论文的研究方法有哪些
论文的研究方法有哪些,研究方法是在一个研究中发现新的现象、新的事物,或者提出新理论、观点,论文研究方法需要大量阅读法,找到不足和创新点,来完善自己的论文,下面一起来学习一下论文的研究方法有哪些。
一、思维方法
思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。
二、内容分析法
内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的`过程。
三、文献分析法
文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。
四、数学方法
数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。
一、规范研究法
会计理论研究的一般方法,它是根据一定的价值观念或经济理论对经济行为人的行为结果及产生这一结果的制度或政策进行评判,回答经济行为人的行为应该是什么的分析方法。
二、实证研究法
实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的普遍联系,归纳概括现象的本质及其运行规律。
三、案例分析法
案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法,具体说来:
四、比较分析法
是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。
论文研究方法包括哪些
论文研究方法包括哪些,大学生活的最后一年同学们是要写毕业论文的,而毕业论文对于每位同学来说都有很大的意义,下面大家就跟随我一起来看看论文研究方法包括哪些的相关知识吧,希望对大家能有所帮助。
一、规范研究法
会计理论研究的一般方法,它是根据一定的价值观念或经济理论对经济行为人的行为结果及产生这一结果的制度或政策进行评判,回答经济行为人的行为应该是什么的分析方法。
二、实证研究法
实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的普遍联系,归纳概括现象的本质及其运行规律。
三、案例分析法
案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法,具体说来:
四、比较分析法
是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。
五、思维方法
思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。
六、内容分析法
内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的过程。
七、文献分析法
文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。
八、数学方法
数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的.统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。
信息研究法
信息研究方法是利用信息来研究系统功能的一种科学研究方法。美国数学、通讯工程师、生理学家维纳认为,客观世界有一种普遍的联系,即信息联系。当前,正处在“信息革命”的新时代,有大量的信息资源,可以开发利用。信息方法就是根据信息论、系统论、控制论的原理,通过对信息的收集、传递、加工和整理获得知识,并应用于实践,以实现新的目标。信息方法是一种新的科研方法,它以信息来研究系统功能,揭示事物的更深一层次的规律,帮助人们提高和掌握运用规律的能力。
个案研究法
个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其形成过程的一种研究方法。个案研究有三种基本类型:
(1)个人调查,即对组织中的某一个人进行调查研究;
(2)团体调查,即对某个组织或团体进行调查研究;
(3)问题调查,即对某个现象或问题进行调查研究。
描述性研究法
描述性研究法是一种简单的研究方法,它将已有的现象、规律和理论通过自己的理解和验证,给予叙述并解释出来。它是对各种理论的一般叙述,更多的是解释别人的论证,但在科学研究中是必不可少的。它能定向地提出问题,揭示弊端,描述现象,介绍经验,它有利于普及工作,它的实例很多,有带揭示性的多种情况的调查;有对实际问题的说明;也有对某些现状的看法等。
模拟法(模型方法)
模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种。
定量、定性分析法
在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。
定性分析法就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。
跨学科研究法
运用多学科的理论、方法和成果从整体上对某一课题进行综合研究的方法,也称“交叉研究法”。科学发展运动的规律表明,科学在高度分化中又高度综合,形成一个统一的整体。据有关专家统计,现在世界上有2000多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言、方法和某些概念方面,有日益统一化的趋势。
论文的研究方法有哪些
论文的研究方法有哪些,研究方法是在一个研究中发现新的现象、新的事物,或者提出新理论、观点,论文研究方法需要大量阅读法,找到不足和创新点,来完善自己的论文,下面一起来学习一下论文的研究方法有哪些。
一、思维方法
思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。
二、内容分析法
内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的`过程。
