首页

> 论文发表知识库

首页 论文发表知识库 问题

微带共形阵列天线的研究论文

发布时间:

微带共形阵列天线的研究论文

微带天线进行工程设计时,要对天线的性能参数(例如方向图、方向性系数、效率、输入阻抗、极化和频带等)预先估算,这将大大提高天线研制的质量和效率,降低研制的成本。这种理论工作的开展,带来了多种分析微带天线的方法,例如传输线、腔模理论、格林函数法、积分方程法和矩量法等。用上述各种方法计算微带天线的方向图,其结果是一致的,特别是主波束。本部分将对一般的矩形微带天线进行分析讨论,为特殊形状要求的微带天线做好理论分析基础。利用传输线模式分析微带天线是比较早期的方法,也较简单,其精确度可以满足一般工程设计要求。以下将用传输线法如图1所示的基本矩形微带天线元为例,说明它的工作原理与主要电参数。物理模型传输线方法的基本假设:(1)微带片和接地板构成一般微带传输线,传输准TEM波。波的传输方向决定于馈电点。线段长度取1≈λg/2,λg为准TEM波的波长。场的传输方向是驻波分布,而在其垂直方向(图中的宽度W方向)是常数。(2)传输线的两个开口端(a-a,b-b)等效为两个辐射缝,长为W,宽为h,缝的径场为传输线开口端场强。缝平面看作位于微带片两端的延伸面上,即是将开口面向上折转90度,而开口场强也随之折转。辐射原理分析微带天线中有一维的尺寸远远小于波长,因而天线剖面很低(天线薄),有利于共形设计保证优良的空气动力特性。图1所示的长为L,宽为W2的矩形微带天线元可以看作一般的传输线连接两个辐射缝组成。低特性阻抗的传输线是由微带馈线扩展其宽度W1为W2而成,其长度L为半个微带波长,即λg/2。在低阻传输线两端形成两个缝隙(a-a,b-b),那里的电场分解为两个分量,其中En与接地板垂直;另一个与接地板并行,记作E1〃,由于L=λg/2,垂直分量反相,平行分量同相,因此在垂直于辐射源的方向上,水平分量有最大辐射分量,而垂直分量相互抵消。试验表明,电场的水平分量在辐射源的两个端部,各向外延伸一个介质板厚度h的长度内存在。这样就可近似认为微带天线元的辐射等于两个长度为W2,宽度为h,间距为L的裂缝组成的二元阵的辐射。图2表示其中一个裂缝的几何关系。图2单裂缝的坐标关系裂缝平面与接地面平行,裂缝受水平电场Ey的激励。Ey沿裂缝是均匀分布的(即沿x均匀分布)。裂缝的激励场Ey可以等效为沿x方向的磁流。磁流密度,其中为裂缝面的法向单位矢量(沿z方向)。考虑接地板的反射影响,则源的磁流密度,由于裂缝宽度h<<λ,所诀y沿y方向也是常数,故相应的磁流Im可写为于是裂缝的辐射就等效为磁流强度Im相同的一系列磁基本阵子沿着x轴排列的连续阵的辐射。将磁基本阵子的辐射场沿裂缝长度W积分,就可以得到其远区辐射场为微带线特性参数特性阻抗;传播波长;传播常数式中εe为等效相对介电常数,εr为介质板介电常数。空气微带天线特性阻抗Z0

卫星通信双线极化天线馈源阵列分析的论文

摘要 :本文介绍了一种用于Ku频段卫星通信的双线极化天线馈源阵列,该馈源阵列可应用于单反射面或双反射面的卫星通信天线中,实现对通信卫星的小角度、高速、高精度电子波束扫描和跟踪,降低卫星天线对机械伺服结构精度和动态跟踪的要求,从而大幅降低伺服系统成本,拓展动中通卫星天线在民用领域的应用。

关键词 :馈源阵列;动中通;微带天线

1引言

星地动中通天线系统满足了用户通过卫星在动态移动中传输宽带数据信息的需求,使车辆、轮船、飞机等移动载体在运动过程中可实时跟踪卫星,不间断传送语音、数据、图像等信息[1][2]。目前,动中通天线主要用Ku频段与固定轨道卫星进行通信[3],需同时覆盖上行/下行频段,其中上行频段为,下行频段、,上行和下行频段为双正交的线极化。为保证卫星与地面移动设备间的流畅通信,动中通天线要实时指向通信卫星,同时为避免天线发射时对邻近卫星的干扰,移动设备在运动中天线的跟踪误差要小于°,并且馈源也要进行旋转跟踪,接收和发射间的极化隔离度要大于30dB[4][5]。国内外已有多家企业推出了动中通天线产品,如以色列RaySat公司的多组片天线、美国TracStar的IMVS450M产品等[6]。为满足天线对卫星的高精度实时跟踪对准的要求,上述动中通天线中均包含有自动跟踪系统,在初始静态情况下,由GPS、经纬仪、捷联惯导系统测量出航向角、载体所在位置的经度和纬度及相对水平面的初始角,然后根据其姿态及地理位置、卫星经度自动确定以水平面为基准的天线仰角,在保持仰角对水平面不变的前提下转动方位,并以信号极大值方式自动对准卫星。在载体运动过程中,测量出载体姿态的变化,通过数学运算变换为天线的误差角,通过伺服机构调整天线方位角、俯仰角、极化角,保证载体在变化过程中天线对星保持在规定范围内,使卫星发射天线在载体运动中实时跟踪地球同步卫星。高精度的伺服系统始终是传统动中通天线系统的关键部分。通常情况下,由于动中通天线具有较大的口径(一般约为)及重量,造成了高精度伺服系统具有较高的成本。目前,应用于动中通天线的高精度伺服系统成本动辄数万、甚至超过十万,占整个动中通天线系统成本的很大部分,限制了动中通卫星天线在民用领域的广泛应用[5]。

2双线极化天线馈源阵列

为了克服现有的动中通天线跟踪伺服系统所需精度高、成本高等缺点,我们开发了一种双线极化天线馈源阵列,可应用于单反射式或卡塞格伦式卫星通信天线中,结合后端的多通道数字波束形成(DigitalBeamForming,DBF)技术实现天线系统的机电融合跟踪,最终通过“大角度低精度机械跟踪”与“小角度多通道DBF精确跟踪”相结合,在实现天线系统对卫星的高精度跟踪对准的同时,降低对伺服系统的精度要求,从而降低伺服系统的成本。此馈源阵列为中心对称式结构,阵列的中心放置在单反射式或卡塞格伦式天线的焦点处,当对阵列中不同单元进行馈电时天线将辐射不同指向的高增益波束,此时再结合后端的高精度DBF技术可实现小角度范围内高精度的波束指向控制。馈源阵列采用基于微带印刷电路板的“法布里-帕罗”天线形式,阵列由三层结构组成,其中底层为带金属地板的微带反射板,中间层为微带形式的天线结构,顶层为一块起增强定向性作用的纯介质板。

底层结构

馈源阵列的底层为一侧附铜并开有8个馈电孔的介质板,SSMA以及空心铜柱通过馈电孔焊接在底层介质板上,发射天线馈口和接收天线馈口分别有4个馈电孔。图2为底层电路板结构示意图。

顶层结构

顶层介质板是将覆铜板全部刻蚀掉的介质板,构成了“法布里-帕罗”的上层结构。图3为顶层电路板结构示意图。

中间层结构

中间层电路板两侧分别刻蚀了发射天线、接收天线及其附属馈电线路,其中,为焊接方便,焊盘均在一侧。为隔绝表面波对天线方向图的影响,天线阵列由格状金属条带分割,电路板两侧均有金属条带,并由金属化通孔相互导通。图4为中间层电路板结构示意图。中间层电路板上的微带阵列单元采用一对交叉的金属偶极子结构分别实现收/发的功能,两金属偶极子分别印刷于中间层微带介质板的正面与背面,分别工作于收/发(下行/上行)频段,并且交叉偶极子结构可对应实现收/发所要求的两正交线极化。阵列单元通过同轴底馈的方式实现馈电,其中偶极子的两臂分别与同轴接口的内芯以及外壁通过一段印刷细导线相连,这里采用细导线以减小馈电结构对收/发间隔离的影响。为进一步减小馈电结构对收/发间隔离所带来的影响,在设计中将同一位置处的两偶极子结构通过一段印刷细导线相连,通过其长度、粗细等参数可利用合适的对消手段来实现收/发之间的高隔离。通过在阵列单元周围引入一圈密集的金属化通孔结构,并且在电路板上设计金属附加结构以隔离介质中的表面波,从而降低阵列单元间的互耦。

