其实不用楼上说的那么复杂的,你只需要表示每个根与系数的关系就可以了,然后直接由系数判断根的正负性。。
是可以。首先多项式是可以用“带余除法”进行约简的(带余除法可以在高等代数中的前几章找到),那么在逐层的除法进行下可以判定多项式是否是可以整除的,可整除的多项式有实数解,不可整除(整个多项式或多项式的一部分)的需要在复数域内求解。基本上这样就可以讨论解的情况。
解法和小学一样:先在上面商,然后商和除数相乘,结果写在被除数下面,对齐,然后用减法,减出来的结果,再在上面接一位下来,继续除,反正就跟小学作除法一摸一样.注意没有三次幂和二次幂,要用零补足占位. 除出来的商正好是你的结果的第一部分. 最后,余数做分子,除数做分母,你再因式分解,约分后就得到了 其他的整式,也可以用这种带余除法来做,不用因式分解,直接除就可以了,没有余数就说明可以直接约分,如果有余数,就不能约分了.
1、多项式除以多项式一般用竖式进行演算,把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐,用被除式的第一项除以除式第一项,得到商式的第一项,用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来,把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式。若余式为零,说明这个多项式能被另一个多项式整除。 2、把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
学术堂整理了十个毕业论文题目供大家进行参考:1、小学数学教师几何知识掌握状况的调查研究2、小学数学教师教材知识发展情况研究3、中日小学数学“数与代数”领域比较研究4、浙江省Y县县域内小学数学教学质量差异研究5、小学数学教师教科书解读的影响因素及调控策略研究6、中国、新加坡小学数学新课程的比较研究7、小学数学探究式教学的实践研究8、基于教育游戏的小学数学教学设计研究9、小学数学教学中创设有效问题情境的策略研究10、小学数学生活化教学的研究
1、谈谈计算教学的改革2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究(一)5、改进教学方法培养创新技能6、21世纪我国小学数学教育改革展望7、面向21世纪的小学数学课程改革与发展8、不拘一格育“鸣凤”使学生真正成为学习的主人9、改革课堂教学的着力点10、谈素质教育在小学数学教学中的实施11、素质教育与小学数学教育改革12、浅谈学生数学思维能力的培养13、浅议表象积累与培养学生的思维能力14、也谈学生创新意识培养15、实施创新教学策略 培养学生创新意识16、10以内加法整理和复习17、改良“有余数除法计算”教法18、给学生创新的时间和空间和谐愉悦19、主动探索——一年级《统计》教学片断评析20、小学数学教育--教师之家--教师培训
为您奉上一部分,请参考:谈谈计算教学的改革小学数学数与计算教学的回顾与思考小学数学教材结构的研究与探讨小学数学应用题的研究(一)改进教学方法培养创新技能21世纪我国小学数学教育改革展望面向21世纪的小学数学课程改革与发展不拘一格育“鸣凤”使学生真正成为学习的主人改革课堂教学的着力点谈素质教育在小学数学教学中的实施素质教育与小学数学教育改革浅谈学生数学思维能力的培养浅议表象积累与培养学生的思维能力也谈学生创新意识培养实施创新教学策略 培养学生创新意识10以内加法整理和复习改良“有余数除法计算”教法给学生创新的时间和空间和谐愉悦 主动探索——一年级《统计》教学片断评析小学数学教育--教师之家--教师培训教学策略A、B、C面向21世纪的数学素质及其培养能被3整除的数的特征年、月、日培养自学能力 推进素质教育浅谈小学数学总复习的“步步反馈,逐层提高”法入情才能入理 激情方能启思实施“生活数学”教育 培养自主创新能力数学作业批改中巧用评语提高元认知水平 培养自学能力“圆的面积”的教案圆柱的认识运用多媒体辅助教学 优化数学教学方法组织课堂讨论 优化课堂教学