三、文献分析法
文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。
四、数学方法
数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。
一、规范研究法
会计理论研究的一般方法,它是根据一定的价值观念或经济理论对经济行为人的行为结果及产生这一结果的制度或政策进行评判,回答经济行为人的行为应该是什么的分析方法。
二、实证研究法
实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的普遍联系,归纳概括现象的本质及其运行规律。
三、案例分析法
案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法,具体说来:
四、比较分析法
是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。
毕业论文研究方法如下:
1、调查法。
调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。
它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解,并对调查搜集到的大量资料进行分析、综合、比较、归纳,从而为人们提供规律性的知识。
调查法中最常用的是问卷调查法,它是以书面提出问题的方式搜集资料的一种研究方法,即调查者就调查项目编制成表式,分发或邮寄给有关人员,请示填写答案,然后回收整理、统计和研究。
2、观察法。
观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。
3、实验法。
实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:
第一、主动变革性。
观察与调查都是在不干预研究对象的前提下去认识研究对象,发现其中的问题。而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。
第二、控制性。
科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。
第三,因果性。
实验以发现、确认事物之间的因果联系的有效工具和必要途径。
论文的研究方法有哪些
论文的研究方法有哪些,研究方法是在一个研究中发现新的现象、新的事物,或者提出新理论、观点,论文研究方法需要大量阅读法,找到不足和创新点,来完善自己的论文,下面一起来学习一下论文的研究方法有哪些。
一、思维方法
思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。
二、内容分析法
内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的`过程。
三、文献分析法
文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。
四、数学方法
数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。
一、规范研究法
会计理论研究的一般方法,它是根据一定的价值观念或经济理论对经济行为人的行为结果及产生这一结果的制度或政策进行评判,回答经济行为人的行为应该是什么的分析方法。
二、实证研究法
实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的普遍联系,归纳概括现象的本质及其运行规律。
三、案例分析法
案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法,具体说来:
四、比较分析法
是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。
写毕业论文的研究方法有哪些
写毕业论文的研究方法有哪些?又到了一年一度的毕业季,大学生毕业的时候是需要写毕业论文的,不少人好奇写毕业论文的有什么研究方法。接下来就由我带大家了解写毕业论文的研究方法有哪些的相关内容。
1、调查法
调查法是现在用户在撰写论文过程中使用最多的研究方法,调查法主要是通过用户系统化的搜集有关研究课题的现在状况或者历史状况进行综合分析得到研究成果的方式。
2、观察法
观察法,顾名思义就是用户借助自己的感官和一些其它的辅助工具对研究对象进行直接的观察,记录数据内容,以此来获得研究论文课题的方式,很多大型的科研机构等都是采用这种方法进行课题研究。
3、实验法
实验法相信只有接触过化学课程的用户都是可以理解的,实验法主要是通过控制实验对象的各方面要素来明确研究对象间的关系,这是现在很多用来发现研究对象间关系的方法之一。
4、文献法
文献法主要是通过不断的搜集该课题相关的文献资料,进行系统全面的分析,以此来得到研究数据的方法,但是用户一定要知道挑选的论文文献资料一定要全面,这样才能全面的分析研究成果。
1、题目:毕业论文题目应简洁、明确、有概括性,字数不宜超过20个字。
2、摘要:论文摘要应阐述学位论文的主要观点,说明本论文的目的、研究方法、成果和结论。尽可能保留原论文的基本信息,突出论文的创造性成果和新见解。摘要以500字左右为宜,要有高度的概括力。
3、关键词:关键词是能反映论文主旨最关键的词句,一般3-5个。关键词之间需要用分号或逗号分开。
4、目录:目录既是论文的提纲,也是论文组成部分的'小标题,应标注相应页码。
4、正文:专科毕业论文正文字数一般应在5000字以上,本科文学学士毕业论文通常要求8000字以上,硕士论文可能要求在3万字以上。毕业论文正文:包括前言、本论、结论三个部分。