馈源阵列的装配

馈源阵列的三层电路板由数个尼龙螺柱进行固定,图5是馈源阵列的立体分解及整体装配示意图。在馈源阵列结构中,通过调节金属偶极子的'臂长,可调节天线的工作频率。通过调节顶层介质基板与中间层电路板间的距离,可方便地调节辐射增益以适应不同反射面尺寸及焦距的需求。

3仿真及实测效果

馈源阵列的端口1、端口3、端口5、端口7为接收端口,端口2、端口4、端口6、端口8为发射端口。图6是馈源阵列的仿真和测试回波损耗结果图。由图6可见,接收端口和发射端口回波分别在和范围内小于-10dB,达到了良好匹配。图7是馈源阵列在工作频点的仿真及实测接收方向图。由图7可见,工作于时,天线在天顶方向的增益为15dB,副瓣比主瓣低10dB(仿真)/18dB(实测)。图8是馈源阵列在工作频点的仿真及实测发射方向图。由图8可见,工作于时,天线在天顶方向的增益为15dB,副瓣比主瓣低11dB(仿真)/10dB(实测)。

4结束语

本馈源阵列采用微带印刷电路板结构,简单紧凑、工艺成熟、加工简单、成本较低且适用于大规模生产。相比于传统的波导口、波导喇叭等馈源结构,可在较小的面积内实现多个单元以及收/发通道,从而利于实现更高精度的波束指向控制。同时,馈源阵列采用的对消技术可在天线结构端实现同一位置处接收/发射通道之间30dB的隔离度,减轻了后端器件的压力。从实际应用来看,天线馈源阵列与主反射面配合,实现了动中通卫星天线对Ku频段通信卫星的小角度、高速、高精度电子波束扫描和跟踪。采用这种技术,大幅降低了天线对伺服系统精度和动态反应速度的要求,把伺服系统的成本降低了一个数量级,有助于推动卫星天线在天地一体化通信中的规模应用。

参考文献

[1]徐烨烽.创新引领、精进发展、规模应用-谈动中通天线发展新趋势[J].卫星与网络,2013,09:39-40.

[2]LouisJ.,IppolitoJr著.孙宝升译.卫星通信系统工程[M].北京:国防工业出版社,2012,3.

[3]MiuraA.,Yamamotos,Huan-bangLi,[J].,2002,51(5):1153-1164.

[4]刘昌华.移动载体卫星通信系统天线跟踪技术的研究[硕士学位论文].西安电子科技大学,2009,3-4.

[5]汤铭.动中通伺服系统的设计[J].现代雷达,2003,25(4):51-54.

[6]阮晓刚,汪宏武.动中通卫星天线技术及产品的应用[J].卫星与网络,2006,3:34-37.

百度文库矩形微带天线毕业论文

传统的扩展微带天线带宽的方法包括引入L型探针结构馈线(相当于加入电感实现LC谐振结构),添加寄生单元以及加载超材料结构等。这些方法均增加了天线结构的复杂程度,进而为其工程化应用带来难度。但是,除去上述方法以外,也可以通过激励单天线的各个模达到相同的效果,且设计出的天线具有结构简单(单个贴片、单层介质)、稳定性强、低剖面、宽带(降低Q值)、低损耗(非多层结构)等诸多优点。 要想实现单天线的多模激发,需要在阻抗特性调控和辐射特性调控两个维度进行仿真与设计。在CST中进行特征模仿真时,需要完成天线的贴片布局,以及缝隙和短路柱等,而不需要加入馈电的部分。随后通过观察电流、磁流分布进行进一步优化。要想在指定频带内得到需要的模式,在激励相应模式的同时还需要抑制其他无关模式或将无关模式移至带外。 在贴片上开槽会让模式向高频移动,在贴片上加载短路柱会让模式向低频移动,且短路柱的数量和直径会对仿真结果有显著影响。增加外部贴片大小,模式的强电流将从中心向超表面的边缘移动。馈电点的位置会影响磁流的方向。

