的观测也较早.据《史记 天官书》和 《淮南子 天文训》记载,是用"悬土炭"的方法,观测 冬至或夏至天气的湿度情况.并用阴阳二气的理论 对其进行解释:"阳气为火,阴气为水.水胜,故夏至 湿;火胜,故冬至燥.燥故炭轻,湿故炭重."(《淮南 子 天文训》)此即所谓"悬炭识雨". 上述天文气象方面的成就被吸收人中医学中, 成为天人相应论的基础和内容之一.《黄帝内经》的 天人相应论框架中,五星变动是影响人体生理病理 的因素之一.五星分属于金,木,水,火,土五大系 统.五星变动,各从其化,通过对四时气候的影响而 对人体发生作用.天人相应论还根据二十八宿观测 太阳行度,并以此来记数人体卫气运行周分与太阳 行度的相应规律:"天周二十八宿,而一面七星,四七 二十八星……故卫气之行,一日一夜五十周于身 ……是故日行一舍,人气行一周与十分身之八;日行 二舍 …旧行十四舍,人气二十五周于身有奇分与 十分身之二,阳尽于阴,阴受气矣."(《灵枢 卫气 行》) 在宇宙生成论上,"《黄帝内经))选择了宣夜说作 为自己的宇宙理论",[2s〕在《素问 天元纪大论》和《素问 五运行大论》中都有着与此相似的,精彩的论述. 宣夜说中的气是日月众星存在,运动的根本原因. 这种观点被天人相应论所接受,将万物与自然统一 于气,为阐明天人相应论的内在机理确立了大前提. 天人相应论中气候是关系到人体健康与疾病的 最重要的自然因素.《内经》的天人相应论框架采用 了((尚书 洪范》的五行思想,根据四时气候的特点将 其分为五类,即寒,暑,燥,湿,风五气,五气分属于五 行系统.对于五气性质的阐述与《尚书大传》也基本 相同. 历法的成就 我国历法最早可能始于夏商,《夏小正》中即有 物候历与天文历的结合体.周代的历法在商代的基 础上又有发展.当时已经发明了用圭表测影的方 法,确定冬至和夏至等节气. 西汉末年刘散在采用太初历数据的基础上建立 了三统历,收在《汉书 律历志》中,流传至今."太初 历已具备了气朔,闰法,五星,交食周期等内容.它 首次提出了以没有中气(雨水,春分,谷雨等十二节 气)的月份为闰月的原则,把季节和月份的关系调整 得十分合理.……太初历还第一次提出了135个朔 望月中有23个食季的食周概念,关于五星会合周期 的精度也较前有明显提高…... '[3] 历法,节气(候,季,时,年的概念)以及日月的视 运动与人体生命活动均有重要的关系,因此得到中 医学的重视.《内经》中专设《素问 六节藏象论》讨 论人体生理病理变化与这些因素之间的内在规律性 联系.指出历法以日月星辰的运行为依据,历法的 功能在于反映天地阴阳之气消长的律数,并最终落 脚于生命运动的节律与天地日月相应的主题上. 2吸收地学研究成果 春秋战国时期,有关地学的专著相继问世,主要 有《山海经》,《尚书 禹贡》和《管子 地员》. 《山海经》中的山经对超过黄河和长江流域的广 大自然环境作了综合概括.对每一山岳详略不一地 论述了关于位置,水文(包括河流的发源,流向,湖 泊,沼泽等),动植物(包括其形态性能和医疗功效), 矿物特产(包括产地,色泽等特点)以及神话传说等, 内容极为丰富,保留了许多极宝贵的自然地理知识. 《尚书 禹贡》在地学知识和地学思想方面比《山 海经》又前进了一大步.它依据自然条件中的河流, 山脉和大海的自然分界把所描述的广大地区分为九 州:冀,充,青,徐,扬,荆,豫,梁,雍,描述了各区自然 条件(水文,土壤,植被)的特点,较好说明了不同地 区的地理特色. 《管子 地员》中对土壤的论述非常深入,详细. 它根据土色,质地,结构,孔隙,有机质,盐碱性和肥 力等各方面的性质,并结合地形,水文,植被等自然 条件,将土壤分为"上土","中土","下土"三大等级, 每一等级又分为六类,这种分类方法基本上是符合 实际的. 古人不但考察地形,土壤等情况,还将这些内容 与农业紧密地结合起来.如"五谷不宜其地,国之贫 也."(《管子 治国篇》)"辨于土而民可富."(《管子 立政篇》)这时已有著作将地理条件与动植物结合起 来进行论述:"以土之法,辨五地之物生:一曰山林, 其动物宜毛物,其植物宜a物,其民毛而方.二曰 川泽,其动物宜鳞物,其植物宜膏物,其民黑而津. 三曰丘陵,其动物宜羽物,其植物宜a物,其民专而 长.四日填衍,其动物宜介,其植物宜荚物,其民哲 而痔.五日原N,其动物宜赢物,其植物宜丛物,其 民丰肉而库."(《周礼 地官》) 地学研究成果为天人相应论中人与地的关系提 供了科学依据.如《尚书 禹贡》中九州的概念,在 《素问 六节藏象论》,《灵枢 邪客》中已有所反映,并 与人体联系起来,作为人与天相应的具体内容之一. 《内经》中的"十二经水"中有九条可以在《尚书 禹 贡》中找到其水源,流向,流经地,所纳支流和河口等 内容.在((内经》中将人体十二经脉与自然界的十二 经水相匹配,成为天人相应论的内容之一.《内经》 中(素问 异法方宜论》是讨论人地关系的专篇,其中 所论五方之人的体质特点与《周礼 地官 大司徒》中 的内容基本一致.于此可见古代地学知识在天人相 应论中的地位和作用. 3采用物候学的方法 《夏小正》已经把物候,天文和与之对应的农事 活动联系在一起论述,如:正月(月份),启蛰,雁北 飞,难震响,鱼险负冰,田鼠出,獭祭鱼,囿有见韭,鹰 则为鸿,柳f$,梅杏抛桃则华,堤搞,鸡摔粥(物候), 初昏参中,斗柄悬在下(天象),农率均田,采芸(农事 活动等). 对于物候与农作物之间的关系,《吕氏春秋 任 地》也有记载:"草端大月,冬至后五旬.七日,营始 生,营者百草之先生者也,于是始耕.孟夏之昔,杀 三叶而获大麦.日至,苦菜死而资生,而树麻与寂, 此告民地宝尽死."这段论述将自然界的植物随季节 变化的规律与农耕活动及农作物的生长时期结合起 来,使自然界植物变化的规律成为农业活动的指南, 说明我国在很早时就已经具备了丰富的物候学知识. 《吕氏春秋 月令》的五行模式图已经是一个近乎包罗 万象的天—物候(包括人)—地宇宙框架了. 物候知识在古代科学中有着重要的意义.在生 产力水平低下的情况下,物候是人类认识季节,气候 等自然规律的参照物.《夏小正》和《吕氏春秋》的这 种思想和认识方法也为古代医家所采用.他们将动 植物的生息规律作为人体生命活动规律的参照.在 ((黄帝内经》的天人相应论框架中就有五畜,五谷,五 虫等内容,这些内容分人五行系统中,与季节气候变 化,人体脏腑功能,情志活动等相参互应,成为天人 相应论的内容之一.这一宇宙框架与《吕氏春秋》的 宇宙模式极其相似,只是《内经》的偏重于人体,而 《吕氏春秋》的偏重于人事罢了.[41 上述是秦汉以前中国自然科学中有关天文气 象,地理,物候等方面的研究成就,这些成就为中医 学理论体系的建立奠定了坚实的基础.尤其是天人 相应论的有关内容,更是以这些成果为依据,才使其 至今仍保持着真理性.可以说中医学天人相应论是 生产实践与文化思想相结合的共同产物,是中医学 理论体系之精华所在,它在理论和实践上的指导意 义历经两千年而不衰,充分说明了其科学性. 2.当今世界在天文方面取得了哪些最新成果? 发现宇宙有96%的是黑暗物质,建立平行宇宙的学说,猜测黑洞是通向另一个宇宙的通道,假说宇宙是有"生命的"