前言是论文的开头部分,主要说明论文写作的目的、现实意义、对所研究问题的认识,并提出论文的中心论点等。本论是毕业论文的主体,包括研究内容与方法、实验材料、实验结果与分析等。结论是毕业论文的收尾部分,是围绕本论所作的结束语。其基本的要点就是总结全文,加深题意。
7、注释:在论文写作过程中,有些问题需要在正文之外加以阐述和说明。
8、致谢:简述自己通过做毕业论文的体会,并应对指导教师和协助完成论文的有关人员表示谢意。
9、参考文献:在毕业论文末尾要列出在论文中参考过的所有专著、论文及其他资料,所列参考文献可以按文中参考或引证的先后顺序排列,也可以按照音序排列。
10、对于一些不宜放在正文中,但有参考价值的内容,可编入附录中。
最近我也在写论文的开题报告。下面是我复制的,百分之百正确。调查法调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解,并对调查搜集到的大量资料进行分析、综合、比较、归纳,从而为人们提供规律性的知识。调查法中最常用的是问卷调查法,它是以书面提出问题的方式搜集资料的一种研究方法,即调查者就调查项目编制成表式,分发或邮寄给有关人员,请示填写答案,然后回收整理、统计和研究。观察法观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。在科学实验和调查研究中,观察法具有如下几个方面的作用:①扩大人们的感性认识。②启发人们的思维。③导致新的发现。实验法实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性。观察与调查都是在不干预研究对象的前提下去认识研究对象,发现其中的问题。而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。第二、控制性。科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。第三,因果性。实验以发现、确认事物之间的因果联系的有效工具和必要途径。文献研究法文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被子广泛用于各种学科研究中。其作用有:①能了解有关问题的历史和现状,帮助确定研究课题。②能形成关于研究对象的一般印象,有助于观察和访问。③能得到现实资料的比较资料。④有助于了解事物的全貌。实证研究法实证研究法是科学实践研究的一种特殊形式。其依据现有的科学理论和实践的需要,提出设计,利用科学仪器和设备,在自然条件下,通过有目的有步骤地操纵,根据观察、记录、测定与此相伴随的现象的变化来确定条件与现象之间的因果关系的活动。主要目的在于说明各种自变量与某一个因变量的关系。定量分析法在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。定性分析法定性分析法就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。跨学科研究法运用多学科的理论、方法和成果从整体上对某一课题进行综合研究的方法,也称“交叉研究法”。科学发展运动的规律表明,科学在高度分化中又高度综合,形成一个统一的整体。据有关专家统计,现在世界上有2000多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言、方法和某些概念方面,有日益统一化的趋势。个案研究法个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其形成过程的一种研究方法。个案研究有三种基本类型:(1)个人调查,即对组织中的某一个人进行调查研究;(2)团体调查,即对某个组织或团体进行调查研究;(3)问题调查,即对某个现象或问题进行调查研究。功能分析法功能分析法是社会科学用来分析社会现象的一种方法,是社会调查常用的分析方法之一。它通过说明社会现象怎样满足一个社会系统的需要(即具有怎样的功能)来解释社会现象。数量研究法数量研究法也称“统计分析法”和“定量分析法”,指通过对研究对象的规模、速度、范围、程度等数量关系的分析研究,认识和揭示事物间的相互关系、变化规律和发展趋势,借以达到对事物的正确解释和预测的一种研究方法。模拟法(模型方法)模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种。探索性研究法探索性研究法是高层次的科学研究活动。它是用已知的信息,探索、创造新知识,产生出新颖而独特的成果或产品。信息研究方法信息研究方法是利用信息来研究系统功能的一种科学研究方法。美国数学、通讯工程师、生理学家维纳认为,客观世界有一种普遍的联系,即信息联系。当前,正处在“信息革命”的新时代,有大量的信息资源,可以开发利用。信息方法就是根据信息论、系统论、控制论的原理,通过对信息的收集、传递、加工和整理获得知识,并应用于实践,以实现新的目标。信息方法是一种新的科研方法,它以信息来研究系统功能,揭示事物的更深一层次的规律,帮助人们提高和掌握运用规律的能力。经验总结法经验总结法是通过对实践活动中的具体情况,进行归纳与分析,使之系统化、理论化,上升为经验的一种方法。总结推广先进经验是人类历史上长期运用的较为行之有效的领导方法之一。描述性研究法描述性研究法是一种简单的研究方法,它将已有的现象、规律和理论通过自己的理解和验证,给予叙述并解释出来。它是对各种理论的一般叙述,更多的是解释别人的论证,但在科学研究中是必不可少的。它能定向地提出问题,揭示弊端,描述现象,介绍经验,它有利于普及工作,它的实例很多,有带揭示性的多种情况的调查;有对实际问题的说明;也有对某些现状的看法等。数学方法数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。思维方法思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。系统科学方法20世纪,系统论、控制论、信息论等横向科学的迅猛发展,为发展综合思维方式提供了有力的手段,使科学研究方法不断地完善。而以系统论方法、控制论方法和信息论方法为代表的系统科学方法,又为人类的科学认识提供了强有力的主观手段。它不仅突破了传统方法的局限性,而且深刻地改变了科学方法论的体系。这些新的方法,既可以作为经验方法,作为获得感性材料的方法来使用,也可以作为理论方法,作为分析感性材料上升到理性认识的方法来使用,而且作为后者的作用比前者更加明显。它们适用于科学认识的各个阶段,因此,我们称其为系统科学方法。