1. 智能压力传感器系统设计 2. 智能定时器 3. 液位控制系统设计 4. 液晶控制模块的制作 5. 嵌入式激光打标机运动控制卡软件系统设计 6. 嵌入式激光打标机运动控制卡硬件系统设计 7. 基于单片机控制的数字气压计的设计与实现 8. 基于MSC1211的温度智能温度传感器 9. 机器视觉系统 10. 防盗与恒温系统的设计与制作 11. 防盗报警器 12. AT89S52单片机实验系统的开发与应用 13. 在单片机系统中实现SCR(可控硅)过零控制 14. 微电阻测量系统 15. 基于单片机的电子式转速里程表的设计 16. 基于GSM短信模块的家庭防盗报警系统 17. 公交车汉字显示系统 18. 基于单片机的智能火灾报警系统 19. WIN32环境下对PC机通用串行口通信的研究及实现 20. FIR数字滤波器的MATLAB设计与实现方法研究 21. 无刷直流电机数字控制系统的研究与设计 22. 直线电机方式的地铁模拟地铁系统制作 23. 稳压电源的设计与制作 24. 线性直流稳压电源的设计 25. 基于CPLD的步进电机控制器 26. 全自动汽车模型的设计制作 27. 单片机数字电压表的设计 28. 数字电压表的设计 29. 计算机比值控制系统研究与设计 30. 模拟量转换成为数字量的红外传输系统 31. 液位控制系统研究与设计 32. 基于89C2051 IC卡读/写器的设计 33. 基于单片机的居室安全报警系统设计 34. 模拟量转换成为数字量红外数据发射与接收系统 35. 有源功率因数校正及有源滤波技术的研究 36. 全自动立体停车场模拟系统的制作 37. 基于I2C总线气体检测系统的设计 38. 模拟量处理为数字量红外语音传输接收系统的设计 39. 精密VF转换器与MCS-51单片机的接口技术 40. 电话远程监控系统的研究与制作 41. 基于UCC3802的开关电源设计 42. 串级控制系统设计 43. 分立式生活环境表的研究与制作(多功能电子万年历) 44. 高效智能汽车调节器 45. 变速恒频风力发电控制系统的设计 46. 全自动汽车模型的制作 47. 信号源的设计与制作 48. 智能红外遥控暖风机设计 49. 基于单片控制的交流调速设计 50. 基于单片机的多点无线温度监控系统 51. 蔬菜公司恒温库微机监控系统 52. 数字触发提升机控制系统 53. 农业大棚温湿度自动检测 54. 无人监守点滴自动监控系统的设计 55. 积分式数字电压表设计 56. 智能豆浆机的设计 57. 采用单片机技术的脉冲频率测量设计 58. 基于DSP的FIR滤波器设计 59. 基于单片机实现汽车报警电路的设计 60. 多功能数字钟设计与制作 61. 超声波倒车雷达系统硬件设计 62. 基于AT89C51单片机的步进电机控制系统 63. 模拟电梯的制作 64. 基于单片机程控精密直流稳压电源的设计 65. 转速、电流双闭环直流调速系统设计 66. 噪音检测报警系统的设计与研究 67. 转速闭环(V-M)直流调速系统设计 68. 基于单片机的多功能函数信号发生器设计 69. 基于单片机的超声波液位测量系统的设计 70. 仓储用多点温湿度测量系统 71. 基于单片机的频率计设计 72. 基于DIMM嵌入式模块在智能设备开发中的应用 73. 基于DS18B20的多点温度巡回检测系统的设计 74. 计数及数码显示电路的设计制作 75. 矿井提升机装置的设计 76. 中频电源的设计 77. 数字PWM直流调速系统的设计 78. 开关电源的设计 79. 基于ARM的嵌入式温度控制系统的设计 80. 锅炉控制系统的研究与设计 81. 智能机器人的研究与设计 ——\u001F自动循轨和语音控制的实现 82. 基于CPLD的出租车计价器设计——软件设计 83. 声纳式高度计系统设计和研究 84. 集约型无绳多元心脉传感器研究与设计 85. CJ20-63交流接触器的工艺与工装 86. 六路抢答器设计 87. V-M双闭环不可逆直流调速系统设计 88. 机床润滑系统的设计 89. 塑壳式低压断路器设计 90. 直流接触器设计 91. SMT工艺流程及各流程分析介绍 92. 大棚温湿度自动控制系统 93. 基于单片机的短信收发系统设计 ――硬件设计 94. 三层电梯的单片机控制电路 95. 交通灯89C51控制电路设计 96. 基于D类放大器的可调开关电源的设计 97. 直流电动机的脉冲调速 98. 红外快速检测人体温度装置的设计与研制 99. 基于8051单片机的数字钟 100. 48V25A直流高频开关电源设计 101. 动力电池充电系统设计 102. 多电量采集系统的设计与实现 103. PWM及单片机在按摩机中的应用 104. IC卡预付费煤气表的设计 105. 基于单片机的电子音乐门铃的设计 106. 基于单片机的温湿度测量系统设计 107. 基于单片机的简易GPS定位信息显示系统设计 108. 基于单片机的简单数字采集系统设计 109. 大型抢答器设计 110. 新型出租车计价器控制电路的设计 111. 500kV麻黄线电磁环境影响计算分析 112. 单片机太阳能热水器测控仪的设计 113. LED点阵显示屏-软件设计 114. 双容液位串级控制系统的设计与研究 115. 三电平Buck直流变换器主电路的研究 116. 基于PROTEUS软件的实验板仿真 117. 基于16位单片机的串口数据采集 118. 电机学课程CAI课件开发 119. 单片机教学实验板——软件设计 120. PN结(二极管)温度传感器性能的实验研究 121. 微电脑时间控制器的软件设计 122. 基于单片机AT89S52的超声波测距仪的研制 123. 硼在TLP扩散连接中的作用机理研究 124. 多功能智能化温度测量仪设计 125. 电网系统对接地电阻的智能测量 126. 基于数字采样法的工频电参数测量系统的设计 127. 动平衡检测系统的设计 128. 非正弦条件下电参测量的研究 129. 频率测量新原理的研究 130. 基于LABVIEW的人体心率变异分析测量 131. 学校多功能厅音响系统的设计与实现 132. 利用数字电路实现电子密码锁 133. 矩形微带天线的设计 134. 简易逻辑仪的分析 135. 无线表决系统的设计 136. 110kV变电站及其配电系统的设计 137. 10KV变电所及低压配电系统设计 138. 35KV变电所及低压配电系统设计 139. 6KV配电系统及车间变电所设计 140. 交流接触器自动化生产流水线设计 141. 63A三极交流接触器设计 142. 100A交流接触器设计 143. CJ20—40交流接触器工艺及工装设计 144. JSS型数字式时间继电器设计 145. 半导体脱扣器的设计 146. 12A交流接触器设计 147. CJ20-100交流接触器装配线设计 148. 真空断路器的设计 149. 总线式智能PID控制仪 150. 自动售报机的设计 151. 小型户用风力发电机控制器设计 152. 断路器的设计 153. 基于MATLAB的水轮发电机调速系统仿真 154. 数控缠绕机树脂含量自控系统的设计 155. 软胶囊的单片机温度控制(硬件设计) 156. 空调温度控制单元的设计 157. 基于人工神经网络对谐波鉴幅 158. 基于单片机的鱼用投饵机自动控制系统的设计 159. 基于MATLAB的调压调速控制系统的仿真研究 160. 锅炉汽包水位控制系统 161. 基于单片机的无刷直流电机控制系统设计 162. 煤矿供电系统的保护设计——硬件电路的设计 163. 煤矿供电系统的保护设计——软件设计 164. 大容量电机的温度保护——软件设计 165. 大容量电机的温度保护 ——硬件电路的设计 166. 模块化机器人控制器设计 167. 电子式热分配表的设计开发 168. 中央冷却水温控制系统 169. 基于单片机的玻璃管加热控制系统设计 170. 基于AT89C51单片机的号音自动播放器设计 171. 基于单片机的普通铣床数控化设计 172. 基于AT89C51单片机的电源切换控制器的设计 173. 基于51单片机的液晶显示器设计 174. 手机电池性能检测 175. 自动门控制系统设计 176. 汽车侧滑测量系统的设计 177. 超声波测距仪的设计及其在倒车技术上的应用 178. 篮球比赛计时器设计 179. 基于单片机控制的红外防盗报警器的设计 180. 智能多路数据采集系统设计 181. 继电器保护毕业设计 182. 电力系统电压频率紧急控制装置研究 183. 用单片机控制的多功能门铃 184. 全氢煤气罩式炉的温度控制系统的研究与改造 185. 基于ATmega16单片机的高炉透气性监测仪表的设计 186. 基于MSP430的智能网络热量表 187. 火电厂石灰石湿法烟气脱硫的控制 188. 家用豆浆机全自动控制装置 189. 新型起倒靶控制系统的设计与实现 190. 软开关技术在变频器中的应用 191. 中频感应加热电源的设计 192. 智能小区无线防盗系统的设计 193. 智能脉搏记录仪系统 194. 直流开关稳压电源设计 195. 用单片机实现电话远程控制家用电器 196. 无线话筒制作 197. 温度检测与控制系统 198. 数字钟的设计 199. 汽车尾灯电路设计 200. 篮球比赛计时器的硬件设计 201. 公交车报站系统的设计 202. 频率合成器设计 203. 基于RS485总线的远程双向数据通信系统的设计 204. 宾馆客房环境检测系统 205. 智能充电器的设计与制作 206. 基于单片机的电阻炉温度控制系统设计 207. 单片机控制的PWM直流电机调速系统的设计 208. 遗传PID控制算法的研究 209. 模糊PID控制器的研究及应用 210. 楼宇自动化系统的设计与调试 211. 基于AT89C51单片机控制的双闭环直流调速系统设计212. 基于89C52的多通道采集卡的设计 213. 单片机自动找币机械手控制系统设计 214. 单片机控制PWM直流可逆调速系统设计 215. 单片机电阻炉温度控制系统设计 216. 步进电机实现的多轴运动控制系统 217. IC卡读写系统的单片机实现 218. 基于单片机的户式中央空调器温度测控系统设计 219. 基于单片机的乳粉包装称重控制系统设计 220. 18B20多路温度采集接口模块 221. 基于单片机防盗报警系统的设计 222. 基于MAX134与单片机的数字万用表设计 223. 数字式锁相环频率合成器的设计 224. 集中式干式变压器生产工艺控制器 225. 小型数字频率计的设计 226. 可编程稳压电源 227. 数字式超声波水位控制器的设计 228. 基于单片机的室温控制系统设计 229. 基于单片机的车载数字仪表的设计 230. 单片机的水温控制系统 231. 数字式人体脉搏仪的设计 232. I2C总线数据传输应用研究(硬件部分) 233. STV7697在显示驱动电路系统中的应用(软件设计)234. LED字符显示驱动电路(软件部分) 235. 智能恒压充电器设计 236. 基于单片机的定量物料自动配比系统 237. 现代发动机自诊断系统探讨 238. 基于单片机的液位检测 239. 基于单片机的水位控制系统设计 240. FFT在TMS320C54XDSP处理器上的实现 241. 基于模拟乘法器的音频数字功率设计 242. 正弦稳态电路功率的分析 243. 基于Multisim三相电路的仿真分析 244. 他励直流电动机串电阻分级启动虚拟实验 245. 并励直流电动机串电阻三级虚拟实验 246. 基于80C196MC交流调速实验系统软件的设计与开发 247. 基于VDMOS调速实验系统主电路模板的设计与开发 248. 基于Matlab的双闭环PWM直流调速虚拟实验系统 249. 基于IGBT-IPM的调速实验系统驱动模板的设计与开发 250. 基于87C196MC交流调速系统主电路软件的设计与开发 251. HEF4752为核心的交流调速系统控制电路模板的设计与开发 252. 基于87C196MC交流调速实验系统软件的设计与开发 253. 87C196MC单片机最小系统单路模板的设计与开发 254. MOSFET管型设计开关型稳压电源 255. 电子密码锁控制电路设计 256. 基于单片机的数字式温度计设计 257. 智能仪表用开关电源的设计 258. 遥控窗帘电路的设计 259. 双闭环直流晶闸管调速系统设计 260. 三路输出180W开关电源的设计 261. 多点温度数据采集系统的设计 262. 列车测速报警系统 263. PIC单片机在空调中的应用 264. 基于单片机的温度采集系统设计 265. 基于单片机89C52的啤酒发酵温控系统 266. 基于MCS-51单片机温控系统设计的电阻炉 267. 基于单片机的步进电机控制系统 268. 新颖低压万能断路器 269. 万年历可编程电子钟控电铃 270. 数字化波形发生器的设计 271. 高压脉冲开关电源 272. 基于MCS-96单片机的双向加力式电子天平 273. 语音控制小汽车控制系统设计 274. 智能型客车超载检测系统的设计 275. 热轧带钢卷取温度反馈控制器的设计 276. 直流机组电动机设计 277. 龙门刨床驱动系统的设计 278. 基于单片机的大棚温、湿度的检测系统 279. 微波自动门 280. 基于DS18B20温度传感器的数字温度计设计 281. 节能型电冰箱研究 282. 交流异步电动机变频调速设计 283. 基于单片机控制的PWM调速系统 284. 基于单片机的数字温度计的电路设计 285. 基于Atmel89系列芯片串行编程器设计 286. 基于单片机的实时时钟 287. 基于MCS-51通用开发平台设计 288. 基于MP3格式的单片机音乐播放系统 289. 基于单片机的IC卡智能水表控制系统设计 290. 基于MATLAB的FIR数字滤波器设计 291. 单片机水温控制系统 292. 110kV区域降压变电所电气系统的设计 293. ATMEIL AT89系列通用单片机编程器的设计 294. 基于单片机的金属探测器设计 295. 双闭环三相异步电动机串级调速系统 296. 基于单片机技术的自动停车器的设计 297. 单片机电器遥控器的设计 298. 自动剪板机单片机控制系统设计 299. 蓄电池性能测试仪设计 300. 电气控制线路的设计原则 301. 无线比例电机转速遥控器的设计 302. 简易数字电子称设计 303. 红外线立体声耳机设计 304. 单片机与PC串行通信设计 305. 100路数字抢答器设计 306. D类功率放大器设计 307. 铅酸蓄电池自动充电器 308. 数字温度测控仪的设计 309. 下棋定时钟设计 310. 温度测控仪设计 311. 数字频率计 312. 数字集成功率放大器整体电路设计 313. 数字电容表的设计 314. 数字冲击电流计设计 315. 数字超声波倒车测距仪设计 316. 路灯控制器 317. 扩音机的设计 318. 交直流自动量程数字电压表 319. 交通灯控制系统设计 320. 简易调频对讲机的设计 321. 峰值功率计的设计 322. 多路温度采集系统设计 323. 多点数字温度巡测仪设计 324. 电机遥控系统设计 325. 由TDA2030A构成的BTL功率放大器的设计 326. 超声波测距器设计 327. 4-15V直流电源设计 328. 家用对讲机的设计 329. 流速及转速电路的设计 330. 基于单片机的家电远程控制系统设计 331. 万年历的设计 332. 单片机与计算机USB接口通信 333. LCD数字式温度湿度测量计 334. 逆变电源设计 335. 基于单片机的电火箱调温器 336. 表面贴片技术SMT的广泛应用及前景 337. 中型电弧炉单片机控制系统设计 338. 中频淬火电气控制系统设计 339. 新型洗浴器设计 340. 新型电磁开水炉设计 341. 基于电流型逆变器的中频冶炼电气设计 342. 6KW电磁采暖炉电气设计 343. 64点温度监测与控制系统 344. 电力市场竞价软件设计 345. DS18B20温度检测控制 346. 步进电动机驱动器设计 347. 多通道数据采集记录系统 348. 单片机控制直流电动机调速系统 349. IGBT逆变电源的研究与设计 350. 软开关直流逆变电源研究与设计 351. 单片机电量测量与分析系统 352. 温湿度智能测控系统 353. 现场总线控制系统设计 354. 加热炉自动控制系统 355. 电容法构成的液位检测及控制装置 356. 基于CD4017电平显示器 357. 无线智能报警系统 358. 可编程的LED(16×64)点阵显示屏 359. 多路智力抢答器设计 360. 8×8LED点阵设计 361. 电子风压表设计 362. 智能定时闹钟设计 363. 数字音乐盒设计 364. 数字温度计设计 365. 数字定时闹钟设计 366. 数字电压表设计 367. 计算器模拟系统设计 368. 定时闹钟设计 369. 电子万年历设计 370. 电子闹钟设计 371. 单片机病房呼叫系统设计 372. 家庭智能紧急呼救系统的设计 373. 自动车库门的设计 374. 异步电动机功率因数控制系统的研究 375. 普通模拟示波器加装多功能智能装置的设计 376. 步进电机运行控制器的设计 377. 80C196MC控制的交流变频调速系统设计 378. 汽车防盗系统 379. 简易远程心电监护系统 380. 智能型充电器的电源和显示的设计 381. 电气设备的选择与校验 382. 论供电系统中短路电流及其计算 383. 论工厂的电气照明 384. 论无线通信技术热点及发展趋势 385. 浅论10KV供电系统的继电保护的设计方案 386. 试论供电系统中的导体和电器的选择 387. 大棚仓库温湿度自动控制系统 388. 自行车车速报警系统 389. 智能饮水机控制系统 390. 基于单片机的数字电压表设计 391. 多用定时器的电路设计与制作 392. 智能编码电控锁设计 393. 串联稳压电源的设计 394. 红外恒温控制器的设计与制作 395. 自行车里程,速度计的设计 396. 等精度频率计的设计 397. 浮点数运算FPGA实现 398. 人体健康监测系统设计 399. 基于单片机的音乐喷泉控制系统设计 400. 基于LabVIEW的虚拟频谱分析仪的研究与设计 401. 感应式门铃的设计与制作 402. 电子秤设计与制作 403. 电动车三段式充电器 404. SB140肖特基二极管制造与检测 405. SMT技术 406. 基于单片机的温度测量系统的设计 407. 龙门刨床的可逆直流调速系统的设计 408. 公交车站自动报站器的设计 409. 单片机波形记录器的设计 410. 音频信号分析仪 411. 基于单片机的机械通风控制器设计

