首页

> 论文发表知识库

首页 论文发表知识库 问题

分子生物学相关学位论文

发布时间:

分子生物学相关学位论文

其中,物种的多样性是生物多样性的关键,它既体现了生物之间及环境之间的复杂关系,又体现了生物资源的丰富性。 我们目前已经知道大约有200万种生物,这些形形色色的生物物种就构成了生物物种的多样性。 生物多样性是生物及其与环境形成的生态复合体以及与此 相关的各种生态过程的总和。 有人问根据对自然界的研究可以推断造物主的工作有何特点,据说英国科学家约翰·波顿·桑德森·霍尔丹(. Haldane)回答:“过于喜爱甲虫。”因为甲虫是地球上最大的动物群。美国史密森学会(Smithsonian Institution)的特里·欧文(Terry Erwin)推断,多数未知的甲虫种类可能生存于我们无法靠近的30米高的热带森林树冠层。20世纪后叶生命科学各领域取得了巨大的进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位子起了革命性的变化,很多科学家认为在未来的自然科学中生物科学将成为带头学科,甚至预言本世纪是生物学的世纪。从事生命科学研究的专业人员也越来越多,例如,在美国近年统计48万博士学位获得者中从事生命科学的占51%。在生物科学诸多的分支中,保护生物多样性是当前生物科学最紧迫的任务之一,也是全球生物学界共同关心的焦点问题之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就消亡了,这对人类无疑是一种悲哀和灾难。保护生物多样性的行动势在必行、迫在眉睫。��生物多样性是近年来国内外最为流行的一个词汇。由于自然资源的合理利用和生态环境的保护是人类实现可持续发展的基础,因此生物多样性的研究和保护已经成为世界各国普遍重视的一个问题。现在无论是联合国还是世界各国政府每年都投入大量的人力和资金开展生物多样性的研究与保护工作,一些非政府组织也积极支持和参与全球性的生物多样性的保护工作。例如:联合国和世界银行共同成立的Global Environment Facility每年支出数亿美元支持生物多样性的保护。美国MacArthur Foundation1992年花了$17millions支持生物多样性的保护。��1992年,联合国环境与发展大会在巴西的里约热内卢举行,世 界许多国家都派出代表团参加会议。我国领导人也参加了这次盛会。在这次大会上,通过了"生物多样性公约",标志着世界范围内的自然保护工作进入到了一个新的阶段,即从以往对珍稀濒危物种的保护转入到了对生物多样性的保护。

Congenital kidney maldevelopment and molecular biology research The abstract kidney maldevelopment is the kidney has theunusual clinical consequence, its typical histo-pathologycharacteristic is appears originally Beginning kidney pellet and 肾小管, 软骨样 metaplasia andso on. In recent years through application molecular technology and soon target gene and home position clone Has the molecular regulation mechanism research to the normalmammal kidney, has to the congenital kidney maldevelopmentpathogenesis More understandings. This article will make a discussion to thecongenital kidney maldevelopment molecular biology research recentsituation, and will be right Including the growth factor several kind of gene mutation,copies the regulative barrier and the expression change and the kidneysends the good relations Carries on the discussion. The kidney maldevelopment is the kidney has not been able to carry onthe congenital disease which the normal growth growth forms, in thepast arose to it The mechanism understanding are really few, along with themember biological technology development and the application, expoundsthe kidney occurrence from the member study mechanism Had a more thorough understanding from the molecular biologylevel to the kidney maldevelopment occurrence. This article onshort-term regarding this question The research progress makes an introduction. 1 kidney occurs with the kidney maldevelopment Before the normal mammalia kidney is located between liesbetween 中胚层, 中胚层 the differentiation forms the kidneydrive pipe, after further tempts Leads forms 中肾 the drive pipe to the ureter bud, under theureter bud induction, end the embrionic body two sides fresh reninssplits up into after The kidney 胚基, the kidney embryonic development isprecisely completes by the ureter bud and the latter kidney 胚基 twoparts, former gradually grows Becomes 肾盂, 肾盏 and 集合管, latter grows肾小管and the kidney pellet, finally 肾小管and集合管docking, Constitutes normally 肾单位. If the ureter bud and thelatter kidney 胚基 two parts cannot grow according to the normaldegree and implement rightly Meets namely creates the kidney maldevelopment. The kidneymaldevelopment may be partial, also may be complete. Most types The kidney maldevelopment partner has the cyst, prompts themaldevelopment each kind of form to have machine-made together in theformation. On clinical common congenital kidney maldevelopment including multi-pouches, obstruction kidney maldevelopment as well as with gene The related kidney growth is unusual. The histo-pathologyimportant characteristic appears primitive 肾小管and the metaplasiacartilage. Complete list The side kidney maldevelopment, may display for does not havethe symptom. In most maldevelopment case of illness, the kidney flawis the double side, prompts Gene mutation in normal kidney growth vital role. Shan Cexingdisease then possibly is one kind of obtaining damage is the resultof, This damage destroyed the gene normal expression, thenaffected maturely had the vital significance to the kidney the proteinproduction. 2 kidneys maldevelopment common type congenital multi- pouches kidneys maldevelopment The multi- pouches kidney maldevelopment (multiple cystichypoplastic) is one common completeness The kidney maldevelopment, are many for the single sidepathological change (14-20% for double side nature), contracts thekidney to lose the normal shape, irregular The size cyst replaces, the kidney function loses and oftenthe partner has the ureter obstruction, is newborn abdomen Bao Kuaizuicommon One of reasons. The multi- pouches maldevelopment kidney outlook assumes thekidney-shaped structure, the most case of illness partner has a 闭锁ureter. Pregnancy The early polycystic kidney includes the normal growth to havethe ingredient, loses the urine including the induction after kidney胚基 island and the branch The tube drive pipe, may distinguish the pouch change in thisstage 肾单位 each Duan Yijun [ 1 ]. After lives the multi- pouchesmaldevelopment kidney The histo-pathology variation including the primitive肾小管pouch change, expands also the disarrangement of thestructure, has around the obvious tube Response nature, textile fiber myo- link formation, cartilageingredient as symbol organization transformation and so on. congenital obstructions kidneys maldevelopment The congenital urine road obstruction in dissects in theposition often to occur to the ureter and urinary bladder 连接处,after congenitalness The urethra valve is the babies and infants uninary systemobstruction important reason. Congenital obstruction kidney histologycharacteristic and multi- pouches The kidney maldevelopment is similar, including 肾单位 eachDuan Rushen the pellet pouch transformation, the nature expands alsothe disarrangement of the structure, the marrow The nature and the straight small blood vessel remarkablehypoplasia, has around the tube the textile fiber myo- link, the manykinds of forms kidney pellet and the growth kidney Unit each section. Is same with the multi- pouches kidneymaldevelopment, the congenital obstruction kidney performance is aseries of diseases, its degree and The embryonic period urine 流阻 related fills the time whichoccurs [ 2 ]. The table partner has the kidney to grow the unusual syndrome ------------------------------------------------------ Syndrome chromosome heredity form ------------------------------------------------------ The tip and refers to (foot) to be abnormal (Apert ' s)常染色体 the dominance Sends chest gallery malnutrition 常染色体 recessivenesswhich suffocates Obese, reproduction hypofunction and so on 常染色体recessiveness Gill - ear - kidney 常染色体 dominance Campomelic growth exceptionally 常染色体 recessiveness Brain - liver - kidney (Passarge ' s) 常染色体recessiveness Fryns ' s 常染色体 recessiveness Goemine ' s X- connection Goldston (hereditary blood capillary expands) 常染色体recessiveness? Hall-Pallster ' s sending out Ivemark ' s 常染色体 recessiveness Marden-Walker ' s 常染色体 recessiveness Mecket-Gruber 常染色体 recessiveness Miranda ' s 常染色体 recessiveness Senlor-Loken ' s 常染色体 recessiveness? Three bodies chromosomes 16-18 (Edwards) Three bodies chromosomes 13-15 (Patau) Three bodies chromosomes 21 (Down) 结节性 hardened 常染色体 dominance Von Hippel-Lindau 常染色体 dominance ------------------------------------------------------ kidneys maldevelopment syndrome The kidney maldevelopment syndrome is includes kidney abnormalthe and so on pouch maldevelopment hereditary indication group (seesthe table ). Presently expounds a part of syndromes its special gene andthe protein flaw. The maldevelopment phenotype apparent rate assumes Presently a band, prompts has other gene influence kidneysfinally 表型. The maldevelopment usually all contains the many kindsof organs, Explained the flaw the gene involves the normal organogenesisthe foundation. The histo-pathology discovered that, this kind ofsyndrome light is possible Appears the great pouch to form (for example 结节性hardening), heavy possibly appears the pouch growth exceptionally withthe renal failure (Meckel- Gruber syndrome). 