毕业论文采用的研究方法有哪些
毕业论文采用的研究方法有哪些,在写论文的时候需要用到研究方法,研究的方法有很多种,不同的研究方法使用的方式也是不一样的,以下就是我为大家整理的一些关于毕业论文采用的研究方法有哪些的资料,大家一起来看看吧!
1、调查法
调查法是现在用户在撰写论文过程中使用最多的研究方法,调查法主要是通过用户系统化的搜集有关研究课题的现在状况或者历史状况进行综合分析得到研究成果的方式。
2、观察法
观察法,顾名思义就是用户借助自己的感官和一些其它的辅助工具对研究对象进行直接的观察,记录数据内容,以此来获得研究论文课题的方式,很多大型的科研机构等都是采用这种方法进行课题研究。
3、实验法
实验法相信只有接触过化学课程的用户都是可以理解的,实验法主要是通过控制实验对象的各方面要素来明确研究对象间的关系,这是现在很多用来发现研究对象间关系的方法之一。
4、文献法
文献法主要是通过不断的搜集该课题相关的'文献资料,进行系统全面的分析,以此来得到研究数据的方法,但是用户一定要知道挑选的论文文献资料一定要全面,这样才能全面的分析研究成果。
1、归纳方法与演绎方法 :归纳就是从个别事实中概括出一般性的结论原理;演绎则是从一般性原理、概念引出个别结论。归纳是从个别到一般的方法;演绎是从一般到个别的方法。
门捷列夫使用归纳法,在人们认识大量个别元素的基础上,概括出了化学元素周期律。后来他又从元素周期律预言当时尚未发现的若干个元素的化学性质,使用的就是演绎法。
2、分析方法与综合方法 :分析就是把客观对象的整体分为各个部分、方面、特征和因素而加以认识。它是把整体分为部分,把复杂的事物分解为简单的要素分别加以研究的一种思维方法。
分析是达到对事物本质认识的一个必经步骤和必要手段。分析的任务不仅仅是把整体分解为它的组成部分,而且更重要的是透过现象,抓住本质,通过偶然性把握必然性。
3、因果分析法 :就是分析现象之间的因果关系,认识问题的产生原因和引起结果的辩证思维方法。使用这种方法一定要注意到真正的内因与结果,而不是似是而非的因果关系。
要注意结果与原因的逆关系,一方面包括“用原因来证明结果”,同时也包括“用结果来推论原因”。不同的事物,一般都一身二任,既是原因,又是结果,而且一个结果往往有不同层次的几个原因。因此,在研究过程中,对所分析的问题必须寻根究底。
中学数学教学过程,实质上是运用各种教学理论进行数学知识教学的过程。在这个过程中,必然要涉及数学思想的问题。因为数学思想是人类思想文化宝库中的瑰宝,是数学的精髓,它对数学教育具有决定性的指导意义。本文对这个概念的意义及在教学中的作用作一探讨。希望能再引起广大数学教育工作者的关注。一、对中学数学思想的基本认识 “数学思想”作为数学课程论的一个重要概念,我们完全有必要对它的内涵与外延形成较为明确的认识。关于这个概念的内涵,我们认为:数学思想是人们对数学科学研究的本质及规律的理性认识。这种认识的主体是人类历史上过去、现在以及将来有名与无名的数学家;而认识的客体,则包括数学科学的对象及其特性,研究途径与方法的特点,研究成就的精神文化价值及对物质世界的实际作用,内部各种成果或结论之间的互相关联和相互支持的关系等。可见,这些思想是历代与当代数学家研究成果的结晶,它们蕴涵于数学材料之中,有着丰富的内容。 通常认为数学思想包括方程思想、函数思想、数形结合思想、转化思想、分类讨论思想和公理化思想等。这些都是对数学活动经验通过概括而获得的认识成果。既然是认识就会有不同的见解,不同的看法。实际上也确实如此,例如,有人认为中学数学教材可以用集合思想作主线来编写,有人认为以函数思想贯穿中学数学内容更有利于提高数学教学效果,还有人认为中学数学内容应运用数学结构思想来处理等等。尽管看法各异,但笔者认为,只要是在充分分析、归纳概括数学材料的基础上来论述数学思想,那么所得的结论总是可能做到并行不悖、互为补充的,总是能在中学数学教材中起到积极的促进作用的。 关于这个概念的外延,从量的方面讲有宏观、中观和微观之分。 属于宏观的,有数学观(数学的起源与发展、数学的本能和特征、数学与现实世界的关系),数学在科学中的文化地位,数学方法的认识论、方法论价值等;属于中观的,有关于数学内部各个部门之间的分流的原因与结果,各个分支发展过程中积淀下来的内容上的对立与统一的相克相生的关系等;属于微观结构的,则包含着对各个分支及各种体系结构中特定内容和方法的认识,包括对所创立的新概念、新模型、新方法和新理论的认识。 从质的方面说,还可分成表层认识与深层认识、片面认识与完全认识、局部认识与全面认识、孤立认识与整体认识、静态认识与动态认识、唯心认识与唯物认识、谬误认识和正确认识等。二、数学思想的特性和作用 数学思想是在数学的发展史上形成和发展的,它是人类对数学及其研究对象,对数学知识(主要指概念、定理、法则和范例)以及数学方法的本质性的认识。它表现在对数学对象的开拓之中,表现在对数学概念、命题和数学模型的分析与概括之中,还表现在新的数学方法的产生过程中。它具有如下的突出特性和作用。 (一)数学思想凝聚成数学概念和命题,原则和方法 我们知道,不同层次的思想,凝聚成不同层次的数学模型和数学结构,从而构成数学的知识系统与结构。在这个系统与结构中,数学思想起着统帅的作用。 (二)数学思想深刻而概括,富有哲理性 各种各样的具体的数学思想,是从众多的具体的个性中抽取出来且对个性具有普遍指导意义的共性。它比某个具体的数学问题(定理法则等)更具有一般性,其概括程度相对较高。