应用分析与设计方法应用情况微带天线具有小型化、易集成、方向性好等优点,因此其应用前景广阔,尤其可在无线电引信上积极的推广与应用。现以国外某型炮弹引信为例,简要说明微带天线在引信上的分析与设计。该引信是—调频体制引信,天线部分由头部的塑料封帽、微带贴片和金属底板组成,安装在弹体头部。该天线在电流不连续点形成等效磁流源,靠改变各磁流的位置,可改变天线的方向性。馈电方式与阻抗矩形微带天线的馈电方式基本上分成侧馈和背馈两种。不论那种方式,其谐振输入电阻Rin很大,为使Rin与50Ω馈电系统相匹配,则阻抗变换器是不可少的。为实现匹配,输入阻抗的大小必须知道。整个微带天线的输入导纳可看作是一个缝的导纳,经长度为L的低特性阻抗传输线变换后,再与另一个缝的导纳并联,谐振状态其输入电纳为零,输入导纳等于两倍的输入电导Yin-2G∑〃当Wλ时,G∑〃=w2/90λz其值通常比微带传输线的特性导纳小很多,接近开路状态,因此限制了天线的阻抗频带。为了使频带加宽,可增加基片的厚度,减小基片的εr值,以使特性导纳降低;再增加W使辐射电导提高。由上式可见,方向函数由两个因子组成,其中一个sinθ即基本磁阵子的方向函数;另一个就是长度为L的等幅同相连续阵的阵因子。矩形微带天线单元的辐射就等于上述裂缝组成的间距为L的二元阵的辐射。如图3所示二元阵本文转自微波仿真论坛天线的辐射场为 ,r是微带中心到场点的距离。由于hλ,故F2(θ,φ)≈1同样(4) 由上式可见,若φ=0,则此平面上仅有Eθ分量,故此平面为E面;而在φ=90°平面,Eθ=0,仅有Eφ分量,故为H面,这是与波传播方向垂直的平面,最大辐射方向在θ=0即z轴。这是因为激励二元阵的特点。该型炮弹引信微带天线采用侧馈方式,在制作侧馈的矩形微带天线时,可按下述方法实现匹配:将中心馈电天线的贴片同50Ω馈线一起光刻制作,实测其输入阻抗并设计出匹配变换器,然后在天线辐射元与微带馈线间接入该变换器就做成所需的天线。辐射模型图4所示为该型天线式样图4某型引信微带天线由实地测量、试验等方法,可得出其εr,f0,h,W,L,并由上述公式得出微带天线εe,λg,Z0。以传输线理论分析方法为依据,用等效磁流的观点建立模型。同时根据电压波形考虑微带两开口端辐射,以及两转折弯头的辐射,给出各不连续处的电场,得到磁流的大小与方向。由于金属底板的反射,用镜像的原理得其相应的场源分布情况。微带天线上各处辐射情况如图5所示。图5该型微带天线的辐射模型定量分析方法由天线辐射原理模型可以看出,共有6对磁流源,y轴平行排列着Im6Im′6,Im1Im′1,Im3Im′3,Im5Im′5,x轴轴向排列有Im2Im′2,Im4Im′4等。求解总辐射场时,可看作是这5个二元缝阵辐射场的叠加。图5中所标的字母Im1,Im2,Im3…等,是以Im1点为参考所作的归一化,用来表示各辐射点电场幅值的大小;另外用β1,β2,β3表示Im3,Im5,Im6点电压相位滞后于Im1点的数值。这些数值的获取是通过对微带贴片的实际测量,代用公式求得微带上传输波的波长并求得相应的波形,这样各点相位滞后情况就可知道,代用式(1)便可求出各点的等效磁流的大小。由于测量的误差,势必造成计算结果的失真,严重时,可能导致所得到的天线参数与实际情况背离很远。针对上述辐射源排列,现简单的作一探讨,列出其辐射方程,供大家讨论。该情况下,天线方向图的E面、H面上有水平和垂直两种极化方式。求解时单独考虑。(1)φ=90°平面上,Im1-Im′1,Im6-Im′6,Im3-Im′3,Im5-Im′5组成的辐射阵,在该面上只有Eφ分量,Im2-Im ′2,Im4-Im′4组成的辐射阵,则只有Eθ分量。所以存在两种极化方式。公式如下:上述式(5)、(6)、(7)、(8)描述了该型微带天线辐射的情况。C语言编程实现该过程。由模拟出的方向图可以较清楚地看到,φ=90°平面即垂直于弹轴的赤道面上,天线的方向图呈两个8字型,一个为竖8字型,一个为横8字型,这一点与实测的天线方向图相符合。φ=0°平面即平行于弹轴的子午面上,水平极化为一前倾的半圆形,这与实际也相符,但是垂直极化的方向图与实测的方向图不够符合。其原因与尺寸测量误差有关。改变介质板的厚度,介电常数,微带贴片的宽度等,就从根本上改变了微带传输线上的波形(传输波长λR与上述参数有密切的关联)。从对方向图影响的角度来看,赤道面上影响不大,但在子午面上影响明显,前倾的半圆形可能会变成横8字型(当然这是在保证天线尺寸不变的情况下)。微带天线