白洞 黑洞就象宇宙中的一个无底深渊,物质一旦掉进去,就再也逃不出来。根据我们熟悉的“矛盾”的观点,科学家们大胆地猜想到:宇宙中会不会也同时存在一种物质只出不进的“泉”呢?并给它取了个同黑洞相反的名字,叫“白洞”。 科学家们猜想:白洞也有一个与黑洞类似的封闭的边界,但与黑洞不同的是,白洞内部的物质和各种辐射只能经边界向边界外部运动,而白洞外部的物质和辐射却不能进入其内部。形象地说,白洞好象一个不断向外喷射物质和能量的源泉,它向外界提供物质和能量,却不吸收外部的物质和能量。 白洞到目前为止,还仅仅是科学家的猜想,还没有观察到任何能表明白洞可能存在的证据。在理论研究上也还没有重大突破。不过,最新的研究可能会得出一个令人兴奋的结论,即:“白洞”很可能就是“黑洞”本身!也就是说黑洞在这一端吸收物质,而在另一端则喷射物质,就像一个巨大的时空隧道。 科学家们最近证明了黑洞其实有可能向外发射能量。而根据现代物理理论,能量和质量是可以互相转化的。这就从理论上预言了“黑洞、白洞一体化”的可能。 要彻底弄清楚黑洞和白洞的奥秘,现在还为时过早。但是,科学家们每前进一点,所取得的成绩都让人激动不已。我们相信,打开宇宙之谜大门的钥匙就藏在黑洞和白洞神秘的身后。 想看相关的可以进入

相关百科

热门百科

首页
发表服务