3 kidneys maldevelopment molecular biology The present research discovery has the many kinds of genes andthe kidney maldevelopment related, like WT-1, Pax-2, GDNF, B Gene and so on F-2, BMP-7, PDGF, Wnt-4 in after kidney 胚基expression. Pax-2, c-ret, BMP-7, alpha 3 beta 1 and so on in ureter bud expression. When these genes lack ordestroys, the kidney cannot normally occur with the growth [ 3 ]. Sonnenberg and so on [ 4 ] 补体 RNA and the DNA probeconducts the research with the specificity immune body and theemission mark, the determination Multi- peptides growth factor, heparin structure growth factorand their acceptor, extracellular matrix member and cell surfaceentire Gathers gene and so on element in the kidney growth specificexpression position. For example liver cell growth factor mainly inafter kidney embryo gene Expression, but its acceptor c-met in ureter plumule epidermisexpression. This kind of peptides and its the acceptor are thin in twokind of types On butcher's expression explanation ureter drive pipe formsthe induction to the after 肾间 archery target. Schuchardt and so on[ 5 ] passes Using the gene recombination and the preparation 纯合子invalid sudden change mouse, discovers some influence kidney growththe gene and the multi- peptides, like The shift growth factor - beta, the liver cell growth factor,the insulin type growth factor - II, according to saw finally shows The inference specific gene has the function in the normalkidney. Tyrosine activating enzyme body acceptor c-ret leads in thebranch ureter The tube as well as matches in the nerve nutrition factorwhich the body - neuroglia grows to express. When the mouse c-ret geneis destroyed, leads Sends the entire kidney maldevelopment. Copies the factor genecode protein to be able with the DNA union, moreover has regulatesother gene tables Reaches function. In the mammal kidney growth, Wilms ' tumorgene WT-1 and Pax2 code copies the factor, Its expression form influence kidney cell differentiation [ 6,7 ]. The gene syndrome and the kidney form exceptionally related, inthe table arranges in order Leaves the disease, some syndromes have the heredity, somewhathas located the specific gene flaw with the home position clonetechnology [ 8 ]. These syndromes are being sick the family members to beable to have the remarkable 表型 variation. This kind of situationand in 纯合子 is invalid The sudden change mouse sees the variation is similar, namelythe kidney finally 表型 is decided by the experimental mouse's genebackground. The kidney maldevelopment occurrence is several kind of differentgenes flaws, perhaps meets in the embryo development period sends 畸the factor And so on many kinds of genes regulation barrier finaloutcome. 肾间 the nature - epidermis transforms process as well asureter branch and growth Is complex and the huge gene system guides by, some genes arethe kidney specificity, some rights and wrongs are special . Certain growth factor genes, although they have the timeexpression in the kidney to be active, but when they are destroyedcertainly not shade The loud kidney normal growth, this meant the growth kidneynormal expression each kind of gene has in the function overlaps [ 9]. Another one Plants the possibility is this kind of normal expression formdestruction in the kidney maldevelopment occurrence development thecertain function, or Is the kidney maldevelopment cause. The latter 肾间 nature flaw may cause the kidney , the gene ill should is the dislocation expression, possiblyto kidney The maldevelopment plays the certain role. On clinical hasthe isolation the multi- pouches kidney maldevelopment and theobstruction kidney maldevelopment two Parallel existence case of illness. Congenitalness and theexperimental nature single gene mutation may cause the pouch kidneygrowth to be unusual, these genes The sudden change may change mutually relates. Theoreticallyspeaking, the sudden change may affect: (1) 胚基 proliferation andsplit up ureter drive pipe minute An institute must peptide and matrix protein expression; (2)Ureter drive pipe to after kidney 胚基 signal reaction capacity; (3)Loses After the ureter drive pipe expression starts and maintainsthe kidney 胚基 epidermis induction to need the protein the ability;(4) Latter kidney 胚基 to these letters The number carries on the response the ability; (5) Ureterbud and latter kidney 胚基 cell to signal reaction capacity [ 10 ]. Recently already separated the phosphoric acid glucose phaseomanniteglycoprotein gene, was called the GPC3 gene. The GPC3 flaw and aremany Pouch kidney maldevelopment related [ 11 ]. Although thesingle gene may finally cause the kidney maldevelopment with themulti- genes flaw, but Its 表型 possibly decided to receives the gene regulationwhich affects to be out of balance or the expression change at first,like congenital obstruction and pouch Kidney maldevelopment [ 12, 13 ]. The multi- pouchesmaldevelopment kidney, and in the nature has the growth factor gene inthe pouch epidermis Change. In the mouse obstruction growth kidney, the bloodvessel tense element and the shift growth factor assumes excessivelyexpresses [ 14 ]. Grinds Investigates the proof, in the after kidney growth unusualarea, promotes the acorn tube epidermis to appear the pouch changefactor Pax2 and Bcl-2 same Assumes excessively expresses [ 15, 16 ]. This researchpossibly can provide the important line to each kind of form kidneymaldevelopment pathogenesis Rope. 先天性肾发育不良与分子生物学的研究 摘要 肾发育不良是肾发生异常的临床后果,其典型病理组织学特征是出现原始肾小球和肾小管、软骨样化生等。近年来通过应用靶基因和原位克隆等分子技术对正常哺乳动物肾脏发生分子调控机制的研究,对先天性肾发育不良的发病机理有了更多的了解。本文将对先天性肾发育不良的分子生物学研究近况作一讨论,并对包括生长因子在内的几种基因突变、转录调控障碍及表达变化与肾发良不良的关系进行探讨。 肾发育不良是肾脏未能进行正常生长发育形成的先天性疾病,过去对其发病机理了解甚少,随着分子生物技术的发展和应用,从分子学机理来阐明肾脏的发生,从分子生物学水平对肾发育不良的发生有了较深入的认识。本文就近期对此问题的研究进展作一介绍。1 肾发生与肾发育不良 正常哺乳类肾脏位于间介中胚层,中胚层分化形成前肾导管,经进一步诱导形成中肾导管至输尿管芽,在输尿管芽诱导下,胚体尾端两侧的生肾素分化为后肾胚基,肾脏的胚胎发育正是由输尿管芽和后肾胚基二部分完成的,前者逐步发育成肾盂、肾盏和集合管,后者发育成肾小管和肾小球,最后肾小管和集合管对接,构成正常的肾单位。如果输尿管芽和后肾胚基二部分不能按正常程度发育和实行对接即造成肾发育不良。肾发育不良可以是部分性的,也可以是完全性的。多数类型的肾发育不良伴有囊肿,提示发育不良的各种形式在形成中有共同机制。 临床上常见的先天性肾发育不良包括多囊性、梗阻性肾发育不良以及与基因有关的肾发育异常。病理组织学重要特征是出现原始肾小管和化生软骨。完全性单侧肾发育不良,可表现为无症状。多数发育不良病例中,肾缺陷是双侧性的,提示基因突变在正常肾发育中起重要作用。单侧性疾病则可能是一种获得性损伤所致,该损伤破坏了基因的正常表达,进而影响了对肾成熟有重要意义的蛋白质的产生。2 肾发育不良常见类型 先天多囊性肾发育不良 多囊性肾发育不良(multiple cystic hypoplastic)是一种常见的完全性肾发育不良,多为单侧病变(14-20%为双侧性),患肾失去正常形态,被不规则的大小囊肿所代替,肾脏功能丧失并常伴有输尿管梗阻,是新生儿腹部包块最常见的原因之一。 多囊性发育不良肾外型呈肾形结构,多数病例伴有一个闭锁的输尿管。妊娠早期的多囊肾含有正常发育所必须的成份,包括未诱导的后肾胚基岛和分支的输尿管导管,在此阶段肾单位各段已均可鉴别出囊性改变[1]。生后多囊性发育不良肾的病理组织学变异包括原始肾小管的囊性改变、膨大且结构破坏、具有明显管周围反应的间质、纤维肌环的形成、软骨成分为标志的组织转化等。 先天梗阻性肾发育不良 先天性尿路梗阻在解剖位置上常发生于输尿管和膀胱的连接处,先天性后尿道瓣膜是婴幼儿泌尿系统梗阻的重要原因。先天梗阻性肾的组织学特征与多囊性肾发育不良相似,包括肾单位各段如肾小球的囊性转化、间质膨大且结构破坏、髓质和直小血管显著发育不全、发生管周围纤维肌环、多种形式的肾小球和发育的肾单位各段。与多囊性肾发育不良一样,先天梗阻性肾表现为一系列疾病,其程度与胚胎期尿流阻塞发生的时间有关[2]。表 伴有肾发育异常的综合症------------------------------------------------------综合症 染色体遗传形式------------------------------------------------------尖头并指(趾)畸形(Apert’s) 常染色体显性 致窒息的胸廓营养不良 常染色体隐性 肥胖、生殖机能减退等 常染色体隐性 鳃-耳-肾 常染色体显性 Campomelic发育异常 常染色体隐性 脑-肝-肾(Passarge’s) 常染色体隐性 Fryns’s 常染色体隐性 Goemine’s X-连接的 Goldston(遗传性毛细血管扩张) 常染色体隐性? Hall-Pallster’s 散发的 Ivemark’s 常染色体隐性 Marden-Walker’s 常染色体隐性 Mecket-Gruber 常染色体隐性 Miranda’s 常染色体隐性 Senlor-Loken’s 常染色体隐性? 三体染色体16-18(Edwards) 三体染色体13-15(Patau) 三体染色体21(Down) 结节性硬化 常染色体显性 Von Hippel-Lindau 常染色体显性------------------------------------------------------ 肾发育不良综合症 肾发育不良综合症是包括囊性发育不良等肾畸形在内的遗传性征候群(见表)。现阐明一部分综合症其特异的基因和蛋白质缺陷。发育不良表现型的外显率呈现一个谱带,提示有其他基因影响肾的最终表型。发育不良通常都包含多种器官,说明缺陷的基因涉及正常器官发生的基础。病理组织学发现,此类综合症轻者可能出现巨囊形成(如结节性硬化),重者可能出现囊性发育异常和肾衰竭(Meckel-Gruber综合症)。3 肾发育不良分子生物学 目前的研究发现有多种基因与肾发育不良有关,如WT-1、Pax-2、GDNF、BF-2、BMP-7、PDGF、Wnt-4等基因在后肾胚基表达。Pax-2、c-ret、BMP-7、α3β1等在输尿管芽表达。当这些基因缺乏或被破坏时,肾脏不能正常地发生与发育[3]。Sonnenberg等[4]用特异性抗体与放射标记的补体RNA和DNA探针进行研究,确定了多肽生长因子、肝素结构生长因子及它们的受体、细胞外基质分子和细胞表面整合素等基因在肾发育中的特定表达位置。例如肝细胞生长因子主要在后肾胚基因内表达,而其受体c-met则在输尿管胚芽上皮表达。这种多肽及其受体在两种类型细胞上的表达说明输尿管导管对后肾间质的形成起诱导作用。Schuchardt等[5]通过应用基因重组与制备纯合子无效突变小鼠,发现一些影响肾发育的基因和多肽,如转移生长因子-β、肝细胞生长因子、胰岛素样生长因子-Ⅱ,根据所见到的最终表型推断特定基因在正常肾发生中的作用。酪氨酸激酶体受体c-ret在分支输尿管导管以及配体-神经胶质衍生的神经营养因子上表达。当小鼠c-ret基因被破坏时,导致全肾发育不良。转录因子基因编码蛋白能与DNA结合,而且具备调控其它基因表达的功能。在哺乳动物肾发育中,Wilms’肿瘤基因WT-1及Pax2均编码转录因子,其表达形式影响肾细胞的分化[6,7]。基因性综合症与肾形成异常有关,表中所列出的疾病,有些综合症有遗传性,有些用原位克隆技术已定位出特定的基因缺陷[8]。这些综合症在患病家族成员能发生显著的表型变异。这种情况与在纯合子无效突变小鼠所见的变异相似,即肾的最终表型取决于实验小鼠的基因背景。 肾发育不良的发生是几种不同的基因缺陷,或是在胚胎发育期遇到致畸因子等多种基因调控障碍的最终结果。肾间质-上皮转化的过程以及输尿管分支和生长,是由一个复杂而庞大的基因体系来导向,有些基因是肾特异性的,有些是非特异的。某些生长因子基因,尽管它们在肾发生期表达活跃,但当它们被破坏时并不影响肾的正常发育,这意味着发育肾正常表达的各种基因在功能上有重叠[9]。另一种可能性是这种正常表达形式的破坏在肾发育不良的发生发展中起一定作用,或者就是肾发育不良的起因。 后肾间质缺陷可导致肾发育不良。另外,基因不适应和错位表达,可能对肾发育不良起一定作用。临床上有孤立的多囊性肾发育不良和梗阻性肾发育不良两者并行存在的病例。先天性和实验性单基因突变均可导致囊性肾发育异常,这些基因突变可改变相互联系。从理论上讲,突变可影响:①胚基增生和分化输尿管导管分支所必需的肽和基质蛋白的表达;②输尿管导管对后肾胚基信号的反应能力;③输尿管导管表达启动和维持后肾胚基上皮诱导所需蛋白的能力;④后肾胚基对这些信号进行反应的能力;⑤输尿管芽和后肾胚基细胞对信号的反应能力[10]。 最近已经分离出磷酸葡萄糖肌醇糖蛋白基因,简称GPC3基因。GPC3缺失与多囊性肾发育不良有关[11]。虽然单基因与多基因缺陷均可最终导致肾发育不良,但其表型可能决定于最初受影响的基因调控失调或表达改变,如先天性梗阻性和囊性肾发育不良[12,13]。多囊性发育不良肾,在囊性上皮和间质中均有生长因子基因的改变。在小鼠梗阻性发育肾中,血管紧张素和转移生长因子呈过度表达[14]。研究证明,在后肾发育异常区,促进小管上皮出现囊性改变的因子Pax2和Bcl-2同样呈过度表达[15,16]。此研究可能会对各种形式肾发育不良的发病机制提供重要线索。