现实生活中普遍存在的运动和变化、相辅相成、对立统一等“事实”,都可作为数学思想进行哲学概括的材料,这样的概括能促使人们形成科学的世界观和方法论。 (三)数学思想富有创造性� 借助于分析与归纳、类比与联想、猜想与验证等手段,可以使本来较抽象的结构获得相对直观的形象的解释,能使一些看似无处着手的问题转化成极具规律的数学模型。从而将一种关系结构变成或映射成另一种关系结构,又可反演回来,于是复杂问题被简单化了,不能解的问题的解找到了。如将著名的哥尼斯堡七桥问题转化成一笔画问题,便是典型的一例。当时,数学家们在作这些探讨时是很难的,是零零碎碎的,有时为了一个模型的建立,一种思想的概括,要付出毕生精力才能得到,这使后人能从中得到真知灼见,体会到创造的艰辛,发展顽强奋战的个性,培养创造的精神。三、数学思想的教学功能 我国《九年义务教育全日制初级中学数学教学大纲(试用修订版)》明确指出:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法”。根据这一要求,在中学数学教学中必须大力加强对数学思想和方法的教学与研究。 (一)数学思想是教材体系的灵魂� 从教材的构成体系来看,整个初中数学教材所涉及的数学知识点汇成了数学结构系统的两条“河流”。一条是由具体的知识点构成的易于被发现的“明河流”,它是构成数学教材的“骨架”;另一条是由数学思想方法构成的具有潜在价值的“暗河流”,它是构成数学教材的“血脉”灵魂。有了这样的数学思想作灵魂,各种具体的数学知识点才不再成为孤立的、零散的东西。因为数学思想能将“游离”状态的知识点(块)凝结成优化的知识结构,有了它,数学概念和命题才能活起来,做到相互紧扣,相互支持,以组成一个有机的整体。可见,数学思想是数学的内在形式,是学生获得数学知识、发展思维能力的动力和工具。教师在教学中如能抓住数学思想这一主线,便能高屋建瓴,提挈教材进行再创造,才能使教学见效快,收益大。 (二)数学思想是我们进行教学设计的指导思想 笔者认为,数学课堂教学设计应分三个层次进行,这便是宏观设计、微观设计和情境设计。无论哪个层次上的设计,其目的都在于为了让学生“参与”到获得和发展真理性认识的数学活动过程中去。这种设计不能只是数学认识过程中的“还原”,一定要有数学思想的飞跃和创造。这就是说,一个好的教学设计,应当是历史上数学思想发生、发展过程的模拟和简缩。例如初中阶段的函数概念,便是概括了变量之间关系的简缩,也应当是渗透现代数学思想、使用现代手段实现的新的认识过程。又如高中阶段的函数概念,便渗透了集合关系的思想,还可以是在现实数学基础上的概括和延伸,这就需要搞清楚应概括怎样的共性,如何准确地提出新问题,需要怎样的新工具和新方法等等。对于这些问题,都需要进行预测和创造,而要顺利地完成这一任务,必须依靠数学思想作为指导。有了深刻的数学思想作指导,才能做出智慧熠烁的创新设计来,才能引发起学生的创造性的思维活动来。这样的教学设计,才能适应瞬息万变的技术革命的要求。靠一贯如此设计的课堂教学培养出来的人才,方能在21世纪的激烈竞争中立于不败之地。 (三)数学思想是课堂教学质量的重要保证 数学思想性高的教学设计,是高质量进行教学的基本保证。在数学课堂教学中,教师面对的是几十个学生,这几十个智慧的头脑会提出各种各样的问题。随着新技术手段的现代化,学生知识面的拓宽,他们提出的许多问题是教师难以解答的。面对这些活泼肯钻研的学生所提的问题,教师只有达到一定的思想深度,才能保证准确辨别各种各样问题的症结,给出中肯的分析;才能恰当适时地运用类比联想,给出生动的陈述,把抽象的问题形象化,复杂的问题简单化;才能敏锐地发现学生的思想火花,找到闪光点并及时加以提炼升华,鼓励学生大胆地进行创造,把众多学生牢牢地吸引住,并能积极主动地参与到教学活动中来,真正成为教学过程的主体;也才能使有一定思想的教学设计,真正变成高质量的数学教学活动过程。 有人把数学课堂教学质量理解为学生思维活动的质和量,就是学生知识结构,思维方法形成的清晰程度和他们参与思维活动的深度和广度。我们可以从“新、高、深”三个方面来衡量一堂数学课的教学效果。“新”指学生的思维活动要有新意,“高”指学生通过学习能形成一定高度的数学思想,“深”则指学生参与到教学活动的程度。 有思想深度的课,能给学生留下长久的思想激动和对知识的深刻理解,在以后的学习和工作中,他们可能把具体的数学知识忘了,但数学地思考问题的方法将永存。我们进行数学教学的根本目的,是通过数学知识和观念的培养,通过一些数学思想的传授,要让学生形成一种“数学头脑”,使他们在观察问题和提出问题、解决问题的每一个过程中,都带有鲜明的“数学色彩”,这样的数学一定会有真正的实效和长效,真正提高人的素质。 数学课堂教学是教师“主体表演”的过程,是语言、动作、板书演示、语言交流、情感交流等融于一体的过程。在这种过程中,往往既能反映出教师专业基础知识的情况,又能反映出教师对教学理论的掌握情况,同时还可反映出教师的数学思想的有关情况。实践证明,在数学教学中,数学思想、方法已经越来越多地得到人们的重视,特别是在数学教学中,如何使学生较快地理解和掌握数学思想、方法,更是我们广大中学数学教师所关心的问题。一、创设自由、宽松、民主、和谐的课堂氛围,激发学习兴趣平等、和谐、信任的师生关系,自由、宽松、民主、融洽的课堂气氛是唤起学生学习兴趣并促其主动学习的基础,也是实现主体性参与教学的前提。在课堂教学中,努力创造自由、宽松、民主、平等、和谐、乐学、互相信任、心情愉悦的课堂氛围,使学生的个性潜能得到释放,学生才能把精力放在学习上,愉快的学习,积极主动地探索。对学困生和潜能生更要关注,多与他们沟通,不挖苦、不歧视,用真情关心、爱护他们,使他们真正感受到老师的爱,减少他们因学业成绩不理想而造成精神上的沉重压力,善于发现他们的闪光点,以促其建立自信,变“要我学”为“我要学”,积极主动的参与学习。二、创设问题情境,引发学习兴趣学生探究的主动性往往来自一个好的问题情境,一个好的问题情境,也常常有“一石激起千层浪”的效果,使学生感到心奋,能主动地参与,自主地探究。