小学数学课题研究最佳题目数学核心素养下农村小学高年级学生运算能力培养的研究小学数学大班额背景下小组合作学习的有效性研究小学数学教学中培养学生动手实践能力及其评价方式的研究以“智慧放手”的教学特色培养小学生合作学习能力的研究基于核心素养下的小学低年级数学评价模式研究小学生空间观念和几何直观的培养与评价研究核心素养背景下小学数学整理和复习课的研究优化小学数学课堂教学方式的实践研究基于读懂学生错误培养学生反思能力的实践研究依托综合与实践活动教学提升小学生数学素养的研究在小学数学“数与代数”领域开展游戏化教学的实践研究小学数学中培养学生几何直观能力的研究小学数学课堂教学与现代教育技术融合实验与研究小学数学教学中建立模型思想的策略与方法研究基于发展学生核心素养的小学数学作业设计有效性的研究小学中年级数学课堂提问有效性的研究小学数学小组合作学习有效性的研究小学数学课堂教学与信息技术整合的研究优化小学数学教学有效性的策略研究
Word中删除空白页通常分为以下3种情况:一、 最后一页空白页,怎么删除?文档中最后一页面有空白,这种情况是因为最后一页空白页中包含了回车符、制表符、分页符等标记。如果你说空白页中并没发现这些标记,可点击【开始】-【段落】组的“显示与隐藏编辑标记”按钮,将其显示出来。解决方法:将光标定位到最后空白页面上,然后按【Backspace】键或【Delete】键即可删除空白页。如果使用【Backspace】键或【Delete】键删除不了空白页,那你就看看是否是下面这种情况:二、表格太满,导致的空白页,怎么删除?Word中,表格若太大,会把一个页面占满,表格后面的回车符将自动停留在下一页面,从而形成一个空白页。解决方法1:光标定位到最后的空白页上,单击鼠标右键,选择“段落”命令,打开“段落”对话框,设置“行距”为“固定值”,“值”为“1磅”,然后点击“确定”按钮即可删除空白页。解决方法2:选择空白页上的回车符,单击鼠标右键,选择“字体”命令,打开“字体”对话框,勾选“隐藏”复选框,然后点击“确定”按钮也可删除空白页。三、Word中有多个空白页,怎么删除?Word中如果有多个空白页,我们可以利用“查找和替换”功能来统一删除。解决方法:按【Ctrl+H】组合键,打开“查找和替换”对话框。将鼠标光标定位于“查找内容”文本框中,点击【特殊格式】按钮,在弹出的菜单中选择“手动分页符”命令。然后点击“全部替换”按钮,即可将文档中所有的空白页全部删除。技巧提示:也可直接在“查找内容”文本框中输入“^m”,然后点击“全部替换”按钮删除空白页。
查找——替换——替换掉空格。
如下:
操作设备:戴尔电脑
操作系统:win10
操作软件:word2017
1、首先先点击选中开始菜单下的显示编辑标记的图标。
2、点击进入左上角word图标里的word选项。
3、在word选项里,选中显示菜单,勾选“始终在屏幕上显示这些格式标记”这一栏下的所有标记,特别是“显示所有格式标记”确定保存后文档就会把这些特殊字符显示出来了。
4、删除造成word空白页删不掉的分页符,第一个要删的就是分页符,发现空白页分页符标记,删除就可以了。
5、调整word里的顶到底部的表格,要知道表格是不能直接使用退格键删除的,因为表格后面一定有个回车符,而且这个回车符是删除不了的,造成前面的表格删除不了,所以空白页就删不了了,这种情况稍微调整下表格行高就可以了。
6、选定表格全部,按键盘快捷键(Shift+Delete)就可以删除了。
7、最后使用清除格式工具,将文档格式清除了就可以恢复正常使用了。
论文里面的空白页如果想删除,那么将鼠标光标放在空白页上,然后按删除键就可以将此页删除。