在一项新的研究中,来自美国普林斯顿大学的研究人员惊奇地发现,他们以为是对癌症如何在体内扩散---癌症转移---的直接调查却发现了液-液相分离的证据:这个生物学研究的新领域研究生物物质的液体团块如何相互融合,类似于在熔岩灯或液态水银中看到的运动。相关研究结果作为封面文章发表在2021年3月的Nature Cell Biology期刊上,论文标题为“TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis”。

论文通讯作者、普林斯顿大学分子生物学教授Yibin Kang说,“我们相信这是首次发现相分离与癌症转移有关。”

他们的研究不仅将相分离与癌症研究联系在一起,而且融合后的液体团块产生了比它们的部分之和更多的东西,自组装成一种以前未知的细胞器(本质上是细胞的一个器官)。

Kang说,发现一种新的细胞器是革命性的。他将其比作在太阳系内发现一颗新的星球。“有些细胞器我们已经认识了100年或更久,然后突然间,我们发现了一种新的细胞器!”

论文第一作者、Kang实验室博士后研究员Mark Esposito说,这将改变人们对细胞是什么和做什么的一些基本看法,“每个人上学,他们都会学到‘线粒体是细胞的能量工厂’,以及其他一些有关细胞器的知识,但是如今,我们对细胞内部的经典定义,对细胞如何自我组装和控制自己的行为的经典定义开始出现转变。我们的研究标志着在这方面迈出了非常具体的一步。”

这项研究源于普林斯顿大学三位教授实验室的研究人员之间的合作。这三位教授是Kang、Ileana Cristea(分子生物学教授,活体组织质谱学的领先专家);Cliff Brangwynne(普林斯顿大学生物工程计划主任,生物过程中相分离研究的先驱)。

Kang说,“Ileana是一名生物化学者,Cliff 是一名生物物理学者和工程师,而我是一名癌症生物学家和细胞生物学者。普林斯顿大学刚好是一个让人们联系和合作的美妙地方。我们有一个非常小的校园。所有的科研部门都紧挨着。Ileana实验室实际上与我的实验室在Lewis Thomas的同一层楼! 这些非常紧密的关系存在于非常不同的研究领域之间,让我们能够从很多不同的角度引入技术,让我们能够突破性地理解癌症的代谢机制--它的进展、转移和免疫反应--也能想出新的方法来靶向它。”

这项最新的突破性研究,以这种尚未命名的细胞器为特色,为Wnt信号通路的作用增加了新的理解。Wnt通路的发现导致普林斯顿大学分子生物学教授Eric Wieschaus于1995年获得诺贝尔奖。Wnt通路对无数有机体的胚胎发育至关重要,从微小的无脊椎动物昆虫到人类。Wieschaus已发现,癌症可以利用这个通路,从本质上破坏了它的能力,使其以胚胎必须的速度生长,从而使肿瘤生长。

随后的研究揭示,Wnt信号通路在 健康 的骨骼生长以及癌症转移到骨骼的过程中发挥着多重作用。Kang和他的同事们在研究Wnt、一种名为TGF-b的信号分子和一个名为DACT1的相对未知的基因之间的复杂相互作用时,他们发现了这种新的细胞器。

Esposito说,把它想象成风暴前的恐慌购物。事实证明,在暴风雪前购买面包和牛奶,或者在大流行病即将到来时囤积洗手液和卫生纸,这不仅仅是人类的特征。它们也发生在细胞水平上。

下面是它的作用机制:惊慌失措的购物者是DACT1,暴风雪(或大流行病)是TGF-ß,面包和洗手液是酪蛋白激酶2(CK2),在暴风雪面前,DACT1尽可能多地抓取它们,而这种新发现的细胞器则把它们囤积起来。通过囤积CK2,购物者阻止了其他人制作三明治和消毒双手,即阻止了Wnt通路的 健康 运行。

通过一系列详细而复杂的实验,这些研究人员拼凑出了整个故事:骨肿瘤最初会诱导Wnt信号,在骨骼中传播(扩散)。然后,骨骼中含量丰富的TGF-b激发了恐慌性购物,抑制了Wnt信号传导。肿瘤随后刺激破骨细胞的生长,擦去旧的骨组织。( 健康 的骨骼是在一个两部分的过程中不断补充的:破骨细胞擦去一层骨,然后破骨细胞用新的材料重建骨骼)。这进一步增加了TGF-b的浓度,促使更多的DACT1囤积和随后的Wnt抑制,这已被证明在进一步转移中很重要。

通过发现DACT1和这种细胞器的作用,Kang和他的团队找到了新的可能的癌症药物靶点。Kang说,“比如,如果我们有办法破坏DACT1复合物,也许肿瘤会扩散,但它永远无法‘长大’成为危及生命的转移瘤。这就是我们的希望。”

Kang和Esposito最近共同创立了KayoThera公司,以他们在Kang实验室的合作为基础,寻求开发治疗晚期或转移性癌症患者的药物。Kang说,“Mark所做的那类基础研究既呈现了突破性的科学发现,也能带来医学上的突破。”

这些研究人员发现,DACT1还发挥着许多他们才开始 探索 的其他作用。Cristea团队的质谱分析揭示了这种神秘细胞器中600多种不同的蛋白。质谱分析可以让科学家们找出在显微镜玻片上成像的几乎任何物质的确切成分。

Esposito说,“这是一个比控制Wnt和TGF-b更动态的信号转导节点。这只是生物学新领域的冰山一角。”

Brangwynne说,相分离和癌症研究之间的桥梁仍处于起步阶段,但它已经显示出巨大的潜力。

他说,“生物分子凝聚物在癌症---它的生物发生,特别是它通过转移进行扩散---中发挥的作用仍然不甚了解。这项研究为癌症信号转导通路和凝聚物生物物理学之间的相互作用提供了新的见解,它将开辟新的治疗途径。”(生物谷 )

参考资料: Esposito et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nature Cell Biology, 2021, doi:. D. Patel et al. Condensing and constraining WNT by TGF-β. Nature Cell Biology, 2021, doi:.

分子生物学基因相关论文

基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。下面是由我整理的基因工程学术论文,谢谢你的阅读。 基因工程学术论文篇一 摘 要:基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。这项工程创造出原本自然界不存在的重组基因。它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。基因工程的发展现状和前景是怎么样呢,而又有哪些利弊? 关键词:基因工程;发展现状;发展前景;基因工程利弊 一、基因工程 (一)基因工程的概念及发展 1.概念 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 2.发展 生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。 (二)基因工程的发展现状及前景 1.发展现状 (1)基因工程应用于农业方面。运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。 下面列举几个代表性方法。 ①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。 ②提高农作物抗逆性能如:抗病虫害、抗旱、抗涝、抗除草剂等性能。 ③生物固氮的基因工程。若能把禾谷等非豆科植物转变为能同根瘤菌共生,或具固氮能力,将代替无数个氮肥厂。④增加植物次生代谢产物产率。植物次生代谢产物构成全世界药物原料的 25% ,如治疗疟疾的奎宁、治疗白血病的长春新碱、治疗高血压的东莨菪碱、作为麻醉剂的吗啡等。 ⑤运用转基因动物技术,可培育畜牧业新品种。 二、基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快产业之一,前景广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。对预防人类肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 并且应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。 三、基因工程应用于环保方面 工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,基因工程技术可提高微生物净化环境的能力。美国利用DNA 重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4 种菌体基因链接,转移到某一菌体中构建出可同时降解4 种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3 烃类降解完,而天然菌株需 1 年之久。90 年代后期问世的DNA 改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR 技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。 (一)发展前景 基因工程应用重组DNA 技术培育具有改良性状的粮食作物的工作已初见成效。重组DNA 技术的一个显著特点是,它注往可以使一个生物获得与之固有性状完全无关的新功能,从而引起生物技术学发生革命性的变革,使人们可以在大量扩增的细胞中生产哺乳动物的蛋白质,其意义无疑是相当重大的。将控制这些药物合成的目的基因克隆出来,转移到大肠杆菌或其它生物体内进行有效的表达,于是就可以方便地提取到大量的有用药物。目前在这个领域中已经取得了许多成功的事例,其中最突出的要数重组胰岛素的生产。 重组DNA 技术还有力地促进了医学科学研究的发展。它的影响所及有疾病的临床诊断、遗传病的基因治疗、新型疫苗的研制以及癌症和艾滋病的研究等诸多科学,并且均已取得了相当的成就。 (二)基因工程的利与弊 1.基因工程的利 遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。 基因筛检并不改变人的遗传组成,但基因治疗则会。目前全世界正重视发展永续性农业,希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。 2.基因工程的弊 广泛的基因筛检将会引起一连串的社会问题。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。基因工程会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。转基因食品不同于相同生物来源之传统食品,遗传性状的改变,将可能影响细胞内之蛋白质组成,进而造成成份浓度变化或新的代谢物生成,其结果可能导致有毒物质产生或引起人的过敏症状,甚至有人怀疑基因会在人体内发生转移,造成难以想象的后果。转基因食品潜在危害包括:食物内所产生的新毒素和过敏原;不自然食物所引起其它损害健康的影响;应用在农作物上的化学药品增加水和食物的污染;抗除草剂的杂草会产生;疾病的散播跨越物种障碍;农作物的生物多样化的损失;生态平衡的干扰。 四、结束语 随着社会科技的进步,基因工程的发展将成为必然。尽管它会给我们带来一些危害但是仍然为我们带来了很多好处。不仅为我们提供了新的能源而且促进了各国的经济的发展,所以在我们发展基因工程的同时应该尽力避免一些危害,而让有利的方面尽可能应用。 参考文献: [1]陈宏.2004.基因工程原理与应用.北京:中国农业 出版社 [2]胡银岗.2006.植物基因工程.杨凌.西北农林科技大学出版社 [3]刘祥林.聂刘旺.2005.基因工程.北京:科学出版社 [4]陆德如.陈永青.2002.基因工程.北京:化学工业出版社 [5]王关林.方宏筠.2002.植物基因工程.北京:科学出版社 基因工程学术论文篇二 基因工程蛋白药物发展概况 【摘要】近些年,随着生物技术的发展,基因工程制药产业突飞猛进,本文就一些相关的重要蛋白药物的市场概况和研究进展作一概述。 【关键词】基因工程 蛋白药物 发展概况 中图分类号:R97 文献标识码:B 文章编号:1005-0515(2011)6-255-03 基因工程制药是随着生物技术革命而发展起来的。1980 年,美国通过Bayh-Dole 法案,授予科学家 Herbert Boyer 和 Stanley Cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。 生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。 当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。利用基因工程技术(重组DNA技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。 以下将介绍一些基因工程产物的市场概况和研究发展。 1 促红细胞生成素 是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。1985年科学家应用基因重组技术,在实验室获得重组人EPO(rhEPO),1989年安进(Amgen)公司的第一个基因重组药物Epogen获得FDA的批准,适应症为慢性肾功能衰竭导致的贫血、恶性肿瘤或化疗导致的贫血、失血后贫血等[5,6]。 2001年,EPO的全球销售额达亿美元,2002年达亿美元,2003年全世界EPO的年销售额超过50亿美元。创下生物工程药品单个品种之最,是当今最成功的基因工程药物。用过EPO的大多数病人感觉良好,在治疗期间无明显毒副作用或功能失调。重组体CHO细胞可以放大到生产规模以满足对EPO的需求。 2 胰岛素 自1921 年胰岛素被Banting 等人成功提取并应用于临床以来,已经挽救了无数糖尿病患者的生命。仅2000年,胰岛素在全球范围内就大约延长了5100万名I型糖尿病病人的寿命。20世纪80年代初,人胰岛素又成为了商业现实;80 年代末利用基因重组技术成功生物合成人胰岛素,大肠杆菌和酵母都被用作胰岛素表达的寄主细胞[7]。 国内外可工业化生产人胰岛素的企业只有美国的礼来公司、丹麦的诺和诺德公司、法国的安万特公司和中国北京甘李生物技术有限公司等,胰岛素类似物也仅在上述4个国家生产,且每个公司只能生产艮效或速效类似物巾的个品种,主要原因是要达到生物合成人胰岛素产业化的技术难度特别大,若无高精尖的高密度发酵技术、纯化技术和工业化生产经验是无法实现的[8]。 3 疫苗 在人类历史上,曾经出现过多种造成巨大生命和财产所示的疫症,而在预防和消除这些疫症的过程中疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一。 疫苗可分为传统疫苗(t raditional vaccine) 和新型疫苗(new generation vaccine)或高技术疫苗( high2tech vaccine)两类,传统疫苗主要包括减毒活疫苗、灭活疫苗和亚单位疫苗,新型疫苗主要是基因工程疫苗。疫苗的作用也从单纯的预防传染病发展到预防或治疗疾病(包括传染病) 以及防、治兼具[2]。 随着科技的发展,对付艾滋病、癌症、肝炎等多种严重威胁人类生命安全的疫苗开发取得巨大进展,这其中也孕育着巨大的商业机会[9], 2007年全球疫苗销售额就已达到163亿美元,据美林证券公布的一份研究报告显示,全球疫苗市场正以超过13%的符合增长率增长。而我国是疫苗的新兴市场,国内疫苗市场发展潜力巨大,年增长率超过15%。 在以细胞培养为基础的疫苗、抗体药物生产中,Vero细胞、BHK21细胞、CHO细胞和Marc145细胞是最常用的细胞,这些细胞的反应器大规模培养技术支撑着行业的技术水平[4]。建立细胞培养和蛋白表达技术平台,进一步完善生物反应器背景下的疫苗生产支撑技术是当前国际疫苗产业研究的重点。 4 抗体 从功能上划分,抗体可分为治疗性抗体和诊断性抗体;从结构特点上划分,抗体可分为单克隆抗体和多克隆抗体。抗体可有效地治疗各种疾病,比如自身免疫性疾病、心血管病、传染病、癌症和炎症等[10,11]。抗体药物的一大特点在于其较低甚至几乎可以忽略的毒性。另外一个优势是,抗体本身也许既可被当作一种治疗武器,也可被用作传递药物的一种工具。除了全人源化抗体以外,与小分子药物、毒素或放射性有效载荷有关的结合性抗体也已经在理论上显示出了强大的潜力,尤其是在癌症治疗方面[12]。 治疗性抗体是世界销售额最高的一类生物技术药物,2008 年治疗性抗体销售额超过了300 亿美元,占了整个生物制药市场40%。在美国批准的99 种生物技术药物中,抗体类药物就占了30 种;在633 种处于临床研究的生物技术药物中, 有192 种为抗体药物,而在抗癌及自身免疫性疾病的治疗研究中,治疗性抗体占了一半[2]。截止2007年,美国FDA批准上市的抗体药物见表二[13]。 参考文献 [1] 章江益, 孙瑜, 王康力. 美国生物制药产业发展及启示[J]. 江苏科技信息. 2011, 1(5): 11-14. [2] 王友同, 吴梧桐, 吴文俊. 我国生物制药产业的过去、现在和将来. 药物生物技术[J]. 2010, 17(1): 1-14. [3] 吴梧桐, 王友同, 吴文俊. 21世纪生物工程药物的发展与展望[J]. 药物生物技术. 2000, 7(2): 65-70. [4] 储炬, 李友荣. 现代工业发酵调控学(第二版)[M]. 化学工业出版社. [5] Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cell[J]. Cell Physiol, 1988, 137(1):65. [6] Cuzzole M, Mercurial F, Brugnara C. Use of recombinant human Erthro-poietin outside the setting of uremia[J]. Blood, 1997, 89(12): 4248-4267. [7] 李萍, 刘国良. 最新胰岛素制剂的研究进展概述[J]. 中国实用内科杂志. 2003, 23(1): 19-20. [8] 张石革, 梁建华. 胰岛素及胰岛素类似物的进展与应用[J]. 药学专论. 2005, 14(11): 21-23. [9] 徐卫良. 生物制品供应链优化与供货提前期缩短问题研究――基于葛兰素史克(中国)疫苗部的实例分析(硕士学位论文). 上海交通大学, 2005. [10] Presta LG. Molecular engineering and design of therapentic antilodies[J]. Curr Opin Immunol, 2008, 20(4): 460. [11] Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies[J]. Immunol Rev, 2008, 222: 9. [12] 陈志南. 基于抗体的中国生物制药产业化前景. 中国医药生物技术[J]. 2007, 1(1): 2. [13] 于建荣, 陈大明, 江洪波. 抗体药物研发现状与发展态势[J]. 生物产业技术. 2009, 1(3): 49.看了"基因工程学术论文"的人还看: 1. 高中生物选修三基因工程知识点总结 2. 高二生物基因工程知识点梳理 3. 浅谈基因工程在农业生产中的应用 4. 植物叶绿体基因工程发展探析 5. 关于蔬菜种植的学术论文