微带天线进行工程设计时,要对天线的性能参数(例如方向图、方向性系数、效率、输入阻抗、极化和频带等)预先估算,这将大大提高天线研制的质量和效率,降低研制的成本。这种理论工作的开展,带来了多种分析微带天线的方法,例如传输线、腔模理论、格林函数法、积分方程法和矩量法等。用上述各种方法计算微带天线的方向图,其结果是一致的,特别是主波束。本部分将对一般的矩形微带天线进行分析讨论,为特殊形状要求的微带天线做好理论分析基础。利用传输线模式分析微带天线是比较早期的方法,也较简单,其精确度可以满足一般工程设计要求。以下将用传输线法如图1所示的基本矩形微带天线元为例,说明它的工作原理与主要电参数。物理模型传输线方法的基本假设:(1)微带片和接地板构成一般微带传输线,传输准TEM波。波的传输方向决定于馈电点。线段长度取1≈λg/2,λg为准TEM波的波长。场的传输方向是驻波分布,而在其垂直方向(图中的宽度W方向)是常数。(2)传输线的两个开口端(a-a,b-b)等效为两个辐射缝,长为W,宽为h,缝的径场为传输线开口端场强。缝平面看作位于微带片两端的延伸面上,即是将开口面向上折转90度,而开口场强也随之折转。辐射原理分析微带天线中有一维的尺寸远远小于波长,因而天线剖面很低(天线薄),有利于共形设计保证优良的空气动力特性。图1所示的长为L,宽为W2的矩形微带天线元可以看作一般的传输线连接两个辐射缝组成。低特性阻抗的传输线是由微带馈线扩展其宽度W1为W2而成,其长度L为半个微带波长,即λg/2。在低阻传输线两端形成两个缝隙(a-a,b-b),那里的电场分解为两个分量,其中En与接地板垂直;另一个与接地板并行,记作E1〃,由于L=λg/2,垂直分量反相,平行分量同相,因此在垂直于辐射源的方向上,水平分量有最大辐射分量,而垂直分量相互抵消。试验表明,电场的水平分量在辐射源的两个端部,各向外延伸一个介质板厚度h的长度内存在。这样就可近似认为微带天线元的辐射等于两个长度为W2,宽度为h,间距为L的裂缝组成的二元阵的辐射。图2表示其中一个裂缝的几何关系。图2单裂缝的坐标关系裂缝平面与接地面平行,裂缝受水平电场Ey的激励。Ey沿裂缝是均匀分布的(即沿x均匀分布)。裂缝的激励场Ey可以等效为沿x方向的磁流。磁流密度,其中为裂缝面的法向单位矢量(沿z方向)。考虑接地板的反射影响,则源的磁流密度,由于裂缝宽度h<<λ,所诀y沿y方向也是常数,故相应的磁流Im可写为于是裂缝的辐射就等效为磁流强度Im相同的一系列磁基本阵子沿着x轴排列的连续阵的辐射。将磁基本阵子的辐射场沿裂缝长度W积分,就可以得到其远区辐射场为微带线特性参数特性阻抗;传播波长;传播常数式中εe为等效相对介电常数,εr为介质板介电常数。空气微带天线特性阻抗Z0

微带缝隙天线的论文开题报告

A=20B=4

文末附开题报告万能模板,不会的宝子们直接套模板!!每年到了写毕业论文的时候,翟某某都会被拎出来骂一通,虽然说以前各高校对论文也有一定的要求,但是自从翟某某事件后,高校对学术不端这块更加严查了,以至于很多高校在开题报告上都审查的非常严格。有的同学一个开题报告修改了不下五次,简直太惨了!!一、什么是开题报告?开题报告其实就是论文的一个精简版介绍,确定论文主题的大方向,帮助读者更好的理解论文。开题报告需详细说明论文的大纲,讲明课题的研究目的、意义,以及论文所需要引用的文献;需说明研究课题的可行性与创新性以及介绍本人所研究课题的初步方案。二、开题报告的主要组成部分(1)开题报告封面——包含论文题目、系别、专业、年级、姓名和导师。论文的题目要准确规范,题目不要过长,一般20字以内最佳。以简洁专业的术语表明论文研究的核心内容。开题报告一般不使用副标题。(2)论文研究的背景、目的和意义——你为什么要做这个研究,研究它的价值是什么。这个可以先结合现实情况去进行论述,指出现实中存在的问题,需要去做研究解决。然后就论文研究的实际作用、预期达到的结果以及该研究的理论意义和实践意义进行阐述。(3)国内外研究现状——文献综述部分,就该研究课题的发展历史,以及前人的研究成果、发展趋势、问题等综合进行比较分析,然后提出自己的见解。(4)论文研究方法、研究内容——将文中的研究方法逐一列举出来,并按照你如何使用该方法进行阐述。研究内容将大纲再进行深入阐述一遍即可。(5)研究条件和可能存在的问题——对当下该研究的现状及成果进行分析,确定该课题将采用的研究方法以及在研究过程中可能会存在的问题。(6)预期的结果——该课题研究最终要达到的目的,以及实际解决了哪些问题。(7)论文拟撰写的主要内容——就是论文大纲,篇幅不宜过长,但要把计划研究的课题、准备如何研究、理论适用等主要问题说清楚。(8)论文工作进度安排——按照学校规定的日期合理填写进度表即可。(9)参考文献——按照学校规定的标准格式列出即可,参考文献的目录,中文文献不少于10篇、英文文献不少于5篇。(10)教研室可行性论证结论——是否准许开题。三、开题报告的考核指标如下:1、研究课题的问题定位清晰。选题应结合现实实践,研究问题要具体,解决方案要有理论依据,具有普遍借鉴的意义。2、研究目标要明确,要切实剖析问题,能够用理论知识从实际解决问题。3、研究内容要具体、明确。不要假大空,要小题大做。要充分考虑不同内容点之间的系统性、有限性和适中性。4、研究方法和技术方案的可行性,要用实际数据来说话,所以必须要有数据收集方法。四、开题报告的格式要求开题报告字数和格式一般学校会有要求,以学校要求为准即可。如果学校没有固定模板,可参考网上模板(模板一)(模板二)(模板三)开题报告只是毕业论文的开始,好的开题报告对后续论文的写作是有很大帮助的,所以同学们一定要认真对待,在写论文开题报告的时候,一定要和自己的指导老师多沟通,因为导师是第一关。最后,预祝宝子们毕业论文都能顺利通过~附开题报告万能模板开题报告模板一开题报告模板二开题报告模板三

开题报告怎么写如下:

一、论文拟研究解决的问题

明确提出论文所要解决的具体学术问题,也就是论文拟定的创新点。明确指出国内外文献就这一问题已经提出的观点、结论、解决方法、阶段性成果。评述上述文献研究成果的不足。提出你的论文准备论证的观点或解决方法,简述初步理由。