所以在以问题为中心的小学数学课堂教学模式的研究中,人们已经有了“创设情境”是学生提出数学问题的前提的研究,而且模式的问世指日可待。思维总是由问题引起的,学生学习的过程就是发现问题、分析问题、解决问题的过程,有价值的问题才能使学生的思维处于主动积极、愉快地获取知识的活跃状态。因此,我们可以根据学生的心理特点和学科的知识特点,采取恰当的方法创设问题情境,使学习变被动为主动。使教学内容更具有真实性、趣味性、问题性、开放性,让学生置身于逼真的问题情境中,体验数学学习与实际生活的联系,学生也会品尝到用所学知识解释生活现象以及解决实际问题的乐趣,感受到借助数学的思想方法,会真正体会到学习数学的乐趣。三、情境的创设要为新旧知识的衔接创造条件认知心理学认为,学生在学习某一新的数学知识之前应该有一个相对稳定的认知结构,这个结构往往距新知还有一段距离,即或就是一步之差,教学也要要求找准新旧知识的衔接点,设计恰当的内容,充当新旧知识链结的“亚目标”,前苏联心理学家维果茨基把这个“亚目标”叫做学生学习的“最近发展区”。这样,不仅可以为学生知识的有效链结创造条件,为实现新知的内化打下坚实的基础,同时还可以,为知识的过渡给人以自然顺利的美感。数学知识前后连接紧密,无理方程要去掉根号化为有理方程;有理方程中的分式方程要去掉分母化为整式方程;整式方程中的高次方程要降次为一次方程或二次方程;多元方程要消元化为一元方程。四、根据耳聋学生年级和年龄特点,唤起学习兴趣高年级的聋生注意时间长,耐力较持久,自控力也较好,思维呈连续性,学习积极性高,许多有攻坚、显示自己聪明才智的心理。在教学中要有技巧,在教学中充分利用学生的好奇心。在教学中善于制造悬念,适当的沉默或等待,恰当的比喻,敏锐的洞察力都将聋生的注意力吸引到教学中来,并有益于学生思维的动化。运用直观教具教学。聋哑学生的思维还处于形象思维阶段,抽象逻辑思维能力差。以感性材料为起点,贯彻抽象与具体相结合的原则,充分利用图片模具、多媒体、声、光、灯等直观教具进行生动形象具体的演示,丰富学生的感性认识,使学生在观察、分析、判断联想的过程中开拓思路,加深理解。活泼好动是聋生的特点,教师在教学中应尽可能。超级秘书网创造条件,让学生动手操作,使枯燥的学习变为具体有趣的东西,在实践活动中尝到探索知识的乐趣。五、创设竞争性情境,调动学习兴趣国内外的大量研究表明,在学生学习知识的过程中,适当开展一些合理的学习竞赛活动是必要的,也是有益的。布鲁纳就在他的发现学习理论中强调,学习的最好动机是对所学材料的兴趣,是奖励、竞争之类的外在刺激。因此,教学中,我们可适当创设竞争情境,引入竞争教学模式,为学生创造展示自我、表现自我的机会,激发学习兴趣。如在做练习时,我们可以设计形式多样的竞争:把竞争带入课堂,利用学生自尊心、自我表现欲、荣誉感强,好胜不服输的心理特点,在教师的引导调动下便可为课堂教学创设一种适合学生的竞争气氛,有效地提高学生的学习兴趣。学生在竞争中大脑处于高度兴奋状态,精神高度集中,在不知不觉中学到不少有用的知识,并受到正确的数学思想方法的熏陶,有力地提高了学生的学习兴趣。学生在学习中重要的心理特征就是希望老师发现自己的优点并得到激励与肯定。在教学中,我们应多给学生一些成功的体验:如课堂上让他们提出一个问题,或是解决一个问题,或会做一道计算题时等对他们做出适当的表扬和鼓励,或是作业批语中多一些鼓励,多一些喝彩这样帮助学生认识自我,建立自信,让他们在积极参与中体验成功带来的喜悦,增强自信心。一、良好的心理素养、痴迷的学习兴趣——学好数学的前提喜爱也就是做一件事的理由和把事情坚持下去的最强动力。良好的心理素养、近乎痴迷的兴趣是高效率学习数学的前提,也是在最后的考试中取胜的必要条件。大多数同学都会觉得繁重的数学学习几乎让人喘不过气来,遇到一道难解的题,或者期末考试考砸了,更是郁闷至极;也许,此时的我们,都会有一种很不舒服的压抑感——这是由繁重的学习任务,紧张的竞争氛围,沉重的学习压力造成的;可是,我们能逃避吗?难道就这样被动的忍受吗?不,既然不能逃避,那唯一的办法,就是去正视他,化解它!心情不愉快的时候总会有的,怎么办呢?遇到这种情形,可以找一个自己信任的人,把自己的不快倾诉出来,寻求他人的理解,这样,就能很快收回烦恼的心,专心学习,也才能保证学习的效率。此外,由于学习太紧张,再加上学习中难免会有这样那样不顺心的事情,我建议,我们每天都要找一个时间,最好是在傍晚的时候,走出教室、走出家门,在安静的地方走一走,放松一下,回顾一下一天的学习和生活,表面上看起来这样做耽误了一些时间,但其实是有了一个轻松愉快的心境,提高了学习效率。除此之外,对自己还要有十足的自信,自信的学习,自信的走入考场,就能自信的取得成功,如果做不到这一点,精神太紧张,特别是在考试的时候,就很难将自己的水平发挥出来,更不要说超水平发挥了。??那么,数学学习中、考场上,什么是心理的最高境界呢?一句话,“宠辱不惊“!也就是说,不管遇到什么样的情况,都能兴趣不减,心静如水,沉稳对付;不管遇到什么样的情形,都要不受其影响,按照预定的计划和步骤学习和考试,发挥出自己的最好水平。当然,真能做到这一点,也非常不易,但是,只要我们有意识的去锻炼,去努力,就一定会有收获!二、持之以恒、百折不挠的毅力——学好数学的保障学习是要吃苦的,是要能忍得住板凳上、台灯前的寂寞。学习就是学习,学习不是娱乐,没有哪一种学习方法能让你象看美国大片似的学到博士。这是自然规律。三、事半功倍的方法——学好数学的手段1.做一个个人错题集。我给同学们一个公式:少错=多对。如果做错了题目,不管发现什么错误,不管是多么简单的错误,都收录进来;我相信,一旦你真的做起来,你就会吃惊的发现,你的错误并不是更正一次就可以改掉的,相反,有很多错误都是第二次、第三次犯了,甚至于更多次!看着自己的错体集,哎呀,太触目惊心了。这真是一个自我反省的好地方,更是一个提高成绩的好方法。复习越往后,在知识上取得突破的可能性就越小,而能纠正自己的错误,实在是一个不小的增长空间。