数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点()与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点()与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出。参考资料:
1 中国古代数学的发展 在古代世界四大文明中,中国数学持续繁荣时期最为长久。从公元前后至公元14世纪,中国古典数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期和宋元时期,并在宋元时期达到顶峰。 与以证明定理为中心的希腊古典数学不同,中国古代数学是以创造算法特别是各种解方程的算法为主线。从线性方程组到高次多项式方程,乃至不定方程,中国古代数学家创造了一系列先进的算法(中国数学家称之为“术”),他们用这些算法去求解相应类型的代数方程,从而解决导致这些方程的各种各样的科学和实际问题。特别是,几何问题也归结为代数方程,然后用程式化的算法来求解。因此,中国古代数学具有明显的算法化、机械化的特征。以下择要举例说明中国古代数学发展的这种特征。 线性方程组与“方程术” 中国古代最重要的数学经典《九章算术》(约公元前2世纪)卷8的“方程术”,是解线性方程组的算法。以该卷第1题为例,用现代符号表述,该问题相当于解一个三元一次方程组: 3x+2y+z=39 2x+3y+z=34 x+2y+3z=26 《九章》没有表示未知数的符号,而是用算筹将x�y�z的系数和常数项排列成一个(长)方阵: 1 2 3 2 3 2 3 1 1 26 34 39 “方程术”的关键算法叫“遍乘直除”,在本例中演算程序如下:用右行(x)的系数(3)“遍乘”中行和左行各数,然后从所得结果按行分别“直除”右行,即连续减去右行对应各数,就将中行与左行的系数化为0。反复执行这种“遍乘直除”算法,就可以解出方程。很清楚,《九章算术》方程术的“遍乘直除” 算法,实质上就是我们今天所使用的解线性方程组的消元法,以往西方文献中称之为“高斯消去法”,但近年开始改变称谓,如法国科学院院士、原苏黎世大学数学系主任教授在他撰写的教科书[4]中就称解线性方程组的消元法为“张苍法”,张苍相传是《九章算术》的作者之一。 高次多项式方程与“正负开方术” 《九章算术》卷4中有“开方术”和“开立方术”。《九章算术》中的这些算法后来逐步推广到开更高次方的情形,并且在宋元时代发展为一般高次多项式方程的数值求解。秦九韶是这方面的集大成者,他在《数书九章》(1247年)一书中给出了高次多项式方程数值解的完整算法,即他所称的“正负开方术”。 用现代符号表达,秦九韶“正负开方术”的思路如下:对任意给定的方程 f(x)=a0xn+a1xn-1+……+an-2x2+an-1x+an=0 (1) 其中a0≠0,an<0,要求(1)式的一个正根。秦九韶先估计根的最高位数字,连同其位数一起称为“首商”,记作c,则根x=c+h,代入(1)得 f(c+h)=a0(c+h)n+a1(c+h)n-1+……+an-1(c+h)+an=0 按h的幂次合并同类项即得到关于h的方程: f(h)=a0hn+a1hn-1+……+an-1h+an=0 (2) 于是又可估计满足新方程(2)的根的最高位数字。如此进行下去,若得到某个新方程的常数项为0,则求得的根是有理数;否则上述过程可继续下去,按所需精度求得根的近似值。 如果从原方程(1)的系数a0,a1,…,an及估值c求出新方程(2)的系数a0,a1,…,an的算法是需要反复迭代使用的,秦九韶给出了一个规格化的程序,我们可称之为“秦九韶程序”, 他在《数书九章》中用这一算法去解决各种可以归结为代数方程的实际问题,其中涉及的方程最高次数达到10次,秦九韶解这些问题的算法整齐划一,步骤分明,堪称是中国古代数学算法化、机械化的典范。 