【综述】几种用于发现未知病毒核酸序列的技术及其应用翁康生 病毒是引发人类传染性疾病的主要病原体之一, 它们极大地威胁着人类健康。目前还存在人类尚未认知或新出现的病毒, 随时可能严重危害人类健康安全〔1 - 3〕。及早地发现,鉴别未知的或新出现的病毒, 是有效的预防和控制的先决条件之一。因此, 建立、储备、改良、发展、乃至创新应用于发现、鉴别未知或新出现病毒的技术方法是十分必要的。近20 多年来, 常采用传统的微生物学技术方法和现代分子生物学技术方法相结合的途径, 发现和鉴别未知病毒。通过细胞培养的方法分离病毒、电镜观察、用已知病毒的抗血清建立的免疫学方法作排他性检测、用已知病毒核酸序列建立的PCR、杂交等方法, 作特异核酸序列的检测、用分子生物学技术获得未知病毒核酸序列, 查询基因数据库, 检出并确定未知病毒基因组序列, 最终发现鉴别出未知病毒。对于无法用细胞分离培养的未知病毒, 有的采用免疫学与分子生物学技术相结合, 筛选获取病毒特异抗原编码基因的克隆, 进而发现鉴别出该病毒。更多的则是采用相应的分子生物学技术, 从被检样品中发现获取未知病毒的核酸序列,进而发现鉴别未知病毒。无论未知病毒是否可以用细胞培养分离, 最终对其基因组序列的测定分析, 是鉴别和判断的决定性依据之一, 而获取未知病毒的核酸序列是前提条件。从少量样品中, 从高度复杂的宿主细胞核酸物质中, 分离、扩增、获取足够量的无基因序列资料的未知病毒的核酸片段, 供进一步克隆、测序、生物信息学分析, 是用分子生物学技术发现、鉴别未知和新出现病毒的关键之一〔4〕, 也是最终测定分析, 拼接出未知和新出现病毒基因组序列的瓶颈步骤。病毒所携核酸物质有DNA 和RNA 之分, 可采用的技术方法也有所不同, 现将有关技术与其应用作一简介, 以供参考。1 代表性差异分析法代表性差异分析法是为寻找分析两个生物样品复杂的基因组间有何差异而发展建立起来的分子生物学技术方法, 并不断得到演化, 发展和应用。病毒感染宿主细胞后, 与未感染的同类细胞相比, 二者核酸物质间的差异主要在于是否存在病毒核酸。消减去二者核酸间相同序列的背景部分, 扩增、比较、选取余下可能存在差异的部分, 进一步分析以发现未知病毒的核酸序列。病毒的核酸结构各有不同, 可选用相应的代表性差异分析法, 见表1 。111 DNA 代表性差异分析法(DNA Representation differenceanalysis , DNA RDA)此方法是Lisitsyn 等〔5〕利用核酸消减杂交技术〔6〕、PCR 方法和双链DNA 热变性后互补链退火复性的二级动力学原理〔7 - 8〕作者单位:上海市疾病预防控制中心 200336表1 病毒核酸类型与各代表性差异分析法的选用病毒核酸类型DNA RDA c DNA RDA非rRNA 序列6 核苷酸引导c DNA RDAds DNA 线状√ds DNA 环状√ss RNA polyA( + ) √ss RNA polyA( - ) 3 √ds RNA polyA( - ) √ 3 负链ss RNA polyA( - ) 视病毒在宿主细胞的转录机制而定。而建立的。方法中将需分析的样品DNA(Test DNA ,T- DNA) 和对照DNA(Driver DNA ,D - DNA) 设为二组,分别用同一种限制性内切酶酶切处理,并接上5′端去磷酸化的人工接头,补齐接头后,加入与接头序列互补的引物作PCR 扩增。切除扩增产物上的人工接头后,切出的T - DNA 连上第二种人工接头,变性后与过量的变性D - DNA 杂交。通过杂交,消减去T- DNA 中与D - DNA 中同源的核酸序列,而只存在于T - DNA 中的靶序列DNA(Target DNA) 则自我退火复性,其两端连有第二种人工接头。加入与第二种接头互补的引物作PCR ,只有靶序列DNA呈指数扩增,因而得到进一步富集。进过如此重复的几个轮回后,以电泳检测比较T- DNA 和D - DNA ,将T- DNA 中呈现的差异部分作分离,克隆,序列分析。Lisitsyn 等以10μg 人淋巴细胞基因组DNA 作为D - DNA ,在相同的人DNA 中加入相当于单拷贝量的120 pg 腺病毒DNA作T- DNA。以此作为实验模型,用DNA 代表性差异分析法成功的寻找、鉴定出外加入的腺病毒DNA 序列。应用此技术,Chang 等〔9〕在艾滋病相关的卡波西肉瘤(Kaposis Sarcoma) 中发现一段类似人类疱疹病毒的基因, 并由此发现一种新的病毒HPV8。以后人们又以此技术发现鉴定了HPV6、TTV 病毒、黄热病毒样基因组、MDV 等〔10 - 13〕DNA 病毒。112 cDNA 代表性差异分析法(cDNA Representation differenceanalysis , cDNA RDA)Hubank 等〔14〕针对mRNA 所含序列相对简单的特点,提出了cDNA 代表性差异分析法。它的基本原理与DNA RDA 相同,主要不同在于,采用识别4 核苷酸序列的限制性内切酶,它的识别位点在mRNA 反转录成的cDNA 中出现的频率更高,平均酶切片段长度约256 bp ,保证了cDNA 序列群中绝大多数序列,至少被切出一个片段可扩增,供差异分析,分离鉴定。cDNA RDA 技术相对经济,可高效灵敏地用于非常少的起始材料而获得结果〔15〕。具有polyA( + ) - RNA 病毒,其核酸可类似于mRNA 分离纯化,因此可应用此技术。利用cDNA RDA技术,发现鉴定了TiV、MenV ,等〔16 ,17〕RNA 病毒。113 非rRNA 序列6 聚核苷酸引导反转录的cDNA RDA中国预防医学杂志2007 年6 月第8 卷第3 期 Chin Prev Med , June 2007 , Vol18 No13 ·317 ·© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. ( - ) - RNA 病毒,其核酸物质不似于mRNA ,需和宿主细胞总RNA 同时分离,并用随机引物作反转录。因为宿主细胞总RNA 中rRNA 约占80 % ,由于竞争反应、靶序列信号被湮灭等原因,从这样的总RNA 抽提物中,用随机6 聚核苷酸引物引导反转录的cDNA RDA 技术,发现鉴别polyA( - ) - RNA 病毒核酸序列是困难的。Endoh 等〔18〕罗列了6 聚核苷酸所有可能的排列组合,共计4 096 个序列模式,以大鼠18S、518S、28S 等rRNA、微卫星重复序列、SARS - CoV、BI - 3 病毒等的序列数据为模型,筛选出在rRNA 序列中出现频率极低或不出现的6 聚核苷酸序列模式共96 种。将这些序列分别合成并混合后,称之为非rRNA 序列6 聚核苷酸引物。生物信息学分析96 种序列模式在哺乳动物病毒科具代表性的1 791 个病毒基因组序列中出现的频率,数据表明,非rRNA 序列6 核苷酸引物可引导绝大多数病毒的cDNA 合成。分别用非rRNA 序列6 聚核苷酸引物和随机6 核苷酸引物作cDNA 反转录效率、cDNA RDA 试验,结果表明,二类引物对人工合成的RNA (二类引物在其序列中出现的频率相似) 反转录效率几乎相等,而前者对细胞总RNA反转录效率远低于随机引物。用二类引物作cDNA RDA ,检测人工合成的RNA ,前者灵敏度是用随机引物的30 倍。在模拟实验中用非rRNA 序列6 聚核苷酸引物引导反转录,串联cDNARDA 技术,检测鉴别出感染细胞的BI - 3 和SRAS - Cov 核酸序列片段。此方法能从1μg 总RNA 中检测出3 ng 的外来RNA ,其检测灵敏度不及普通的PCR 检测方法,但对于检测鉴别在宿主细胞中复制,但不知其基因序列的poly A( - ) - RNA 病毒而言,也是一个可选择的方法。114 抑制消减杂交cDNA RDA 技术结合消减杂交和PCR 抑制作用〔19〕的技术原理,Diatchenks 等〔20〕等发展出了抑制消减杂交技术( suppressionsubtractive hybridization ,SSH) 。与前两种RDA 技术不同点在于,SSH 技术将内切酶酶切处理的T - cDNA 分为两份,分别接上不同序列的去磷酸化的接头1 和2 ,分别于过量的D - cDNA作第一轮杂交。杂交过程中两组中的单链T - cDNA 浓度趋同,T- cDNA 中的非靶序列单链cDNA 与D - cDNA 中相应序列形成杂交双链而被消减, T - cDNA 中差异表达的单链cDNA被显著富集。合并一轮杂交物,加入过量变性D - cDNA ,作第二轮杂交。合并的二组份一轮杂交物中剩下的趋同化、经消减杂交后的单链T - cDNA 能互补杂交, 可以形成: 原组内T- cDNA 单链间的杂交、T - cDNA 与D - cDNA 单链间的杂交、二组间T- cDNA 单链间的杂交。补齐杂交反应后双链cD2NA 末端,用分别与接头1 和2 的外侧部分序列互补的寡核苷酸为引物,作PCR 扩增。二组份间T- cDNA 互补单链杂交物,因两端分别具有接头1 和2 ,可被指数扩增;T - cDNA 与D -cDNA 杂交物和剩余单链T- cDNA ,因一端具接头序列,被线性扩增;而同组间T- cDNA 杂交物两端具反转重复长序列,因抑制性PCR 效应,在PCR 反应循环中分子内退火形成稳定的“锅柄结构”〔19〕而不被扩增。因此,SSH 技术通过二轮消减杂交和抑制性PCR 特异扩增,使假阳性大大降低,提高了检出低丰度靶mRNA 的灵敏度。Hu 等〔21〕应用SSH 技术,结合反转录酶的模板切换(tem2plate - switching) 功能, 以HCV RNA 阳性血清体外感染的人MOLT- 4 急性淋巴母细胞白血病T 细胞系为模型,通过反转录合成全长cDNA、抑制性消减杂交、消减的cDNA 文库构建、反相斑点杂交筛选,在被筛的96 个克隆里,T- cDNA 探针杂交呈特异阳性的16 克隆中,序列分析后得到4 个插入HCV 序列的克隆。2 非特异多重引导滚环式扩增法乳头瘤病毒、痘病毒等,其基因物质为环状DNA 分子。在事前未知基因序列的情况下,发现和鉴别这类病毒核酸序列还可选择非特异多重引导滚环式扩增法(multiply primed rolling -circle amplification ,RCA) ,扩增、分离、获取其基因片段供进一步分析。自然状况下,环状DNA 经常以滚环方式进行复制。Dean等〔22〕应用随机6 聚核苷酸作引物,加入φ29 DNA 聚合酶,以质粒DNA 和噬菌体DNA 为模型,建立了多重引物引导的滚环式扩增法。φ29 DNA 聚合酶可长距离( > 70 000 nt) 地结合于DNA模板,进行链置换DNA 合成。而随机6 聚核苷酸引物可多位点的与单链环状DNA 互补复性。在φ29 DNA 聚合酶作用下,以随机引物引导,合成与模板互补的DNA 链。当合成链延伸到与模板结合的随机引物5′端时,在φ29 DNA 聚合酶的链置换活性作用下,下游被延伸的随机引物链被“甩”出模板。而上游的延伸链继续在环状模板上复制合成。同时,被从单链环状模板上“甩”出的互补链,又成为新的模板,随机引物与之结合,在φ29 DNA 聚合酶作用下,继续以枝杈的形式进行链延伸和链置换,最后以双链DNA 串联体形式释放。用此法可使1 ng 纯pCU18 环状DNA 模板延展式地扩增至107倍。Rector 等〔23〕以此原理建立了不依赖已知的特定基因序列(非序列依赖性) 的多重引导滚环式扩增环状DNA 病毒基因组方法,并应用其扩增获取了HPV 16 的基因组DNA。在接近实样的试验样品中,由于稀释倍数和环状DNA 分子较大等原因,将HPV 16 基因组DNA 扩增了214 ×104 倍。3 病毒颗粒相关核酸的非序列依赖性PCR 扩增病毒核酸可包裹于病毒外壳内,病毒的蛋白外壳或脂膜对病毒核酸具有保护作用。而病毒颗粒具有不同于细菌或其他真核细胞的理化特性。利用这样的特点Allender 等〔24〕和Stang等〔25〕各自建立了病毒颗粒相关核酸的非序列依赖性PCR 扩增方法(sequence - independent amplification) 。两种方法的共同点在于,依据病毒颗粒小、具一定密度,用0122μm 滤器过滤、或再串上超速密度梯度离心,从样品中分离出病毒颗粒,DNA 酶酶解游离的DNA ,裂解病毒颗粒,抽提获取较纯的病毒颗粒相关核酸。Allender 等〔24〕借鉴RDA 原理,对病毒颗粒相关核酸用限制性内切酶酶切后,作非序列依赖性单引物PCR 扩增( sequence -independent single primer amplification ,SISPA) :将抽提获取的DNA或RNA 分别补齐,合成第二链DNA ,或反转录,合成双链cDNA。限制性内切酶酶切后,酶切片段两端连接一种接头,并以与接头同序列的单一寡核苷酸为引物,作PCR 扩增。