如果你还没有这个习惯,那么,就去准备一个吧,收集自己的错误,分门别类,然后没事的时候就翻一翻,看一看,自警一番,肯定会有很大的收获。2.参考书有一本足矣。我想说有一本主要的参考书就足够了。我发现了一个很奇怪的现象,现在市场上很多参考书卖得很好,都挂着某某名校名师的牌子,鼓吹的有多么多么好,结果,不少同学在眼花缭乱中拿了一本又一本。其实,我们在学习、复习中时间很有限,可供自己支配的时间更有限,在这些有限的时间,朝三暮四,一会儿看这一本参考书,一会儿看那一本参考书,还不如不看。把课本的知识结构知识要点烂熟于心,能够在很少的时间里把一科知识全部回顾一遍。能做到这点,要比看一些参考书要重要的多。总之,一句话,抓住最根本,最主要的,不要盲目的看参考书,特别是不要看很多参考书。3.遇到疑难该怎么办呢?首先是要尽可能的通过自己的努力去解决,如果不能解决,也要弄明白自己不会的原因是什么,问题出在那里。我经常说的一句话是:决不奢望不遇到难题,但是,也决不允许自己不明白难题难在那里。自己不能解决的时候,就可以采取讨论以及向老师请教等方式,最终解决那些难题;解决绝不是你原来不会做的通过别人的帮助会作了,而是,在会作之后,回过头来比较一下原来不会的原因是什么,一定要把这个原因找出来,否则,就失去了一次提高的机会,作题也失去了意义。4.怎么跳出题海?我想大家一定非常关心这个题目,因为物理难懂、化学难记、数学有做不完的题。但题目是数学的心脏,不做题是万万不行的。而摆在我们面前的题目太多了,好像永远也做不完。试试下面的方法,第一,在完成作业的基础上分析一下每到题目都是怎么考察的,考察了什么知识点,这个知识点的考察还有没有其他的方式;第二,继续做题时,完全不必要每道题目都详细的解出来了,只要看过之后,可以归入我们上面分析过的题型,知道解题思路就可以跳过去了!这样,对每个知识点,都能把握其考试方式,这才是真正的提高。如果意识不到这一点,做一道题只是做了一道题,“就题论题”,不能跳出题外,看到本质,遇到新的题目,稍有一些不同就没有办法了,还谈什么提高呢?又怎能摆脱让你烦恼的题海呢?5.学习考场制胜的法宝。首先,要摆脱心理上的恐惧,可以这样提醒自己,“害怕什么呢,不管有多难,大家都和我一样。”这样自我心理暗示一段时间之后,心里就坦然平静多了。其实学习和考试中最重要的不是要学或考的怎么怎么样,而是能把自己的水平发挥出来,这也是超水平发挥的前提。大家不妨试一试,也许效果很好呢!其次,就是要有正确的学习和考试策略,做到“宠辱不惊”,特别是,遇到难题的时候,不要紧张。考试中有这样一种现象,一旦遇到一个题目,作了好长时间还无法解决,就焦躁不安,严重影响后面的作题,进而也影响考试的成绩。6.正确认识考试。其实,这里,我只是提醒大家注意一个事实而已了。那就是,如果不是竞赛,那么考试卷中,超过80%的内容都是我们在平时的学习中已经练习过的内容的翻版,也就是说,80%多的题目都是非常基础的,80%多的分值通过努力,我们每个人都是可以拿到的,如果大家不相信,可以自己去看一看是不是这样。想想看,抓住了这些基础的题目,是什么水平呢?所以每一个同学都要看到这个事实,让自己自信起来。
初中数学教学中渗透数形结合思想的意义及途径论文
在个人成长的多个环节中,大家都跟论文打过交道吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。那么你知道一篇好的论文该怎么写吗?下面是我帮大家整理的初中数学教学中渗透数形结合思想的意义及途径论文,希望对大家有所帮助。
摘要: 初中数学教学作为连接小学与高中数学知识的纽带,对于学生数学知识的学习与巩固具有重要的作用,并为学生日后进行高层次的数学学习奠定基础。因此,初中数学教师在进行教学时,要格外重视提高学生的数学学习效率,帮助学生全面掌握相关的数学知识及能力。数形结合思想是初中数学课堂教学中普遍使用的教学方式,其在提高学生数学学习能力以及教师课堂教学质量方面具有重要的促进作用。基于此,本文主要对数形结合思想在初中数学教学中的渗透路径进行探讨,并给出相关策略。
关键词: 数形结合思想;初中;数学教学;渗透路径;
在新课改不断推进以及新课标对初中数学教学提出更高要求的背景下,传统初中数学教学模式已经难以满足当前教育的需要。因此,教师在进行数学教学时也在不断改变传统的教学观念及模式,积极探索及创新的教学手段,以提高当下数学课堂教学效果,并取得了一定的收获。其中,数形结合思想因其能够帮助学生更好地理解数学理论知识,从而实现提高学生数学学习能力的作用,而受到初中数学教师的普遍应用。
一、数形结合思想在初中数学教学中的重要性
(一)有助于调动学生对数学课堂学习的兴趣
初中数学教材知识内容相较于小学数学知识有了很大的变化,其难度也有所增加。而该阶段学生的思维方式正处于过渡时期,也就是说,让学生理解抽象性数学理论知识是有一定难度的,加之数学教学氛围一般都普遍枯燥乏味,因而学生很难对数学课堂学习提起兴趣,更不要说调动学生数学学习的积极性了,以致学生学习效率低下。但是,数形结合思想在教学中的应用则可以有效地改善这种情况,借助数形结合的方式,教师可以将抽象化的理论知识变得更为具体可感,进而为学生的数学学习创设一个逼真的教学情境,这样有助于吸引学生的注意力,激发学生学习的兴趣与积极性,促使其自觉参与到学习中来[1]。
(二)有助于拓展学生的数学思维
理论源自实践,数学学科虽然是一门抽象性极强的科目,但是它与人们的`现实生活联系密切,尤其是有关数学与图形的知识是日常生活中经常涉及的,如温度计高低的变化、超市的收银以及舞蹈时的位置等都或多或少涉及数学知识。因此,数学教师在进行数学教学时,应当有意识的引导学生将数学理论知识与生活实际相结合,并在此基础上对数学问题及其现象进行分析与解答,从而提高学生解答问题的能力。总之,当学生学会懂得采用数形结合的思想分析问题时,学生自身的思维也会有很大的提升。
(三)有助于强化学生对知识的记忆以及提高其创造能力