你的观点或方法正是需要通过论文研究撰写所要论证的核心内容,提出和论证它是论文的目的和任务,因而并不是定论,研究中可能推翻,也可能得不出结果。

开题报告的目的就是要请专家帮助判断你所提出的问题是否值得研究,你准备论证的观点方法是否能够研究出来。一般提出3或4个问题,可以是一个大问题下的几个子问题,也可以是几个并行的相关问题。

二、国内外研究现状

内容要求:列举与论文拟研究解决的问题密切相关的前沿文献。基于“论文拟研究解决的问题”提出,允许有部分内容重复。只简单评述与论文拟研究解决的问题密切相关的前沿文献,其他相关文献评述则在文献综述中评述。

三、论文研究的目的与意义

简介论文所研究问题的基本概念和背景。简单明了地指出论文所要研究解决的具体问题。简单阐述如果解决上述问题在学术上的推进或作用。基于论文拟研究解决的问题提出,允许有所重复。

四、论文研究主要内容

容要求:初步提出整个论文的写作大纲或内容结构。由此更能理解“论文拟研究解决的问题”不同于论文主要内容,而是论文的目的与核心。

开题报告写法:

1、明白开题报告的含义与作用:开题报告是在学位论文研究课题确定之后对课题进行的论证和设计,阐述这个课题有什么价值、应该怎样进行研究,提出研究方案,以保证整个研究工作有条不紊地进行。也就是说,确定了的开题报告是研究工作的行动指南,尽管可以随时修正,但不能随意推翻。

2、开展充分的调查研究工作:开题报告不是凭空写出来的,动笔写之前要做到大量的工作,包括广泛地阅读文献,熟悉导师或师兄师姐做过的工作,落实实验室工作条件,摸清楚研究对象基本情况。

3、认清开题活动的作用:开题活动是集思广益的学术交流,其作用是从同行那里获取更多有益的帮助。通过开题活动,让更多同行——导师以外的其他老师,课题组以外的其他同学——在短时间里听懂、看懂自己要做什么,并给予具体的建议。自己的开题报告写得不清晰,同行不知从何帮助,开题活动也就沦为走过场。

注意事项:

题目就是文章的眼睛,要明亮而有神,是论文研究内容的高度概括,是整篇论文的研讨中心,题目就是告诉别人你要干什么或解决什么问题。

因此,论文题目要注意以下几方面:题目应当精练并完整表达文章的本意,但切忌简单的罗列现象或者陈述事实。

文章题目不宜使用公文式的标题;文章题目要体现研究的侧重点,要呈现研究对象以及要解决的问题(也就是研究的对象和研究内容一定要在题目呈现);论文题目要新颖、简洁,字数最好不超过20个字,如果确因研究需要,就采用主副标题。

微带双频天线设计论文模板

变极化系统和双极化微带天线的研究 陈建国 南京理工大学 2006-06-01 硕士 宽带及双频双极化微带天线研究 潘雪明 西安电子科技大学 2005-02-01 硕士 等等很多这样的论文,我可以提供给你这些资料,但是我不懂这个,所以还是要自己去看和组织写出来:具体的有哪些,你自己去看,需要什么就HI 我:

应用分析与设计方法应用情况微带天线具有小型化、易集成、方向性好等优点,因此其应用前景广阔,尤其可在无线电引信上积极的推广与应用。现以国外某型炮弹引信为例,简要说明微带天线在引信上的分析与设计。该引信是—调频体制引信,天线部分由头部的塑料封帽、微带贴片和金属底板组成,安装在弹体头部。该天线在电流不连续点形成等效磁流源,靠改变各磁流的位置,可改变天线的方向性。馈电方式与阻抗矩形微带天线的馈电方式基本上分成侧馈和背馈两种。不论那种方式,其谐振输入电阻Rin很大,为使Rin与50Ω馈电系统相匹配,则阻抗变换器是不可少的。为实现匹配,输入阻抗的大小必须知道。整个微带天线的输入导纳可看作是一个缝的导纳,经长度为L的低特性阻抗传输线变换后,再与另一个缝的导纳并联,谐振状态其输入电纳为零,输入导纳等于两倍的输入电导Yin-2G∑〃当Wλ时,G∑〃=w2/90λz其值通常比微带传输线的特性导纳小很多,接近开路状态,因此限制了天线的阻抗频带。为了使频带加宽,可增加基片的厚度,减小基片的εr值,以使特性导纳降低;再增加W使辐射电导提高。由上式可见,方向函数由两个因子组成,其中一个sinθ即基本磁阵子的方向函数;另一个就是长度为L的等幅同相连续阵的阵因子。矩形微带天线单元的辐射就等于上述裂缝组成的间距为L的二元阵的辐射。如图3所示二元阵本文转自微波仿真论坛天线的辐射场为 ,r是微带中心到场点的距离。由于hλ,故F2(θ,φ)≈1同样(4) 由上式可见,若φ=0,则此平面上仅有Eθ分量,故此平面为E面;而在φ=90°平面,Eθ=0,仅有Eφ分量,故为H面,这是与波传播方向垂直的平面,最大辐射方向在θ=0即z轴。这是因为激励二元阵的特点。该型炮弹引信微带天线采用侧馈方式,在制作侧馈的矩形微带天线时,可按下述方法实现匹配:将中心馈电天线的贴片同50Ω馈线一起光刻制作,实测其输入阻抗并设计出匹配变换器,然后在天线辐射元与微带馈线间接入该变换器就做成所需的天线。辐射模型图4所示为该型天线式样图4某型引信微带天线由实地测量、试验等方法,可得出其εr,f0,h,W,L,并由上述公式得出微带天线εe,λg,Z0。以传输线理论分析方法为依据,用等效磁流的观点建立模型。同时根据电压波形考虑微带两开口端辐射,以及两转折弯头的辐射,给出各不连续处的电场,得到磁流的大小与方向。由于金属底板的反射,用镜像的原理得其相应的场源分布情况。微带天线上各处辐射情况如图5所示。图5该型微带天线的辐射模型定量分析方法由天线辐射原理模型可以看出,共有6对磁流源,y轴平行排列着Im6Im′6,Im1Im′1,Im3Im′3,Im5Im′5,x轴轴向排列有Im2Im′2,Im4Im′4等。求解总辐射场时,可看作是这5个二元缝阵辐射场的叠加。图5中所标的字母Im1,Im2,Im3…等,是以Im1点为参考所作的归一化,用来表示各辐射点电场幅值的大小;另外用β1,β2,β3表示Im3,Im5,Im6点电压相位滞后于Im1点的数值。这些数值的获取是通过对微带贴片的实际测量,代用公式求得微带上传输波的波长并求得相应的波形,这样各点相位滞后情况就可知道,代用式(1)便可求出各点的等效磁流的大小。由于测量的误差,势必造成计算结果的失真,严重时,可能导致所得到的天线参数与实际情况背离很远。针对上述辐射源排列,现简单的作一探讨,列出其辐射方程,供大家讨论。该情况下,天线方向图的E面、H面上有水平和垂直两种极化方式。求解时单独考虑。(1)φ=90°平面上,Im1-Im′1,Im6-Im′6,Im3-Im′3,Im5-Im′5组成的辐射阵,在该面上只有Eφ分量,Im2-Im ′2,Im4-Im′4组成的辐射阵,则只有Eθ分量。所以存在两种极化方式。公式如下:上述式(5)、(6)、(7)、(8)描述了该型微带天线辐射的情况。C语言编程实现该过程。由模拟出的方向图可以较清楚地看到,φ=90°平面即垂直于弹轴的赤道面上,天线的方向图呈两个8字型,一个为竖8字型,一个为横8字型,这一点与实测的天线方向图相符合。φ=0°平面即平行于弹轴的子午面上,水平极化为一前倾的半圆形,这与实际也相符,但是垂直极化的方向图与实测的方向图不够符合。其原因与尺寸测量误差有关。改变介质板的厚度,介电常数,微带贴片的宽度等,就从根本上改变了微带传输线上的波形(传输波长λR与上述参数有密切的关联)。从对方向图影响的角度来看,赤道面上影响不大,但在子午面上影响明显,前倾的半圆形可能会变成横8字型(当然这是在保证天线尺寸不变的情况下)。微带天线

双频微带天线设计毕业论文

卫星通信双线极化天线馈源阵列分析的论文

摘要 :本文介绍了一种用于Ku频段卫星通信的双线极化天线馈源阵列,该馈源阵列可应用于单反射面或双反射面的卫星通信天线中,实现对通信卫星的小角度、高速、高精度电子波束扫描和跟踪,降低卫星天线对机械伺服结构精度和动态跟踪的要求,从而大幅降低伺服系统成本,拓展动中通卫星天线在民用领域的应用。