多元高次方程组与“四元术” 绝不是所有的问题都可以归结为线性方程组或一个未知量的多项式方程来求解。实际上,可以说更大量的实际问题如果能化为代数方程求解的话,出现的将是含有多个未知量的高次方程组。 多元高次方程组的求解即使在今天也绝非易事。历史上最早对多元高次方程组作出系统处理的是中国元代数学家朱世杰。朱世杰的《四元玉鉴》(1303年)一书中涉及的高次方程达到了4个未知数。朱世杰用“四元术”来解这些方程。“四元术”首先是以“天”、“地”、“人”、“物”来表示不同的未知数,同时建立起方程式,然后用顺序消元的一般方法解出方程。朱世杰在《四元玉鉴》中创造了多种消元程序。 通过《四元玉鉴》中的具体例子可以清晰地了解朱世杰“四元术”的特征。值得注意的是,这些例子中相当一部分是由几何问题导出的。这种将几何问题转化为代数方程并用某种统一的算法求解的例子,在宋元数学著作中比比皆是,充分反映了中国古代几何代数化和机械化的倾向。 一次同余方程组与“中国剩余定理” 中国古代数学家出于历法计算的需要,很早就开始研究形如: X≡Ri (mod ai) i=1,2,...,n (1) (其中ai 是两两互素的整数)的一次同余方程组求解问题。公元4世纪的《孙子算经》中已有相当于求解下列一次同余组的著名的“孙子问题”: X≡2(mod3) ≡3(mod5) ≡2(mod7) 《孙子算经》作者给出的解法,引导了宋代秦九韶求解一次同余组的一般算法——“大衍求一术”。现代文献中通常把这种一般算法称为“中国剩余定理”。 插值法与“招差术” 插值算法在微积分的酝酿过程中扮演了重要角色。在中国,早从东汉时期起,学者们就惯用插值法来推算日月五星的运动。起初是简单的一次内插法,隋唐时期出现二次插值法(如一行《大衍历》,727年)。由于天体运动的加速度也不均匀,二次插值仍不够精密。随着历法的进步,到了宋元时代,便产生了三次内插法(郭守敬《授时历》,1280年)。在此基础上,数学家朱世杰更创造出一般高次内插公式,即他所说的“招差术”。 朱世杰的公式相当于 f(n)=n△+ n(n�1)△2+ n(n�1)(n�2)△3 + n(n�1)(n�2)(n�3)△4+…… 这是一项很突出的成就。 这里不可能一一列举中国古代数学家的所有算法,但仅从以上介绍不难看到,古代与中世纪中国数学家创造的算法,有许多即使按现代标准衡量也达到了很高的水平。这些算法所表达的数学真理,有的在欧洲直到18世纪以后依赖近代数学工具才重新获得(如前面提到的高次代数方程数值求解的秦九韶程序,与1819年英国数学家W. 霍纳重新导出的“霍纳算法”基本一致;多元高次方程组的系统研究在欧洲也要到18世纪末才开始在E. 别朱等人的著作中出现;解一次同余组的剩余定理则由欧拉与高斯分别独立重新获得;至于朱世杰的高次内插公式,实质上已与现在通用的牛顿-格列高里公式相一致)。这些算法的结构,其复杂程度也是惊人的。如对秦九韶“大衍求一术”和“正负开方术”的分析表明,这些算法的计算程序,包含了现代计算机语言中构造非平易算法的基本要素与基本结构。这类复杂的算法,很难再仅仅被看作是简单的经验法则了,而是高度的概括思维能力的产物,这种能力与欧几里得几何的演绎思维风格截然不同,但却在数学的发展中起着完全可与之相媲美的作用。事实上,古代中国算法的繁荣,同时也孕育了一系列极其重要的概念,显示了算法化思维在数学进化中的创造意义和动力功能。以下亦举几例。 负数的引进 《九章算术》“方程术”的消元程序,在方程系数相减时会出现较小数减较大数的情况,正是在这里,《九章算术》的作者们引进了负数,并给出了正、负数的加减运算法则,即“正负术”。 对负数的认识是人类数系扩充的重大步骤。公元7世纪印度数学家也开始使用负数,但负数的认识在欧洲却进展缓慢,甚至到16世纪,韦达的著作还回避负数。 