扩增产物进一步克隆与序列分析。用此法检验HBV 阳性血清和GBV - B 阳性血清样品,结果在相当于106/ ml 个基因组拷贝浓度的50μl样品中,可重复试验检出相应的病毒基因片段。Stang 等〔25〕则在得到双链DNA 或双链cDNA 后加入k - 随机引物,此种引物5′端含有20 个固定序列的核苷酸,3′端则有·318 · 中国预防医学杂志2007 年6 月第8 卷第3 期 Chin Prev Med , June 2007 , Vol18 No13© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 核苷酸随机简并序列。与变性模板退火时,6 核苷酸随机简并序列随机地与模板相应序列互补退火,在T4 DNA聚合酶作用下作链延伸。然后在延伸产物中加入k - 随机引物中固定序列部分的20 寡核苷酸作引物,进行PCR 扩增。扩增产物电泳分析、克隆、测序。用此方法检验由实时- PCR 定量,包括病毒颗粒相关核酸及游离核酸在内的病毒基因组拷贝数为109/ ml 的Cox - 3 和MAV - 1 培养物。前者的12 克隆中,9 个克隆插入有肠道病毒的四个不同区域的同源基因片段;而6 个MAV - 1 中分离的克隆内,5 个含有99 % 同源MAV - 1 基因片段。基于病毒颗粒分离纯化、DNase 处理、病毒颗粒相关核酸的非序列依赖性PCR 扩增,获取、鉴定未知病毒的基因片段,尽管灵敏度不够高,但其实验时间较短,步骤相对简单,对于病毒拷贝数高,时间紧急的样品鉴别,是较适宜的一套方法。病毒的种类、结构、特性多种多样,感染病毒后需要检验的样品又各不相同,因此用于发现鉴别未知病毒的核酸序列的技术,也不是固定不变和完全通用的。以上的技术方法各有优缺点和适用范围。而针对扩增获取未知病毒基因组序列片断,这一发现鉴定未知病毒的分子生物学技术的要点或瓶颈,必然还会有新的改进、创新技术出现,将会更快、更灵敏、更简便、更准确的发现鉴别未知病毒。参 考 文 献〔1〕 Drosten C , Gunther S , Preiser W, et al1 Identification of novel corona2virus in patients with severe acute respiratory syndrome1 N Engl J Med ,2003 , 348 : 1967 - 19761〔2〕 ven den Hoogen BG, de Jong JC , Groen J , et al , A newly discoveredhuman pneumovirus isolated from young children with respiratory tractdisease1 Nat Med , 2001 , 7 : 719 - 7241〔3〕 Fouchier RA , Hartwig NG, Bestebroer TM, et al1 A previously unde2scribed coronavirus associated with respiratory disease in human1 ProcNatl Acad Sci U S A , 2004 , 101 : 6212 - 62161〔4〕 Muerhoff AS , Leary TP , Desai SM, et al1 Amplification and subtractionmethods and their application to the discovery at novel human viruses1 JMed Virol , 1997 , 53 : 96 - 1031〔5〕 Lisitsyn N , Lisitsyn N , Wigler M1 Cloning the differences between twocomplex genomes1 Science , 1993 , 259 : 946 - 9511〔6〕 Lamar EE , Palmer E1 Y- encoded1 Species - specific DNA in mice :evidence that the Y chromosome exists in two polymorphic forms in in2bred strains1 Cell , 1984 , 37 : 171 - 1771〔7〕 Wieland I , Bolger G, Asouline G, et al1 A method for differencecloning : geng amplification following subtractive hybridization1 Proc NatlAcad Sci USA , 1990 , 87 : 2720 - 27241〔8〕 Milner JJ , Cecchini E , Doming PD1 A kinetic model for subtractive hy2bridizationg1 Nucleic Acids Res , 1995 , 23 : 176 - 1871〔9〕 Chang Y, Cesarman E , Pessin MS , et al1 Identification of herpesvirus- like DNA sequence in AIDS - Associated Kaposi’s Sarcoma1 Scie2nce , 1994 , 266 : 1865 - 18691〔10〕 Challoner PB , Smith KT , Parker JD , et al1 Plaque - associated expres2sion of human herpesvirus 6 in multiple selerosis1 Proc Natl Acad SciUSA , 1995 , 92 : 7440 - 74441〔11〕 Nishizawa T , Okamoto H , Konishi K, et al1 A novel DNA virus (TTV)associated with elevated transaminase levels in pasttransfusion hepatitisof unknown etiology1 Biochem Biophy Res Commun , 1997 , 24 : 92 -971〔12〕 Simons JN , Pilot - Matios TJ , Leary TP , et al1 Identification of two fla2vivirus - like genomes in the GB hepatitis agent1 Proc Natl Acad SciUSA , 1995 , 92 : 3401 - 34051〔13〕 Endoh D , Cho KO , Tsukamoto K, et al1 Application of representationaldifference analysis to genomic fragments of Mark’s disease virus1 J ClinMicrobiol , 2000 , 38 : 4310 - 43141〔14〕 Hubank M, Schatz DG1 Identifying differences in mRNA - expression byrepresentational difference analysis of cDNA1 Nucleic Acids Res ,1994 , 22 : 5640 - 56481〔15〕 Bowler LD1 Representational difference analysis of cDNA1 Methods MolMed , 2004 , 94 : 49 - 661〔16〕 Chua KB , Wang LF , Lam SK, et al1 Tioman virus , a novel paramyxo2virus isolated fromfruit bats in Malaysia1Virology , 2001 , 283 : 215 -2291〔17〕 Bowden TR , Westenberg M, Wang LF , et al1 Molecular characteriza2tion of Menangle virus , a novel paramyxovirus which infects pigs , frutbats , and humans1 Virology , 2001 , 283 : 358 - 373〔18〕 Endoh D , Mizatanil T , Kirisawa R , et al1 Species - independent detec2tion of RNA virus by representational difference analysis using non - ri2bosomal hexanncleotides for reverse transcription1 Nucleic Acids Res ,2005 , 33 : e651〔19〕 Siebert PD , Chenchik A , Kellogg DE , et al1 An improved PCR methodfor walking in uncloned genomic DNA1 Nucleic Acids Res , 1995 , 23 :1087 - 10881〔20〕 Diatchenko L , Lau YF , Campbell AP1 Suppression subtractive hy2bridization : a method for generating differentially regulated or tissue -specific cDNA probes and libraries1 Proc Natl Acad Sci U S A , 1996 ,93 : 6025 - 60301〔21〕 Hu Y, Hirshfield I1 Rapid approach to identify an unrecognized viral a2gent1 J Virol Methods , 2005 , 127 : 80 - 861〔22〕 Dean FB , Nelson JR , Giesler TL , et al1 Rapid amlification of plasmidand phage DNA using phi 29 DNA polymerase and multiply - primedrolling circle amplificationg1 Genome Res , 2001 , 11 : 1095 - 10991〔23〕 Rector A , Tachezy R , Ranst MV1 A sequence - independent strategyfor detection and cloning of circular DNA virus genomes by using multi2ply primed rolling - circle amplification1 J Virol , 2004 , 78 : 4993 -49981〔24〕 Allander T , Emerson SU , Engle RE , et al1 A virus discovery methodincorporating DNase treatment and its applicationg to the identificationgof two bovine parvovirus species1 Proc Natl Aced Sci USA , 2001 , 98 :11609 - 116141〔25〕 Stang A , Korn K, Wildner O , et al1 Characterization of virus isolates byparticle - associated nucleic acid PCR1 J Clin Microbiol , 2005 , 43 :716 - 7201(收稿日期: 2006 - 05 - 15)中国预防医学杂志2007 年6 月第8 卷第3 期 Chin Prev Med , June 2007 , Vol18 No13 ·319 ·© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved.