之所以要学习知识,其最终目的还是为了解决生活中遇到的问题,但是学生要想运用理论知识解决现实问题,其首先就要充分理解以及掌握相关数学知识,也就是说,学生解决数学问题的前提是其要全面掌握数学知识[2]。而数形结合思想在教学中的应用,就可以很好的帮助学生记忆以及区分数学知识,进而指导学生进行实践。同时,数学问题所涉及的答案或许是唯一的,但其具体的解题思路及方式却是具有多样性的。换句话说,采用数形结合的思想分析及解答数学问题,那学生可以获得多种解题方法。总之,在初中数学教学中,采用数形结合的思想进行数学教学,有助于提高学生对抽象性数学知识的记忆,并让学生在解答数学问题的过程中,促进其发散思维及创新能力的提升。
二、数形结合思想在初中数学教学中的渗透路径
(一)培养学生数形结合意识,调动学生数学学习的积极性
为了激发学生数学学习的兴趣,促使学生积极投入到数学学习中,进而提高学生数学学习水平,初中数学教师在进行数学教学时,要合理地采用数形结合思想展开数学课堂教学,并让学生在分析与解答有关无理数与有理数相关知识的数学问题的过程中,帮助学生有效地使用该思想思考问题[3]。特别是在初中数学教学的早期,教师要有意识的培养学生学会采用数形结合的思想展开数学学习,并让学生在掌握该思想的运用方法的前提下,促使学生形成相关的数形结合意识,这样有助于学生在学习的过程中产生对数学知识学习的兴趣。例如,在进行“勾股定理”的教学时,数学教师就可以指导学生运用数形结合思想进行该知识点的学习,其可以让学生借助勾画图形的方式发现解决数学问题的关键,从而提高学生解决问题的能力。同样,在解答有关不等式组的数学问题时,学生也可以借助绘制图形的方式画出解集同数轴之间的关系,并以此算出答案。总之,借助数形结合思想,不仅有助于培养学生的数形结合意识,提高学生对数学问题的分析及解题能力,进而促进其数学学习能力的提升,而且也有助于降低学生数学学习的难度,提高学生数学学习的积极性。
(二)适当地引入教学案例展开课堂教学,强化学生数形结合思想
教师要想学生充分把握数形结合思想及其应用,就不能仅靠对学生的引导,其还需要在日常教学中强化对学生相关知识的训练,以帮助学生熟练地采用该思想解答问题。对此,初中数学教师在教学时,可适当地引入相关的案例展开课堂教学,通过向学生分析及讲解相关的案例,以及完善自身的教学设计等,以引导学生在实际动手操作的过程中发现其存在的问题,进而帮助学生在认识到自己错误的基础上进行针对性改进。当然,教师也可以有意识地在日常生活中收集一些富有趣味性的数学知识及故事,并将其作为案例融入数学教学中,以激发学生的求知欲和探究欲,从而促使其积极参与到数学教学中[4]。例如,在解答有关二次函数的数学问题时,教师要适当地引入案例对学生进行讲解,以便学生从中学会判断数学题目的根本意图,然后再让学生以绘图的方式,画出与之相匹配的图像,并求出相关的坐标,从而以此得出有关图像的开口方向及其定点位置等相关知识。
(三)创设有效的教学情境,引导学生进行探究性数学学习
学生的数学学习离不开对数学问题的解答,对数学问题的解答是提高学生数学学习能力、巩固已学知识以及检验学生对相关数学知识掌握程度的有效方法,因此,数学问题在学生数学学习的过程中占有很大的比重。同时,由于数学问题的题目普遍具有开放性、新颖性以及规律性等特点。所以,数学教师在向学生讲解如何解答数学问题时,其应当采用数学思维展开对知识的讲解,以便学生在教师的教授下全面地掌握数学解题方法及技巧,进而深化对数学理论知识的了解及应用,从而提高学生数学解题的效率及正确率[5]。此外,教师在教学时,也可以借助创设有效教学情境的方式,向学生提出相关数学问题,并引导学生采用小组合作或探究性方式进行数学学习,这样有助于学生在合作学习中总结相关的数学知识,如数学原理、规律及概念等,促使学生懂得灵活运用所学知识进行问题的解答。例如,在进行“多边形”的教学时,教师可以先让学生说说生活中由线段围成的图形形状,如长方形的菜园子、正方形的餐桌、六边形的地板等,以吸引学生对该节知识内容的学习兴趣。然后,教师可以让学生借鉴之前所学的有关三角形的概念意义,对多边形的概念下定义,并试着说出不同多边形的异同点。从而引出本节知识内容,如顶点、边、内角、外角、对角线间的关系等,进而让学生在分析知识点的过程中,了解多边形的基本概念及其性质以及相关原理。
三、结束语
总而言之,在新课改的背景下,初中数学教师在进行数学课堂教学时,要合理地采用数形结合思想展开对数学知识的讲解,以便在调动学生数学学习兴趣的同时,让学生掌握相关的数形结合方法,并引导学生将该方法运用到数学学习中,进而提高学生数学学习效率,提升其学习水平,促进初中数学教学质量的提高。
四、参考文献
[1]童琛菲.数形结合思想在初中数学解题教学中的渗透策略[J].数学学习与研究:教研版,2020(3):114.
[2]南旭辉.初中数学教学中数形结合思想的应用策略探究[J].新一代:理论版,2019(14):90.
[3]戴彦雪.相互渗透,交叉作用-论初中数学教学中数形结合思想的应用[J].数学大世界旬刊,2017(2).
[4]刘金方.数形结合思想在初中数学教学中的实践研究-以人教版初中数学教材为例[J].课程教育研究,2015(30):139.
[5]吴学军.数形结合引思激趣-论数形结合思想在初中数学教学中的渗透[J].数理化解题研究,2019(35):17-18.
数形结合就是运用图形来简化解题思路,数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。 作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: 一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。 七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。 八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。多做几个类似的题目啊....找本专题什么的强化一下就可以了