关键词 :馈源阵列;动中通;微带天线

1引言

星地动中通天线系统满足了用户通过卫星在动态移动中传输宽带数据信息的需求,使车辆、轮船、飞机等移动载体在运动过程中可实时跟踪卫星,不间断传送语音、数据、图像等信息[1][2]。目前,动中通天线主要用Ku频段与固定轨道卫星进行通信[3],需同时覆盖上行/下行频段,其中上行频段为,下行频段、,上行和下行频段为双正交的线极化。为保证卫星与地面移动设备间的流畅通信,动中通天线要实时指向通信卫星,同时为避免天线发射时对邻近卫星的干扰,移动设备在运动中天线的跟踪误差要小于°,并且馈源也要进行旋转跟踪,接收和发射间的极化隔离度要大于30dB[4][5]。国内外已有多家企业推出了动中通天线产品,如以色列RaySat公司的多组片天线、美国TracStar的IMVS450M产品等[6]。为满足天线对卫星的高精度实时跟踪对准的要求,上述动中通天线中均包含有自动跟踪系统,在初始静态情况下,由GPS、经纬仪、捷联惯导系统测量出航向角、载体所在位置的经度和纬度及相对水平面的初始角,然后根据其姿态及地理位置、卫星经度自动确定以水平面为基准的天线仰角,在保持仰角对水平面不变的前提下转动方位,并以信号极大值方式自动对准卫星。在载体运动过程中,测量出载体姿态的变化,通过数学运算变换为天线的误差角,通过伺服机构调整天线方位角、俯仰角、极化角,保证载体在变化过程中天线对星保持在规定范围内,使卫星发射天线在载体运动中实时跟踪地球同步卫星。高精度的伺服系统始终是传统动中通天线系统的关键部分。通常情况下,由于动中通天线具有较大的口径(一般约为)及重量,造成了高精度伺服系统具有较高的成本。目前,应用于动中通天线的高精度伺服系统成本动辄数万、甚至超过十万,占整个动中通天线系统成本的很大部分,限制了动中通卫星天线在民用领域的广泛应用[5]。

2双线极化天线馈源阵列

为了克服现有的动中通天线跟踪伺服系统所需精度高、成本高等缺点,我们开发了一种双线极化天线馈源阵列,可应用于单反射式或卡塞格伦式卫星通信天线中,结合后端的多通道数字波束形成(DigitalBeamForming,DBF)技术实现天线系统的机电融合跟踪,最终通过“大角度低精度机械跟踪”与“小角度多通道DBF精确跟踪”相结合,在实现天线系统对卫星的高精度跟踪对准的同时,降低对伺服系统的精度要求,从而降低伺服系统的成本。此馈源阵列为中心对称式结构,阵列的中心放置在单反射式或卡塞格伦式天线的焦点处,当对阵列中不同单元进行馈电时天线将辐射不同指向的高增益波束,此时再结合后端的高精度DBF技术可实现小角度范围内高精度的波束指向控制。馈源阵列采用基于微带印刷电路板的“法布里-帕罗”天线形式,阵列由三层结构组成,其中底层为带金属地板的微带反射板,中间层为微带形式的天线结构,顶层为一块起增强定向性作用的纯介质板。

底层结构

馈源阵列的底层为一侧附铜并开有8个馈电孔的介质板,SSMA以及空心铜柱通过馈电孔焊接在底层介质板上,发射天线馈口和接收天线馈口分别有4个馈电孔。图2为底层电路板结构示意图。

顶层结构

顶层介质板是将覆铜板全部刻蚀掉的介质板,构成了“法布里-帕罗”的上层结构。图3为顶层电路板结构示意图。

中间层结构

中间层电路板两侧分别刻蚀了发射天线、接收天线及其附属馈电线路,其中,为焊接方便,焊盘均在一侧。为隔绝表面波对天线方向图的影响,天线阵列由格状金属条带分割,电路板两侧均有金属条带,并由金属化通孔相互导通。图4为中间层电路板结构示意图。中间层电路板上的微带阵列单元采用一对交叉的金属偶极子结构分别实现收/发的功能,两金属偶极子分别印刷于中间层微带介质板的正面与背面,分别工作于收/发(下行/上行)频段,并且交叉偶极子结构可对应实现收/发所要求的两正交线极化。阵列单元通过同轴底馈的方式实现馈电,其中偶极子的两臂分别与同轴接口的内芯以及外壁通过一段印刷细导线相连,这里采用细导线以减小馈电结构对收/发间隔离的影响。为进一步减小馈电结构对收/发间隔离所带来的影响,在设计中将同一位置处的两偶极子结构通过一段印刷细导线相连,通过其长度、粗细等参数可利用合适的对消手段来实现收/发之间的高隔离。通过在阵列单元周围引入一圈密集的金属化通孔结构,并且在电路板上设计金属附加结构以隔离介质中的表面波,从而降低阵列单元间的互耦。

馈源阵列的装配

馈源阵列的三层电路板由数个尼龙螺柱进行固定,图5是馈源阵列的立体分解及整体装配示意图。在馈源阵列结构中,通过调节金属偶极子的'臂长,可调节天线的工作频率。通过调节顶层介质基板与中间层电路板间的距离,可方便地调节辐射增益以适应不同反射面尺寸及焦距的需求。

3仿真及实测效果

馈源阵列的端口1、端口3、端口5、端口7为接收端口,端口2、端口4、端口6、端口8为发射端口。图6是馈源阵列的仿真和测试回波损耗结果图。由图6可见,接收端口和发射端口回波分别在和范围内小于-10dB,达到了良好匹配。图7是馈源阵列在工作频点的仿真及实测接收方向图。由图7可见,工作于时,天线在天顶方向的增益为15dB,副瓣比主瓣低10dB(仿真)/18dB(实测)。图8是馈源阵列在工作频点的仿真及实测发射方向图。由图8可见,工作于时,天线在天顶方向的增益为15dB,副瓣比主瓣低11dB(仿真)/10dB(实测)。

4结束语

本馈源阵列采用微带印刷电路板结构,简单紧凑、工艺成熟、加工简单、成本较低且适用于大规模生产。相比于传统的波导口、波导喇叭等馈源结构,可在较小的面积内实现多个单元以及收/发通道,从而利于实现更高精度的波束指向控制。同时,馈源阵列采用的对消技术可在天线结构端实现同一位置处接收/发射通道之间30dB的隔离度,减轻了后端器件的压力。从实际应用来看,天线馈源阵列与主反射面配合,实现了动中通卫星天线对Ku频段通信卫星的小角度、高速、高精度电子波束扫描和跟踪。采用这种技术,大幅降低了天线对伺服系统精度和动态反应速度的要求,把伺服系统的成本降低了一个数量级,有助于推动卫星天线在天地一体化通信中的规模应用。

参考文献

[1]徐烨烽.创新引领、精进发展、规模应用-谈动中通天线发展新趋势[J].卫星与网络,2013,09:39-40.

[2]LouisJ.,IppolitoJr著.孙宝升译.卫星通信系统工程[M].北京:国防工业出版社,2012,3.

[3]MiuraA.,Yamamotos,Huan-bangLi,[J].,2002,51(5):1153-1164.

[4]刘昌华.移动载体卫星通信系统天线跟踪技术的研究[硕士学位论文].西安电子科技大学,2009,3-4.

[5]汤铭.动中通伺服系统的设计[J].现代雷达,2003,25(4):51-54.

[6]阮晓刚,汪宏武.动中通卫星天线技术及产品的应用[J].卫星与网络,2006,3:34-37.