分子生物学相关论文选题

大肠埃希菌201株耐药性分析胆盐抑制冷冻保存大肠杆菌生长的研究分子生物学中常用的大肠杆菌菌株大肠杆菌高效表达重组蛋白策略

生物学是一门能打通很多跨界知识的学科。相比物理学等自然科学,生物学更深刻地揭示了世界的底层规律,其思想放之四海而皆准。下面我给大家带来生物类专业的论文题目及选题方向,希望能帮助到大家!

生物技术 毕业 论文选题

[1]生物技术本科拔尖创新型人才培养模式的探索与实践

[2]禽源HSP70、HSP40和RPL4基因的克隆和表达

[3]中间锦鸡儿CiNAC038启动子的克隆及对激素响应分析

[4]H9和H10亚型禽流感病毒二重RT-PCR检测 方法 的建立

[5]单细胞测序相关技术及其在生物医学研究中的应用

[6]动物细胞工程在动物生物技术中的应用

[7]现代生物化工中酶工程技术研究与应用

[8]GIS在生物技术方面的应用概述

[9]现代生物技术中酶工程技术的研究与应用

[10]两种非洲猪瘟病毒检测试剂盒获批

[11]基因工程技术在生物燃料领域的应用进展

[12]基于CRISPR的生物分析化学技术

[13]生物信息技术在微生物研究中的应用

[14]高等工科院校创新型生物科技人才培养的探索与实践

[15]生物技术与信息技术的融合发展

[16]生物技术启发下的信息技术革新

[17]日本生物技术研究开发推进管理

[18]中国基因技术领域战略规划框架与研发现状分析及建议

[19]鸡细小病毒与H_9亚型禽流感病毒三重PCR检测方法的建立

[20]基于化学衍生-质谱技术的生物与临床样本中核酸修饰分析

[21]合成生物/技术的复杂性与相关伦理 政策法规 研究的科学性探析

[22]合成生物学技术发展带来的机遇与挑战

[23]应用型本科高校生物技术专业课程设置改革的思考

[24]知识可以改变对转基因食品的态度吗?——探究科技争议下的极化态度

[25]基因工程在石油微生物学中的研究进展

[26]干细胞技术或能延缓人类衰老速度

[27]生物技术复合应用型人才培养模式的探索与实践

[28]动物转基因高效表达策略研究进展

[29]合成生物学与专利微生物菌种保藏

[30]加强我国战略生物资源有效保护与可持续利用

[31]微生物与细胞资源的保存与发掘利用

[32]颠覆性农业生物技术的负责任创新

[33]生物技术推进蓝色经济——NOAA组学战略介绍

[34]人工智能与生物工程的应用及展望

[35]中国合成生物学发展回顾与展望

[36]桓聪聪.浅谈各学科领域中生物化学的发展与应用

[37]转基因成分功能核酸生物传感检测技术

[38]现代化技术在农业 种植 中的应用研究

[39]生物技术综合实验及其考核方式的改革

[40]生物技术处理船舶舱底含油污水

[41]校企合作以产学研为平台分析生物技术类人才培养

[42]生物技术专业“三位一体”深化创新创业 教育 改革

[43]基于环介导等温扩增技术的生物传感器研究进展

[44]分子生物学技术在环境工程中的应用

[45]生物有机化学课程的优化与改革

[46]地方农业高校生物技术专业“生物信息学”课程的教学模式探索

[47]不同育种技术在乙醇及丁醇高产菌株选育中的应用

[48]探秘生命的第三种形式——我国古菌研究之回顾与展望

[49]适应地方经济发展的生物技术专业应用型人才培养模式探索

[50]我国科研人员实现超高密度微藻异养培养

生物教学论文题目

1、本地珍稀濒危植物生存现状及保护对策

2、中学生物实验的教学策略

3、如何上好一节生物课

4、中学生生物实验能力的培养

5、激活生物课堂的教学策略

6、中学生物课堂教学中存在的问题及对策

7、中学生物教学中的创新教育

8、本地生物入侵的现状及其防控对策

9、论生物多样性与生态系统稳定性的关系

10、室内环境对人体健康的影响

11、糖尿病研究进展研究及策略

12、心血管病研究进展研究及策略

13、 儿童 糖尿病的现状调查研究

14、结合当地遗传病例调查谈谈对遗传病的认识及如何优生

15、“3+X”理科综合高考试题分析

16、中学生物教学中的差生转化教育

17、中学生物学实验教学与学生创新能力的培养

18、在当前中学学科分配体制下谈谈如何转变学生学习生物学的观念

19、中学生物教学中学生科学素养的提高

20、直观教学在中学生物学教学中的应用

21、中学生物学实验教学的准备策略

22、编制中学生物测验试题的原则与方法

23、浅析生态意识的产生及其培养途径

24、生物入侵的危害及防治对策

25、城镇化建设对生态环境的影响

26、生态旅游的可持续发展-以当地旅游区为例

27、城市的生态环境问题与可持续发展

28、农村的生态环境问题及其保护对策-以当地农村为例

29、全球气候变化与低碳生活

30、大学与高中生物学教育的内容与方法衔接的初步研究

31、国内、国外高中生物教材的比较研究

32、中学生物实验教学模式探索

33、河北版初中生物实验教材动态分析研究 “

34、幼师生物学教材改进思路与建议

35、中学生物学探究性学习的课堂评价体系研究及实践

36、中学生物双语教材设计编写原则探索与研究

37、信息技术应用于初中生物课研究性学习的教学模式构想

38、生物学课堂教学中学生创新能力培养的研究与实践

39、中学生物学教学中的课程创生研究初探

40、信息技术与中学生物学教学的整合

41、中学生物学情境教学研究

42、游戏活动在高中生物学教学中的实践与思考

43、合作学习在高中生物教学中的实践性研究

44、尝试教学法在高中生物教学中的应用与研究

45、生物科学探究模式的研究与实践

46、生物课堂教学引导学生探究性学习的实践与探索

47、白城市中学生物师资队伍结构现状的调查及优化对策

48、结合高中生物教学开展环境教育的研究

49、让人文回归初中生物教育

50、课程结构的变革与高中生物新课程结构的研究

51、在中学生物教学中,如何培养学生的创新能力

52、在中学生物教学中如何激发学生的学习兴趣

53、实验在中学生物教学中的重要性探讨

54、中学生物教学现状研究

55、中学生物课堂教学艺术探讨

56、“生态系统”一节的 教学方法 探讨

57、中学生物教学中的学生科学素质培养

58、初中生物教学中观察能力的培养

59、浅谈生物教学中的科学素质教育

60、中学生物探究性教学的实践与思考

生物技术本科毕业论文题目

1、生物反馈技术在运动性疲劳监控中的应用研究

2、微流控生物催化技术酶促合成天然产物的增效机理研究

3、海洋生物污损过程的分子标记技术研究

4、浮游生物多样性高效检测技术的建立及其在渤海褐潮研究中的应用

5、基于QCM生物传感器技术的组氨酸标签蛋白芯片和悬浮细胞芯片的研制及其应用

6、蛋白核小球藻油脂检测技术评价及光生物反应器培养的研究

7、基因工程制备微藻生物柴油中两项关键技术的研究

8、农业水污染治理环节中的生物技术应用问题研究

9、人工构建耐热大肠杆菌的分子设计与应用

10、我国合成生物技术产业发展战略及政策分析

11、基于原子力显微镜的细胞生物特征识别技术研究

12、利用菊粉和木薯淀粉生产高浓度山梨醇和葡萄糖酸的生物技术

13、转基因生物安全评价中的非科学因素探究

14、面向分子生物系统的计算技术应用研究

15、大规模生物数据中的生物信息挖掘技术研究

16、电化学生物传感技术用于重金属和蛋白质的检测

17、电化学生物传感技术用于单碱基突变与蛋白质的检测

18、基于功能核酸的生物传感技术的研究

19、论我国生物技术专利保护

20、纳米生物相关技术专利分析系统设计与开发

21、生物技术发展困境及其人文 反思

22、基因发明专利制度相关问题分析

23、转基因动物专利研究

24、GAPDH作为原核及真核生物通用型内标蛋白的研究及相关生物技术研发

25、基于生物信息与影像技术识别材料缺陷的研究

26、基于金属纳米材料的光学生物传感技术用于酶活性的检测

27、DNA assembler技术在顺

28、晋西黄土高原生物农业发展初探

29、睡眠剥夺差异表达基因的筛选及生物信息学分析

30、太赫兹时域光谱技术对生物组织的初步研究

31、我国农业转基因生物技术安全管理研究

32、人类基因专利战略布局

33、Web Services和XML技术在生物信息数据发布及整合中的应用

34、面向快速成型技术高分子生物医学材料的研究

35、化学修饰电极与液相色谱-电化学检测技术联用在生物分析中的应用

36、小型底栖生物样品自动分离技术研究

37、激光诱导荧光技术及其在生物仪器中的应用

38、强电场常压离子注入方法研究

39、生物信息学中的模式发现算法研究

40、聚类和分类技术在生物信息学中的应用

生物类专业的论文题目及选题方向相关 文章 :

★ 生物技术专业论文选题题目

★ 2021生物毕业论文题目

★ 生物类学术论文(2)

★ 生物类学术论文

★ 生物制药毕业论文开题报告范文

★ 我们身边的生物技术论文(2)

★ 生物制药专业毕业论文范文

★ 生物技术论文范文

★ 生物制造技术论文范文(2)

★ 动物科学论文题目

找个好弄的基因,然后分析检测该基因对细胞某些成分的表达调控的影响这个实验做起来又快又简单

分子生物学主要包含以下三部分研究内容: 1.核酸的分子生物学 核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。由于50年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则(centraldogma)是其理论体系的核心。 2.蛋白质的分子生物学 蛋白质的分子生物学研究执行各种生命功能的主要大分子──蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。 3.细胞信号转导的分子生物学 细胞信号转导的分子生物学研究细胞内、细胞间信息传递的分子基础。构成生物体的每一个细胞的分裂与分化及其它各种功能的完成均依赖于外界环境所赋予的各种指示信号。在这些外源信号的刺激下,细胞可以将这些信号转变为一系列的生物化学变化,例如蛋白质构象的转变、蛋白质分子的磷酸化以及蛋白与蛋白相互作用的变化等,从而使其增殖、分化及分泌状态等发生改变以适应内外环境的需要。信号转导研究的目标是阐明这些变化的分子机理,明确每一种信号转导与传递的途径及参与该途径的所有分子的作用和调节方式以及认识各种途径间的网络控制系统。信号转导机理的研究在理论和技术方面与上述核酸及蛋白质分子有着紧密的联系,是当前分子生物学发展最迅速的领域之一。

分子生物学结核检测相关论文

字数可能有点超,你自己截取吧~~分子生物学(molecular biology) 在分子水平上研究生命现象的科学。研究生物大分子(核酸、蛋白质)的结 构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程如光合作用、发育的分子机制、神经活动的机理、癌的发生等。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。 生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃发展。分子生物学和生物化学及生物物理学关系十分密切,它们之间的主要区别在于:①生物化学和生物物理学是用化学的和物理学的方法研究在分子水平,细胞水平,整体水平乃至群体水平等不同层次上的生物学问题。而分子生物学则着重在分子(包括多分子体系)水平上研究生命活动的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主要是蛋白质,核酸,脂质体系以及部分多糖及其复合体系。而一些小分子物质在生物体内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所共同具有的基本特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定器官的物理、化学现象或变化,则属于生物物理学或生物化学的范畴。 发展简史 结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。1912年英国 .布喇格和.布喇格建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生.阿斯特伯里和.贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先是在蛋白质结构分析方面,1951年.波林等提出了 α-螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年F.桑格完成了胰岛素的氨基酸序列的测定。接着 .肯德鲁和.佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。 另一方面,M.德尔布吕克小组从1938年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。1940年.比德尔和.塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年.埃弗里等研究细菌中的转化现象,证明了DNA是遗传物质。1953年.沃森和.克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年F.雅各布和J.莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之而开始解开了。 仅仅30年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。 基本内容 蛋白质体系 蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。 蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。 蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。 生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。 生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P.米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。 生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。 对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。 理论意义和应用 分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。分子遗传学的中心法则和遗传密码,除个别例外,在绝大多数情况下也都是通用的。 物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。 过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲缘关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。 高等动物的高级神经活动是极其复杂的生命现象,过去多是在细胞乃至整体水平上研究,近年来深入到分子水平研究的结果充分说明高级神经活动也同样是以生物大分子的活动为基础的。例如,在高等动物学习与记忆的过程中,大脑中RNA和蛋白质的组成发生明显的变化,并且一些影响生物体合成蛋白质的药物也显著地影响学习与记忆的能力。又如,“生物钟”是一种熟知的生物现象。用鸡进行的实验发现,有一种重要的神经传递介质(5-羟色胺)和一种激素(褪黑激素)以及控制它们变化的一种酶,在鸡脑中的含量呈24小时的周期性变化。正是这种变化构成了鸡的“生物钟”的物质基础。 在应用方面,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。 分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。[编辑本段]分子生物学的应用 1,亲子鉴定 近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。