无理数的发现 中国古代数学家在开方运算中接触到了无理数。《九章算术》开方术中指出了存在有开不尽的情形:“若开方不尽者,为不可开”,《九章算术》的作者们给这种不尽根数起了一个专门名词——“面”。“面”,就是无理数。与古希腊毕达哥拉斯学派发现正方形的对角线不是有理数时惊慌失措的表现相比,中国古代数学家却是相对自然地接受了那些“开不尽”的无理数,这也许应归功于他们早就习惯使用的十进位制,这种十进位制使他们能够有效地计算“不尽根数”的近似值。为《九章算术》作注的三国时代数学家刘徽就在“开方术”注中明确提出了用十进制小数任意逼近不尽根数的方法,他称之为“求微数法”,并指出在开方过程中,“其一退以十为步,其再退以百为步,退之弥下,其分弥细,则……虽有所弃之数,不足言之也”。 十进位值记数制是对人类文明不可磨灭的贡献。法国大数学家拉普拉斯曾盛赞十进位值制的发明,认为它“使得我们的算术系统在所有有用的创造中成为第一流的”。中国古代数学家正是在严格遵循十进位制的筹算系统基础上,建立起了富有算法化特色的东方数学大厦。 贾宪三角或杨辉三角 从前面关于高次方程数值求解算法(秦九韶程序)的介绍我们可以看到,中国古代开方术是以�c+hn的二项展开为基础的,这就引导了二项系数表的发现。南宋数学家杨辉著《详解九章算法》(1261年)中,载有一张所谓“开方作法本源图”,实际就是一张二项系数表。这张图摘自公元1050年左右北宋数学家贾宪的一部著作。“开方作法本源图”现在就叫“贾宪三角”或“杨辉三角”。二项系数表在西方则叫“帕斯卡三角”�1654年。 走向符号代数 解方程的数学活动,必然引起人们对方程表达形式的思考。在这方面,以解方程擅长的中国古代数学家们很自然也是走在了前列。在宋元时期的数学著作中,已出现了用特定的汉字作为未知数符号并进而建立方程的系统努力。这就是以李冶为代表的“天元术”和以朱世杰为代表的“四元术”。所谓“天元术”,首先是“立天元一为某某”,这相当于“设为某某”,“天元一”就表示未知数,然后在筹算盘上布列“天元式”,即一元方程式。该方法被推广到多个未知数情形,就是前面提到的朱世杰的“四元术”。因此,用天元术和四元术列方程的方法,与现代代数中的列方程法已相类似。 符号化是近世代数的标志之一。中国宋元数学家在这方面迈出了重要一步,“天元术”和“四元术”,是以创造算法特别是解方程的算法为主线的中国古代数学的一个高峰�。 2 中国古代数学对世界数学发展的贡献 数学的发展包括了两大主要活动:证明定理和创造算法。定理证明是希腊人首倡,后构成数学发展中演绎倾向的脊梁;算法创造昌盛于古代和中世纪的中国、印度,形成了数学发展中强烈的算法倾向。统观数学的历史将会发现,数学的发展并非总是演绎倾向独占鳌头。在数学史上,算法倾向与演绎倾向总是交替地取得主导地位。古代巴比伦和埃及式的原始算法时期,被希腊式的演绎几何所接替,而在中世纪,希腊数学衰落下去,算法倾向在中国、印度等东方国度繁荣起来;东方数学在文艺复兴前夕通过阿拉伯传播到欧洲,对近代数学兴起产生了深刻影响。事实上,作为近代数学诞生标志的解析几何与微积分,从思想方法的渊源看都不能说是演绎倾向而是算法倾向的产物。 从微积分的历史可以知道,微积分的产生是寻找解决一系列实际问题的普遍算法的结果�6�。这些问题包括:决定物体的瞬时速度、求极大值与极小值、求曲线的切线、求物体的重心及引力、面积与体积计算等。从16世纪中开始的100多年间,许多大数学家都致力于获得解决这些问题的特殊算法。牛顿与莱布尼兹的功绩是在于将这些特殊的算法统一成两类基本运算——微分与积分,并进一步指出了它们的互逆关系。无论是牛顿的先驱者还是牛顿本人,他们所使用的算法都是不严格的,都没有完整的演绎推导。牛顿的流数术在逻辑上的瑕疵更是众所周知。对当时的学者来说,首要的是找到行之有效的算法,而不是算法的证明。这种倾向一直延续到18世纪。18世纪的数学家也往往不管微积分基础的困难而大胆前进。