CD44分子生物学特性及肿瘤关系的研究进展1 粘附分子CD44的研究进展 CD44是分布极为广泛的细胞表面跨膜糖蛋白,在淋巴细胞,成纤维细胞表面均能检测到它的表达[1,2]。CD44蛋白属于未分类的粘附分子,其正常功能是作为受体识别透明质酸(HA)和胶原蛋白Ⅰ、Ⅳ等,主要参与细胞-细胞,细胞-基质之间的特异性粘连过程。 CD44基因的定位与结构 人类CD44基因位于11号染色体短臂上,有20个高度保守的外显子,完整基因组在染色体DNA上大约跨越50kb。CD44基因的外显子按表达方式分为两种类型:一种是组成型外显子,另一种是V区变异型外显子。组成型外显子有10个,其中转录片段存在于所有CD44转录子中。仅含组成型外显子的CD44转录子,称为标准型CD44(CD44S),它编码361个氨基酸(Aa)。V区外显子也有10个,在基因组上位于第5和第6个组成型外显子之间,在染色体DNA中专25kb。含有V区外显子的CD44转录子统称为CD44拼接变异体(CD44V)。V区外显子的拼接方式非常特殊,它们既能以连续方式拼接,也能以跳跃方式拼接,参与拼接的V区外显子多少不一,从而使转录片段长短不一。目前通过PCR技术在许多细胞系中已发现10多种CD44V。早期发现血细胞的CD44分子(CD44H)为标准型。最先获得克隆的拼接变异体是含有CD44V8-10的CD44V,它主要存在于上皮细胞又称为上皮细胞型CD44V(CD44E)。目前对CD44的研究较多,如V3、V5、V6。 CD44分子的结构特征 从已知的cDNA序列推测,CD44S由341个Aa组成,N-末端起台于21位Aa,前面20个Aa为信号肽,紧接着是胞质外区域的248个Aa,第249个Aa至269位的21个是疏水性的,为跨膜区,其后是胞质内C-末端尾部有72个Aa。另外还有一种CD44S的短尾形式,其胞质内C-末端尾部仅3个Aa。这种Aa序列具有Ⅰ类膜蛋白的特征。Lokeshwar等[3]用实验观察CD44S分子的合成过程,发现CD44分子首先被合成43KD的蛋白前体,接着在内质网内进行N-糖基化,形成58KD的N-糖基化前体,其后在高尔基复合体内进行O-糖基化和其它翻译后修饰,形成最终的85-95KD分子。 CD44S胞质外结构域特征:CD44S分子信号肽的N-末端的130Aa内编码了5个Asn-x-Ser/Thr序列和6个半胱氨酸残基,前者是5个N-糖苷键连接位点,其中3个被利用。6个半胱酸形成3个二硫键,形成球形结构域,这一球形结构域的重要特征是与动物连接蛋白有较高的同源性。有两个区域与透明质酸结合,分别是21-45Aa,135-195Aa。 CD44S的胞外近膜区存在一个56Aa的结构域(161Arg-216Asp),含有19个ser和Thr残基,常以2~4个成簇,这些是已知的O-糖基化位点特征,表明CD44有7个潜在的O-糖基化位点,其中4~5个位点被利用。此外这一区域含有4个Ser-Gly二肽,是潜在的硫酸软骨素连接位点。并且已得到证实,CD44分子加上硫酸软骨素后,与其结合细胞外基质的能力有关,包括Ⅰ型胶原、层粘边蛋白、纤粘连蛋白。 CD44分子细胞膜外区域有多个潜在的N-糖苷键连接位点,可连换多个碳水化合物,不仅与分子成熟过程中的翻译后修饰有关,也与细胞的功能状态有关。糖基化赋予CD44分子异质性,而其异质性与不同的O-糖基化程度有关,这种现象是CD44分子所特有的。这种新的糖基化调节方式在CD44S结合不同的细胞外基质成分的能力方面超着重要作用。深入研究这一分子的糖基化调节机制及生物功能方面的联系是十分有意义的。 CD44S胞质内结构特征:CD44S分子第249-269跨膜区的Aa序列中存在一个半胱氨酸残基,代表着一个潜在的脂酰化位点,这一位点可与软脂酸连接导致CD44分子脂酰化。在CD44S的胞质内区域尾部存在一结构域可与锚蛋白(ankyntn)结合。胞质内尾部序列有5个保守的丝氨酸残基,可作为蛋白激酶C(PKC)的底物被磷化[4]。上述脂酰化过程均可增强CD44S分子与锚蛋白的结合能力。比较CD44S和其他G蛋白的序列发现存在4个 同源性高的区域,实验证实CD44还是一种GTP结合蛋白,可结合GDP底物并且有GTP酶活性,显著增强CD44与锚蛋白的相互作用[5]。在CD44合成过程的各种中间产物,发现均有锚蛋白结合位点和结合活性,提示糖基化对锚蛋白结合位点的形成无关,并且结合锚蛋白对于CD44分子的输送和信号传导功能起重要作用。 CD44V的特征:目前发现10个V外显子编码的氨基酸中有约30%的丝、苏氯酸残基,具有广泛潜在O-糖基化位点,如:V6具有潜在的O-糖基化位点。V3外显子序列分析中发现Ser-Gly-Ser-Gly片段,它可结合硫酸肝素,结合硫酸肝素后的CD44V能与碱性成纤维细胞生长因子(b-FGF)结合肝素的表皮生长(HBEGF)因子结合,此结果提示这种CD44参与了传递细胞因子的过程。 CD44蛋白的主要功能 CD44基因编码合成的CD44蛋白具有一系列功能,包括:①作为导向性受体,调节淋巴细胞在血液和淋巴液间的运行,即淋巴细胞归巢或再循环[6]。②在淋巴细胞自溶、离体淋巴细胞的活化中发挥作用。③促进成纤维细胞和淋巴细胞与胞外基质成分如透明质酸、硫酸软骨素、纤维素、糖原等的粘附。④参与信号传递蛋白可影响蛋白在细胞间的位置,刺激其分泌特异的生长因子具不同的传导作用。⑤结合并中和透明质酸,该作用类似于清除间质组织。⑥调节药物的吸收及细胞对药物的敏感性。 究竟是何种CD44蛋白参与了何种调节,至今不清楚,选择性剪切过程中的多样性CD44蛋白与细胞结合的多样性也表明其中有重要的协间或调节功能[7]。有研究认为,跨膜的CD44糖蛋白,其膜外成分的变异与细胞粘附及导向作用有关[8]。,而胞内分子的尾部则与活化T淋巴细胞的潜在作用有关,而且胞内分子长度可调节蛋白激酶A/C位置,影响细胞的信号传递[9]。 2 CD44分子在肿瘤细胞中的表达 1989年Stamenkevie等使用不同的单抗分离和克隆了一个编码CD44标准型的cDNA,该基因不仅由淋巴样细胞表达,也可由不同的癌细胞系包括实体瘤典型标本中表达。在裸鼠研究某些人的转移癌时发现,CD44基因表达在转移中起作用。在大鼠胰腺癌细胞中非转移性细胞株只表达标准CD44(CD44S),而转移性细胞株表达CD44V,而且将CD44V变异体cDNA转染到非转移性的细胞株可引起转移[10]。Hofmann[11]用 notherm印迹法研究了20多个体外培养的人癌细胞系,也发现许多肿瘤组织能表达CD44V,但在不同细胞中V区外显子的转录拼接模式不尽相同。第一份临床肿瘤标本(结肠癌)的检测结果是1992年由英国年津大学病理实验室的研究人员首先报道的,以后人们应用免疫组化及RNA-cDNA-PCR印迹杂交在肺癌、结肠癌、食道癌、乳腺癌、膀胱癌、肝癌、宫颈癌、肾癌和非何杰金淋巴瘤等中发现有CD44V表达。认为CD44V5、CD44V6的表达与肿瘤进展程度、转移及预后密切相关[12]。对于各种癌的实验研究已经进入肿瘤的发生、生长、转移增殖潜能及预后复发各环节与CD44分子表达的相关性,并提出实验数据和假说加以论证。 CD44分子与肿瘤的发生、生长、发展 癌的发生发展与癌基因(c-erb2、c-myc, ras)和抑癌基因(P53,nm23)等异常表达有关。有研究表明CD44异常表达可早于ras、P53等基因的异常,所以CD44的变异可能与ras部基因激活有关,是癌形成的一个因素[13]。Muider[14]对结肠癌肿瘤P53突变和CD44蛋白的研究,在结肠肿瘤各期中观察到有统计显著性的P53、CD44V6表达增强的趋势,P53和CD44V6表达间有显著相关性。P53被认为监视基因突变的“分子警察”,失活的P53可引起失控的肿瘤生长,因此P53突变引起失去最后控制时,V6‘表型获得明显的生长优势’。郭亚军等[15]用抗CD44的单抗以阻断其与透明质酸的结合,从而抑制CD44阳性的肿瘤细胞在体内的生长。他推测肿瘤细胞的生长可能是CD44阳性的细胞能与细胞外基质(ECM)中的透明质酸结合,从而获得附着性,并更易从ECM中获得生长因子。FasanoM等[16]报道成人非肿瘤患者肺泡Ⅰ型上皮不表达CD44V6。Ⅱ型上皮细胞和基 底细胞有CD44V6低量表达,Ⅱ型细胞与基底细胞属于干细胞,估计CD44V6对于肺生长有重要意义。所以认为CD44V6对于幼稚细胞生长和对于肿瘤细胞生长的机理可能相似。Lu等[17]发现在宫颈腺癌,无论是原位癌还是浸润癌均有CD44S弥漫表达,且浸润癌比原位癌明显高表达CD44S,几乎所有的原位癌与浸润癌CD44V9均增加,仅有较少的浸润癌表达CD44V4与CD44V6,而原位癌几乎不表达。说明宫颈上皮的癌变与CD44S和几种CD44V表达的量变和质变有关。 分子表达与肿瘤的转移、侵润 Matsumura等[18]用PCR技术检测了转移性结肠癌、非转移性结肠癌、正常结肠粘膜的CD44基因表达活性,发现转移性结肠癌细胞CD44变异拼接外显子表达明显增强。Pales等[19]用单克隆抗体检测以CD44表达情况发现,在人类结肠癌标本中,CD44V在浸润和转移的肿瘤中呈阳性表达,并认为CD44V的表达可作为结肠肿瘤浸润的标志。Herrtich[20]研究发现在一些分化不良的息肉中检测以V6外显子在肿瘤浸润中有增强的高频率表达,推测表达CD44V6的肿瘤细胞能够有利于癌细胞浸润和转移的条件。 Granberg等[21]发现在支气管类癌瘤患者,表达CD44S可减低远距离转移,CD44V77-8阳性肿瘤降低远距离转移风险,CD44V9阳性可降低远距离转移及死亡,而CD44V4、CD44V5、CD44V10与临床结果无关,证明支气管类癌瘤具有潜在恶性,CD44S、V7-8、V9阳性可能引起较好的临床结果,可以考虑作为预后评估的指标。 关于CD44V与肿瘤转移相关性的假说如下:激活的淋巴细胞和转移的癌细胞具有许多共性,即都有很强的侵出行为,均有可逆的粘附接触过程进行细胞迁移,在引流淋巴结中两类细胞皆能大量积聚和快速增殖,最后它们都能释放到循环系统,并通过外渗作用进入周围组织,这些相似性很可能基于CD44V6在二者中的共同作用,提示CD44V6在淋巴细胞活化中的作用机理与CD44V6在肿瘤转移中作用机理是相同的。即CD44V6高表达的癌细胞可能获得淋巴细胞“伪装”,逃避人体免疫系统的识别和杀伤,更易进入淋巴结,形成转移[10]。 有结论认为CD44V6变异体可能通过促进癌细胞与血管内皮细胞和细胞外基质的粘附,促进肿瘤细胞向基质侵袭,从而影响肿瘤细胞的迁移和运动能力。也有结论认为CD44V6可能通过影响癌细胞的骨架构像和分布,从而影响癌细胞的运动能力,而影响癌转移。 3 CD44分子对治疗肿瘤的展望 因为CD44V6对于肿瘤的发生、发展都有一定的相关性,推测CD44V6与肿瘤的分型、分化、分期有一定关系,如果这种关系得以明确,我们就可以通过癌组织CD44V6的表达程度来判断癌的类型,所处时期来进行适当治疗。 有研究认为CD44V6的表达要先于抑癌基因的表达,如果能够检测出CD44异常表达,则对于癌的早期诊断有密切关系。已有研究表明,CD44V6可用于诊断。如1997年吴忠等报道,应用RT-PCR技术检测CD44V6在30例尿液标本脱落细胞检测到CD44V6的表达,而在膀胱炎患者和正常志愿者未检测到CD44V6的表达。 肿瘤的转移是癌症患者的主要死亡原因,Seiter等[10]用抗CD44变异型蛋白的抗体与CD44变异型产物相结合,显示鼠癌细胞的转移潜能被终止,这也为大肠癌的治疗提供了又一个可能途径。 手术切除的肿瘤标本中如有CD44V6蛋白阳性,常会伴术后肿瘤再发或远处转移。CD44V6可作为一种有效的癌预后的标志物,用以指导治疗方案的制定。 CD44基因及其选择性剪切在癌的预测、早期诊断、病情进展、转移潜能与预后的估计等方面具有很大的潜在价值。随着分子生物学不断的发展,癌基因研究的不断深入,相信该基因对癌的预测、诊断、治疗、预后的价值会得到更加全面的认识。

生物技术作为一门高新技术学科,必须经过长期培养才能在实际应用中显示出一定的效果,生物技术研究的范围也很广。生物技术专业的论文怎么写呢?下面我给大家带来生物技术专业论文选题题目_生物专业论文题目参考,希望能帮助到大家!

生物论文题目

[1]不同温度下制备的生物炭对水相Cu~(2+)的吸附表现

[2]新型冠状病毒肺炎疫情下治疗药物监测实验室的感染防控策略

[3]脱毒地黄试管苗的微扦插快繁技术研究

[4]水产蛋白源生物活性肽的研究进展

[5]杉木ClSAUR25基因5’侧翼序列的克隆与生物信息学分析

[6]芒果MiTFL1-4基因启动子克隆与生物信息学分析

[7]乳酸菌调控骨骼肌线粒体生物发生的机制研究进展

[8]基于模拟胃肠道消化的云南民族乳制品蛋白肽研究

[9]肠道派氏结M细胞在淋巴传递中的生物功能及靶向载体研究进展

[10]家禽肠道健康的生物标志物研究进展

[11]生物素对动物毛发生长的影响及其应用

[12]Bacillus asahii OM18菌剂载体筛选及其对玉米的促生效果

[13]江苏省湖泊水生植物优势种对氮、磷去除效果比较研究

[14]三维荧光分析评价腐殖酸高级氧化前处理效果的研究

[15]生物炭对铜污染土壤的修复及水稻Cu累积的影响

[16]基于鱼类需求的淮河上游息县枢纽工程闸下河段环境流量研究

[17]基于高通量测序探讨大宁河不同水华期真核浮游生物群落组成

[18]裂解温度对不同原材料生物炭理化特性的影响

[19]山楂鲨烯合酶CpSQS1,CpSQS2的基因克隆及原核表达分析

[20]甜菜素合成相关基因BvDDC1的克隆与表达分析

[21]“伞形集团”典型国家LULUCF林业碳评估模型比较研究

[22]小麦和苜蓿套作 种植 对土壤水分及作物水分利用效率的影响

[23]黄土高原刺槐人工林根际和非根际土壤磷酸酶活性对模拟降水变化的响应

[24]重庆都市区生态系统服务价值时空演变及其驱动力

[25]黄土高原降雨梯度对刺槐不同器官内源激素分布格局及生长的影响

[26]基于改进参数的长三角城市生态足迹分析及其可持续性评价

[27]黄土丘陵区退耕草地群落盖度与地上生物量关系

[28]模拟降雨量变化与CO_2浓度升高对小麦光合特性和碳氮特征的影响

[29]黑色地膜覆盖土壤水热效应及对玉米产量的影响

[30]生物土壤结皮生态修复功能研究及对石漠化治理的启示

[31]__核电厂邻近海域大型底栖动物群落变化和污染指数评价

[32]鸡和鸭对山苍子果渣养分和能量利用率的研究

[33]多级AO+潜流湿地对生活污水中的EDCs及常规污染物的去除试验研究

[34]人类生物医学干预是合法的政策监管手段吗?