如泰勒公式,欧拉、伯努利甚至19世纪初傅里叶所发现的三角展开等,都是在很长时期内缺乏严格的证明。正如冯·诺伊曼指出的那样:没有一个数学家会把这一时期的发展看作是异端邪道;这个时期产生的数学成果被公认为第一流的。并且反过来,如果当时的数学家一定要在有了严密的演绎证明之后才承认新算法的合理性,那就不会有今天的微积分和整个分析大厦了。 现在再来看一看更早的解析几何的诞生。通常认为,笛卡儿发明解析几何的基本思想,是用代数方法来解几何问题。这同欧氏演绎方法已经大相径庭了。而事实上如果我们去阅读笛卡儿的原著,就会发现贯穿于其中的彻底的算法精神。《几何学》开宗明义就宣称:“我将毫不犹豫地在几何学中引进算术的术语,以便使自己变得更加聪明”。众所周知,笛卡儿的《几何学》是他的哲学著作《方法论》的附录。笛卡儿在他另一部生前未正式发表的哲学著作《指导思维的法则》(简称《法则》)中曾强烈批判了传统的主要是希腊的研究方法,认为古希腊人的演绎推理只能用来证明已经知道的事物,“却不能帮助我们发现未知的事情”。因此他提出“需要一种发现真理的方法”,并称之为“通用数学”(mathesis universakis)。笛卡儿在《法则》中描述了这种通用数学的蓝图,他提出的大胆计划,概而言之就是要将一切科学问题转化为求解代数方程的数学问题: 任何问题→数学问题→代数问题→方程求解而笛卡儿的《几何学》,正是他上述方案的一个具体实施和示范,解析几何在整个方案中扮演着重要的工具作用,它将一切几何问题化为代数问题,这些代数问题则可以用一种简单的、几乎自动的或者毋宁说是机械的方法去解决。这与上面介绍的古代中国数学家解决问题的路线可以说是一脉相承。 因此我们完全有理由说,在从文艺复兴到17世纪近代数学兴起的大潮中,回响着东方数学特别是中国数学的韵律。整个17—18世纪应该看成是寻求无穷小算法的英雄年代,尽管这一时期的无穷小算法与中世纪算法相比有质的飞跃。而从19世纪特别是70年代直到20世纪中,演绎倾向又重新在比希腊几何高得多的水准上占据了优势。因此,数学的发展呈现出算法创造与演绎证明两大主流交替繁荣、螺旋式上升过程: 演绎传统——定理证明活动 算法传统——算法创造活动 中国古代数学家对算法传统的形成与发展做出了毋容置疑的巨大贡献。 我们强调中国古代数学的算法传统,并不意味中国古代数学中没有演绎倾向。事实上,在魏晋南北朝时期一些数学家的工作中,已出现具有相当深度的论证思想。如赵爽勾股定理证明、刘徽“阳马”�一种长方锥体体积证明、祖冲之父子对球体积公式的推导等等,均可与古希腊数学家相应的工作媲美。赵爽勾股定理证明示意图“弦图”原型,已被采用作2002年国际数学家大会会标。令人迷惑的是,这种论证倾向随着南北朝的结束,可以说是戛然而止。囿于篇幅和本文重点,对这方面的内容这里不能详述,有兴趣的读者可参阅参考文献�3�。 3 古为今用,创新发展 到了20世纪,至少从中叶开始,电子计算机的出现对数学的发展带来了深远影响,并孕育出孤立子理论、混沌动力学、四色定理证明等一系列令人瞩目的成就。借助计算机及有效的算法猜测发现新事实、归纳证明新定理乃至进行更一般的自动推理……,这一切可以说已揭开了数学史上一个新的算法繁荣时代的伟大序幕。科学界敏锐的有识之士纷纷预见到数学发展的这一趋势。在我国,早在上世纪50年代,华罗庚教授就亲自领导建立了计算机研制组,为我国计算机科学和数学的发展奠定了基础。吴文俊教授更是从70年代中开始,毅然由原先从事的拓扑学领域转向定理机器证明的研究,并开创了现代数学的崭新领域——数学机械化。被国际上誉为“吴方法”的数学机械化方法已使中国在数学机械化领域处于国际领先地位,而正如吴文俊教授本人所说:“几何定理证明的机械化问题,从思维到方法,至少在宋元时代就有蛛丝马迹可寻,”他的工作“主要是受中国古代数学的启发”。“吴方法”,是中国古代数学算法化、机械化精髓的发扬光大。 