[35]Rev-erbα在心血管疾病中的研究进展

[36]医用生物胶体分散剂在1064 nm Nd:YAG激光治疗婴幼儿血管瘤术后的应用

[37]茶黄素双没食子酸酯的生物活性及其作用机制

[38]化学动力学疗法:芬顿化学与生物医学的融合

[39]金银花和蒲公英对肉源性假单胞菌生物被膜的清除作用

[40]亿年前动物“临终遗迹”的发现将分节动物的祖先推前了一千万年

[41]趋磁细菌磁小体合成的相关操纵子和基因

[42]霉菌毒素的生物脱除 方法 及机理研究进展

[43]内蒙古巴彦淖尔市畜禽寄生虫病调查

[44]基于O_2/Ar比值估算海洋混合层群落净生产力的研究进展

[45]海岸线的溢油环境敏感性评价研究进展

[46]海洋中挥发性卤代烃的研究进展

[47]海水养殖生境中硫化物污染及控制技术研究进展

[48]紫檀芪改善睡眠限制小鼠运动耐力的作用及其机制

[49]华癸中慢生根瘤菌多铜氧化酶基因mco的功能研究

[50]中南民族大学教师团队在自然指数期刊《Analytical Chemistry》发表研究成果

生物专业 毕业 论文题目

1、基于多元相场理论的细菌生物膜生长动力学建模及其数值模拟

2、血管紧张素II经酸性鞘磷脂酶/神经酰胺通路致动脉内皮功能障碍的作用

3、盐胁迫对鹅耳枥生长及生理生化特性的影响

4、2种应激诱导大鼠迷走复合体神经元的Fos表达

5、重组大肠杆菌SAHN和Lu_S蛋白表达及群感效应分析

6、基于线粒体控制区Dloop序列的长臀(鱼危)种群遗传结构分析

7、喉功能保留外科的喉功能解剖

8、褪黑素通过减轻内质网应激抗心肌缺血/再灌注损伤的作用及机制

9、生长分化因子-11促进小鼠诱导性多能干细胞向心肌细胞定向分化的研究

10、脂肪因子CTRP3的认识及研究现状

11、治疗性血管化策略研究进展

12、SD大鼠绝经后骨质疏松疾病动物模型的构建

13、牛血清在百日咳毒素CHO细胞簇聚试验中的影响

14、番茄黄化曲叶病毒的鉴定与群体进化分析

15、B细胞受体核心岩藻糖基化调节成熟B细胞的信号转导

16、NaHS对慢性间歇性低氧大鼠胸主动脉血管张力的影响

17、利用果蝇模型探讨SCA3/MJD与PD发病机制的相关性

18、纳米金属氧化物对耐药基因水平转移的影响

19、果胶酶液体发酵条件优化与酶学特性研究

20、丛枝菌根真菌根外菌丝形成时间及对牧草的促生长效应

21、左心耳形态和功能影像学评估的研究进展

22、金胺O荧光染色在结核病病理诊断中的应用价值

23、上海常绿树种固碳释氧和降温增湿效益研究

24、我国生态文明建设试点的问题与对策研究

25、城镇化对物流业碳排放变动影响研究

26、干扰素γ增强脂肪间充质干细胞对淋巴细胞的免疫调节作用

27、血脑屏障的研究进展

28、南北贸易、产权维护不对称与发展中国家生态资源贫瘠化

29、朱溪流域植被覆盖变化与居民点的空间关系

30、布氏田鼠秋季家群数量与捕食风险的关系

31、圆蟾舌蛙鸣声特征分析

32、大渡河流域黄石爬鮡的年龄与生长

33、雅砻江短须裂腹鱼胚胎和卵黄囊仔鱼的形态发育

34、基因序列的搜索与相似性比对

35、阿尔茨海默病早期生物标记物及其检测方法的研究进展

36、促红细胞生成素衍生肽抑制细胞自噬减轻小鼠心肌缺血/再灌注损伤

37、类风湿关节炎并发心血管损害的临床特点与相关因素

38、华卟啉钠的光漂白性质研究

39、采用蚕豆根尖细胞微核技术检测核设施周围水域的遗传毒性

40、鲤鱼墩遗址史前人类行为模式的骨骼生物力学分析

41、稳定微环境微流控细胞培养芯片的设计与制备

42、国产与进口心脏单腔起搏器临床应用比较

43、心房电极导线脱位到心室致反复心室安全起搏一例

44、谷氨酸受体在实验性青光眼视网膜细胞损伤中的作用

45、基于恢复动力学生态系统恢复建设的研究

46、Sabin株脊髓灰质炎灭活疫苗毒种的遗传稳定性

47、一株鸡源乳酸菌FCL67的鉴定及其生物学特性

48、人凝血/抗凝血因子类产品蛋白含量快速检测方法的建立及验证

49、肺孢子菌肺炎相关细胞因子的研究进展

50、气象因素与发热伴血小板减少综合征关联研究

生物技术毕业论文选题

[1]生物技术本科拔尖创新型人才培养模式的探索与实践

[2]禽源HSP70、HSP40和RPL4基因的克隆和表达

[3]中间锦鸡儿CiNAC038启动子的克隆及对激素响应分析

[4]H9和H10亚型禽流感病毒二重RT-PCR检测方法的建立

[5]单细胞测序相关技术及其在生物医学研究中的应用

[6]动物细胞工程在动物生物技术中的应用

[7]现代生物化工中酶工程技术研究与应用

[8]GIS在生物技术方面的应用概述

[9]现代生物技术中酶工程技术的研究与应用

[10]两种非洲猪瘟病毒检测试剂盒获批

[11]基因工程技术在生物燃料领域的应用进展

[12]基于CRISPR的生物分析化学技术

[13]生物信息技术在微生物研究中的应用

[14]高等工科院校创新型生物科技人才培养的探索与实践

[15]生物技术与信息技术的融合发展

[16]生物技术启发下的信息技术革新

[17]日本生物技术研究开发推进管理

[18]中国基因技术领域战略规划框架与研发现状分析及建议

[19]鸡细小病毒与H_9亚型禽流感病毒三重PCR检测方法的建立

[20]基于化学衍生-质谱技术的生物与临床样本中核酸修饰分析

[21]合成生物/技术的复杂性与相关伦理 政策法规 研究的科学性探析

[22]合成生物学技术发展带来的机遇与挑战

[23]应用型本科高校生物技术专业课程设置改革的思考

[24]知识可以改变对转基因食品的态度吗?——探究科技争议下的极化态度

[25]基因工程在石油微生物学中的研究进展

[26]干细胞技术或能延缓人类衰老速度

[27]生物技术复合应用型人才培养模式的探索与实践

[28]动物转基因高效表达策略研究进展

[29]合成生物学与专利微生物菌种保藏

[30]加强我国战略生物资源有效保护与可持续利用

[31]微生物与细胞资源的保存与发掘利用

[32]颠覆性农业生物技术的负责任创新

[33]生物技术推进蓝色经济——NOAA组学战略介绍

[34]人工智能与生物工程的应用及展望

[35]中国合成生物学发展回顾与展望

[36]桓聪聪.浅谈各学科领域中生物化学的发展与应用

[37]转基因成分功能核酸生物传感检测技术

[38]现代化技术在农业种植中的应用研究

[39]生物技术综合实验及其考核方式的改革

[40]生物技术处理船舶舱底含油污水

[41]校企合作以产学研为平台分析生物技术类人才培养

[42]生物技术专业“三位一体”深化创新创业 教育 改革

[43]基于环介导等温扩增技术的生物传感器研究进展

[44]分子生物学技术在环境工程中的应用

[45]生物有机化学课程的优化与改革

[46]地方农业高校生物技术专业“生物信息学”课程的教学模式探索

[47]不同育种技术在乙醇及丁醇高产菌株选育中的应用

[48]探秘生命的第三种形式——我国古菌研究之回顾与展望

[49]适应地方经济发展的生物技术专业应用型人才培养模式探索

[50]我国科研人员实现超高密度微藻异养培养

生物技术专业论文选题题目相关 文章 :

★ 生物技术论文范文

★ 我们身边的生物技术论文(2)

★ 初中生物科技论文范文(2)

★ 生物类学术论文(2)

★ 生物制造技术论文范文(2)

★ 生物制药技术论文范文两篇(2)

★ 浅谈现代生物技术论文(2)

★ 生物制药技术论文两篇

★ 关于生物科技论文范文2000字(2)

★ 生物工程技术论文(2)

分子生物学技术在国内防制虫媒传染病领域的应用分子生物学在医院感染控制中的应用和评价觉得合适与我索取全文

生物分子相关的中文期刊

生物类或生物化学类的中文核心期刊哪个容易投中北大核心里综合性生物类核心期刊表根据主管单位级别期刊等级,基本全是国家级:1.《生态学报》国家级,主管:中国科学技术协会2.《生物化学与生物物理学报(英文)》国家级,主管:中国科学院3.《遗传学报(英文版)》国家级,主管:中国科学院4.《中国生物化学与分子生物学报》国家级别,主管:中国科学技术协会5.《生物化学与生物物理进展》国家级,主管:中国科学院6.《微生物学报》国家级,主管:中国科学院7.《生物物理学报》国家级别,主管:中国科学技术协会8.《遗传》国家级,主管:中国科学院9.《生物工程学报》国家级,主管:中国科学院10.《应用生态学报》国家级,主管:中国科学院11.《中国科学院》国家级,主管:中国科学院12.《中国科学.C辑》国家级,主管:中国科学院13.《古生物学报》国家级,主管:中国科学院14.《微生物学通报》国家级,主管:中国科学院15.《水生生物学报》国家级,主管:中国科学院出版图书情报委员会16.《菌物系统(改名为:菌物学报)》国家级,主管:中国科学院17.《生物多样性》国家级,主管:中国科学院18.《生物工程进展(改名为:中国生物工程杂志)》国家级,主管:中国科学院19.《实验生物学报》新闻出版总署未查到,应该属于停刊或改名期刊20.《生命的化学》国家级别,主管:中国科学技术协会21.《古脊椎动物学报》国家级,主管:中国科学院22.《微体古生物学报》国家级,主管:中国科学院23.《生态学杂志》国家级别,主管:中国科学技术协会24.《生物数学学报》新闻出版总署未查到,应该属于停刊或改名期刊

1、生态学报 2、应用生态学报 3、生物多样性 4、生物工程学报 5、遗传6、生物化学与生物物理进展 7、微生物学报 8、中国生物化学与分子生物学报9、水生生物学报 10、中国生物工程杂志 11、中国科学.C 辑,生命科学 12、生态学杂志 13、微生物学通报 14、应用与环境生物学报 15、生物物理学报16、古脊椎动物学报 17、古生物学报 18、微体古生物学报 19、生物数学学报20、生物技术 21、生命的化学 22、实验生物学报(改名为:分子细胞生物学报)23、生物技术通报 24、生命科学 25、生物学通报

生物技术通报,生物技术,可能容易发一点,试试前者,最新的中文核心期刊,但是不是cscd的核心期刊。不知道符合不符合你的要求,好一点的小综述的话,看看生命的化学和遗传等。

2 Biochemisty Stryer 选读3 Biochemisty Zubay 选读4 Moleculor Biology of the Cell Alberts et al. 必读5 Nature Mac. Magasines Ltd. 必读6 Nature Medicine Mac. Magasines Ltd. 选读7 Nature Structure Biol Mac. Magasines Ltd. 选读8 Science 必读9 Cell Cell Press 必读10 EMBO J. Eur. Mol. Bio. Org. 必读11 必读12 Biochemistry Cambridge 必读13 Menthods Enzymol USA 必读14 J. Biol. Chem. USA 必读15 Nucleic Acid Research Oxford University 必读16 Cancer Res. USA 必读17 Gene Elsevier 必读18 J. Bacteriol USA 必读19 生物化学与生物物理学报 中科院生物化学研究所 必读20 生物化学与生物物理进展 中科院生物化学研究所 必读21 生物化学与生物分子学学报 中国生化与分子生物学学会 选读22 中国科学 中国科学院

相关百科

热门百科

首页
发表服务