计算机影响下算法倾向的增长,自然也引起一些外国学者对中国古代数学中算法传统的兴趣。早在上世纪70年代初,著名的计算机科学家就呼吁人们关注古代中国和印度的算法�5�。多年来这方面的研究取得了一定进展,但总的来说还亟待加强。众所周知,中国古代文化包括数学是通过著名的丝绸之路向西方传播的,而阿拉伯地区是这种文化传播的重要中转站。现存有些阿拉伯数学与天文著作中包含有一定的中国数学与天文学知识,如著名的阿尔·卡西《算术之钥》一书中有相当数量的数学问题显示出直接或间接的中国来源,而根据阿尔·卡西本人记述,他所工作的天文台中就有不少来自中国的学者。 然而长期以来由于“西方中心论”特别是“希腊中心论”的影响以及语言文字方面的障碍,有关资料还远远没有得到发掘。正是为了充分揭示东方数学与欧洲数学复兴的关系,吴文俊教授特意从他荣获的国家最高科学奖中拨出专款成立了“吴文俊数学与天文丝路基金”,鼓励支持年轻学者深入开展这方面的研究,这是具有深远意义之举。 研究科学的历史,其重要意义之一就是从历史的发展中获得借鉴和汲取教益,促进现实的科学研究,通俗地说就是“古为今用”。吴文俊对此有精辟的论述,他说:“假如你对数学的历史发展,对一个领域的发生和发展,对一个理论的兴旺和衰落,对一个概念的来龙去脉,对一种重要思想的产生和影响等这许多历史因素都弄清了,我想,对数学就会了解得更多,对数学的现状就会知道得更清楚、更深刻,还可以对数学的未来起一种指导作用,也就是说,可以知道数学究竟应该按怎样的方向发展可以收到最大的效益”。数学机械化理论的创立,正是这种古为今用原则的硕果。我国科学技术的伟大复兴,呼唤着更多这样既有浓郁的中国特色、又有鲜明时代气息的创新。
论文如何写?这个问题比较泛泛。通常写论文之前会需要写开题报告和文献综述,写论文过程中,还需要写中期报告,论文结束时还需要写结题报告。这就需要回复这些都如何写。不过我想你问的应该是论文正文主题怎么写,我现在给大家讲讲。一、查阅并下载资料可以去知网、维普、万方和道客巴巴、豆丁、百度学术去查询资料,当然要想下载资料必须要注册会员,这个可以去淘宝搜索文献下载账号,就可以买到,不贵。需要注意的是,下载的资料目前都是caj和pdf版本,所以你要下载这2个格式的软件,要不打不开文档,同时你要把pdf文档转换成word文档,供你参考写作。二、论文的选题现实中,选题不光是自己的事情,也要咨询教师。个别学校,指导教师的选择和你的选题有关。最好是选择教师和学生都擅长的结合点,并且与专业的契合度高。题目也不可过长,一般不超过16个字,如果题目不好确定,就定个主题也可以,写完论文后题目在最终定下。三、提纲的制定很多学生忽略了这个步骤,直接去写作,结果提纲和题目不契合,造成大面积修改甚至重写,这样欲速则不达。提纲是文章的骨干,一旦提纲定下来,论文就定下来了,即使内容哪里不对,也是小范围修改,所以提纲不能省略,要作为重点。四、正文写作正文写作,实质就是对提纲的高度扩充,记得不论是文科还是理科都要有案例,字数少的论文找好1-2个主要的论点即可。论文讲求言简意赅,千万不要为了字数而凑字,不要写成流水帐,要有核心部分。比如医学论文的论著,就需要有数据部分,通过实验统计分析得出,最后要有讨论和总结。正文考验的是你的专业能力和写作能力,同时也是对你查阅资料这个步骤的验证。五、格式排版按照学校下发的格式模板进行排版,需要注意的是封页,原创声明和目录,致谢词这些辅助部分不要落下,有的学校还需要中英文摘要,同时论文参考文献要在文章中最好标注和脚注,至于字号字体行间距等要求看模板就行。以上是论文怎么写的步骤,如果只是这些,还没有结束,还要用知网或者paperpass软件来进行检测,重复率要控制20%以内,最好是10%以内,具体要看学校的要求。重复率没问题就发给老师,等待一稿修改,直至通过为止。
高次多项式如何因式分解?清华学霸毫无思路,高级教师1秒搞定!
多项式因式分解的方法,一个是根据完全平方公式,一个是配方法还有一个因式分解法。
一、提公因式法。
多项式中,每一都含有的公共的因式叫做这个多项式的公因式。通常,某些多项式的各项或一些项有公因式,那么,我们可以把这个公因式提出来,从而将多项式化成两个因式或多个因式的乘积的形式,这种分解因式的方法叫做提公因式法。
二、公式法。
将乘法公式反过来,就可以将某些多项式因式分解,这种方法叫公式法。
三、分组分解法。
分组分解法是分解较复杂的多项式的一种方法,在能分组的多项式往往有四项或者更多,一般分组为两两分组或三一分组,常用于多项式中的某些项分别进行合并后会有公因式或者可用公式化简等。
四、十字相乘法。
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
五、双十字相乘法。
分解形如ax²+bxy+cy²+dx+ey+f 的二次六项式在草稿纸上,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则。
则原式=(mx+py+j)(nx+qy+k)。也叫长十字相乘法。
扩展资料:
一、多项式的分解定理:
F[x]中任一个次数不小于 1的多项式都可以分解为F上的不可约多项式的乘积,而且除去因式的次序以及常数因子外,分解的方法是惟一的。
当F是复数域C时,根据代数基本定理,可证C[x]中不可约多项式都是一次的。因此,每个复系数多项式都可分解成一次因式的连乘积。
当F是实数域R时,由于实系数多项式的虚根是成对出现的,即虚根的共轭数仍是根,因此R[x]中不可约多项式是一次的或二次的。
所以每个实系数多项式都可以分解成一些一次和二次的不可约多项式的乘积。实系数二次多项式αx2+bx+с不可约的充分必要条件是其判别式b2-4αс<0。
当F是有理数域Q时,情况复杂得多。要判断一个有理系数多项式是否不可约,就较困难。应用本原多项式理论,可把有理系数多项式的分解问题化为整系数多项式的分解问题。
一个整系数多项式如其系数是互素的,则称之为本原多项式。每个有理系数多项式都可表成一个有理数及一个本原多项式的乘积。
二、因式分解的相关结论:
1、因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。
对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。
2、 所有的三次和三次以上的一元多项式在实数范围内都可以因式分解,所有的二次或二次以上的一元多项式在复数范围内都可以因式分解。这看起来或许有点不可思议。比如x4+1,这是一个一元四次多项式,看起来似乎不能因式分解。
但是它的次数高于3,所以一定可以因式分解。也可以用待定系数法将其分解,只是分解出来的式子并不整洁。(这是因为,由代数基本定理可知n次一元多项式总是有n个根,也就是说,n次一元多项式总是可以分解为n个一次因式的乘积。
并且还有一条定理:实系数多项式的虚数根两两共轭的,将每对共轭的虚数根对应的一次因式相乘,可以得到二次的实系数因式,从而这条结论也就成立了。)
3、因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。因式分解很多时候就是用来提公因式的。寻找公因式可以用辗转相除法来求得。
标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以但比较笨,不过能有效地解决找公因式的问题。
4、因式分解是很困难的,初中所接触的只是因式分解很简单的一部分。
参考资料:百度百科-因式分解
多项式因式分解的话,这里主要是先看一看多项式之间是有哪一些公因式,有公因式的话就提出来,然后再进行进一步的分解。