相关外文文献已发送,翻译没有,翻译得靠你自己了,希望能满足你的需要,能帮到你,多多给点悬赏分吧,急用的话请多选赏点分吧,这样更多的知友才会及时帮到你,我找到也是很花时间的

随着人们自身素质提升,报告的用途越来越大,我们在写报告的时候要注意逻辑的合理性。那么报告应该怎么写才合适呢?以下是我为大家整理的电子信息工程毕业论文开题报告,希望能够帮助到大家。

毕业设计的内容和意义

毕业设计内容:

1.熟悉单片机系统设计方法,独立完成电路和程序设计。

2.用PROTEUS进行系统调试和仿真。

3.设计、制作并调试硬件系统。

4.完成相关软件文档资料。

毕业设计应完成的技术文件:

字以上毕业设计开题报告,2000字以上英文参考文献的中文译文。

2.毕业设计论文(15000字以上)。

3.提供设计原理图和相应程序。

毕业设计意义:

随着时代的发展,现代化建设步伐不断加快,对道路照明及道路亮化工程需求也更大,而能源的供需矛盾也越来越突出,节电节能、绿色照明的要求越来越迫切,越来越高。现在再采用那些传统的手控、钟控照明系统的方法已不能满足要求。如何充分利用高科技手段解决上述矛盾也就成为当前照明控制领域一个新的和紧要的课题。路灯照明是日常生活中必不可少的公共设施。路灯照明耗电量约占总耗电量的15%,全国各地无不面对电力紧张带来的各种问题。面对供电紧张形势,路灯巡查对于国家来讲是一项需要耗费大量人力的工作,各种临时应急节电措施被广泛采用:夜晚间隔关灯、调整路灯开关的时间、在用电紧张的日子里关闭景观照明等等,当用电高峰过后,这些措施可能就被束之高阁,明年的用电高峰来临,一切又会重新开始。这样的节电措施,在缓解用电紧张的同时,却带来资源的浪费和对人们日常生活的负面影响。缓解用电紧张的最佳和有效的办法是对用电实施智能化管理,减少浪费,使我们的每一度电都能物尽其用!启用先进路灯监控系统,可以对路灯实施统一启闭,对夜间照明系统和路灯的实时监控和管理,确保高效稳定,全天候运行,控制不必要的“全夜灯照明”,有效节约电能消耗。对于学校公共照明系统来说,采用智能化的管理系统是实现能源节约、减少资源浪费、满足人们生活要求、显示现代化校园的科学解决方案。

目前已有一小部分校园参考了公路路灯的节能措施,到了后半夜将电灯亮度调低,或采取等间隔亮灯的方式来节约用电,但是这样一个方法却带来路灯过亮或过暗的问题:

1.控制落后

开关灯方式落后:当前路灯控制,还停留在手动、光控、钟控方式。受季节、天气和人为因素影响,自动化管理水平低,经常该亮时不亮,该灭时不灭,极易造成极大的能源浪费,增加了财政负担。

2.操控不便

调节操控能力不足,无法远程修改开关灯时间,不能根据实际情况(天气突变,重大事件,节日)及时校时和修改开关灯时间。

3.灯况不明

不具备路灯状况监测,现有的照明设施管理工作主要采用人工巡查模式,不仅工作量大,还浪费人力、物力、财力。故障依据主要来源于巡视人员上报和市民投诉缺乏主动性、及时性和可靠性,不能实时、准确、全面地监控全城的路灯运行状况缺乏有效的故障预警机制。

4.不能很好的应用在前半夜

因为其前半夜6个小时以上全部采取正常亮度,这样就会出现在没有行人、车辆经过校园道路时的电力资源浪费这一现象,而除了晚上6点-9点人车流高峰期以外其余时间人车流量确实相对较少,所以我们认为校园照明有更大的节能潜力。

针对以上现有节能情况分析,我们设计了一种高效率的智能节能路灯,路灯控制器内应同时设有光控和时控模块,该模块先服从光度控制,再服从时间控制,能满足达到一定光度开关路灯和达到特定时间开关路灯的要求。同时,我们认为路灯应改进为为红外感测路灯。针对校园人、车流量的高低峰时段对路灯分为节能状态和标准状态。在人车流量的高峰期如清晨上班时间和傍晚18点—21点,路灯要保持持续标准亮度,而在深夜路灯将转为节能状态,通过红外感测,只在有人、车通过时才变亮。使用红外感测,与声控相比,感应精度更高,避免了一些噪音而使灯无效闪烁。将所有的路灯连接到单片机上,单片机和计算机通信,用计算机控制路灯工作状态。可设定自动控制方式和人工控制方式。自动控制方式可根据地太阳活动规律,并结合实际情况控制路灯的工作方式。当夜幕降临,或光线已经较暗时,虽然未达到设定时间,也能自动开启。交通高峰期,应达到持续满额亮度;高峰期后,进入红外感应,实现智能和节能的控制。人工控制方式可随时设定开关时间、路灯开启比例或单独控制路灯的开与关。另外通过路灯的工作状态可对路灯损坏实现实时报警,并可显示具体的位置,提醒维修人员及时维修,中心控制器带有时钟芯片,该时钟芯片带有EEPROM,可以保持单片机工作参数,即使通信发生错误,路灯也能按照最后的程序进行工作。

文献综述

一、设计方案

本设计选用STC89C52单片机作为系统的核心部件,实现系统的控制和处理的功能。各模块所包含的功能如下:(1)红外模块:夜晚进行检测是否有行人。(2)显示模块12864:显示相应的时间和日期信息。(3)时钟模块:手动切换时间,自己设定开灯时间。(4)光敏电阻传感器模块:用于检测周围环境光强度,若光强低于标准值则开启路灯。

二、硬件电路设计

1.主控制器STC89C52

STC89C52是STC公司生产的一种低功耗、高性能CMOS8位微控制器,具有8K在系统可编程Flash存储器。STC89C52使用经典的MCS-51内核,但做了很多的改进使得芯片具有传统51单片机不具备的功能。在单芯片上,拥有灵巧的8位CPU和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。

STC89C52具有以下标准功能:8k字节Flash,512字节RAM,32位I/O口线,看门狗定时器,内置4KBEEPROM,MAX810复位电路,3个16位定时器/计数器,4个外部中断,一个7向量4级中断结构(兼容传统51的5向量2级中断结构),全双工串行口。另外STC89C52可降至0Hz静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。最高运作频率35MHz,6T/12T可选。

2.红外模块

本设计采用HC-SR501红外模块,它是基于红外线技术的'自动控制模块,采用德国原装进口LHI778探头设计,灵敏度高,可靠性强,超低电压工作模式,广泛应用于各类自动感应电器设备,尤其是干电池供电的自动控制产品。该模块用于检测夜晚是否有行人路过,因此产生高地电平,并通过软件的方法来处理电平信号。

3.光敏电阻传感器模块

本设计采用3线制光敏电阻传感器模块,是一款灵敏型光敏电阻传感器,用比较器输出,信号干净,波形好,驱动能力强,超过15mA。同时配有可调电位器可调节检测光线亮度,用于检测周围环境光强度,若光强低于标准值则开启路灯。

4.显示模块

本设计采用液晶显示器12864显示时间和日期。液晶显示屏的第一行显示年月日,第二行显示的实时时钟,硬件电路中的12864的数据端口接到单片机P1口,数码管的4,5,6管脚分别与单片机的相连,通过单片机的信息处理,从而在液晶显示屏上显示各段信息。

四、软件设计

主程序主要设计各个部分子程序的调用,子程序有时钟程序和显示子程序两部分。程序初始化后,红外模块子程序判断有没有行人,输出一个信号,经软件处理。12864液晶显示子程序主要通过接收主程序发出的信号,将其设置输入为模式子函数形成,并初始化LCD子函数,显示日期子函数,显示时间子函数。

五、仿真实现

该系统的软件仿真采用Proteus软件,当系统开机时,系统进入初始化界面,液晶显示第一行为时间信息,第二行为日期信息,当白天的时候,打开光强和红外判断,同时成立才开启路灯。设定按钮可手动改变时间信息。

参考文献:

1.胡汉才.单片机原理及其接口技术[M].北京:清华大学出版社.

2.周润景等.Proteus在MCS-51&ARM7系统中的应用[M].北京:电子工业出版社.

3.侯玉宝等.基于Proteus的51系列单片机设计与仿真[M].北京:电子工业出版社.

4.张靖武等.单片机系统的PROTEUS设计与仿真[M].北京:电子工业出版社.

5.楼然苗等.单片机课程设计指导[M].北京:北京航空航天大学出版社.

6.周向红等.51系列单片机应用与实践教程[M].北京:北京航空航天大学出版社.

7.李林功.单片机原理与应用—基于实例驱动和Proteus仿真[M].北京:科学出版社.

8.薛钧义,张彦斌.MCS-系列单片微机计算机及其应用[M].西安:西安交通大学出版社.1997

9.何利民.单片机应用系统设计.[M]北京航空航天大学出版社.1995

研究内容

红外模块的使用

单片机读取时钟芯片

用液晶显示相关数据

绘出逻辑图

研究计划

第一周——第二周:下毕业设计任务书,明确设计要求。查阅、搜集毕业设计相关资料。着手翻译相关英文资料,并熟悉PROTEUS软件和单片机的相关开发知识。

第三周——第四周:对查阅的文献资料归纳综述撰写开题报告。完成毕业设计需求分析,确定系统框图。

第五周——第六周:方案论证,设计硬件电路。分析设计的电路,提出软件设计思路;毕业设计初期检查。

第七周——第八周:在PROTEUS中实现软、硬件设计与调试。分析调试中的问题,改进并重新调试达到技术要求。

第九周——第十周:软、硬件电路进行整体测试,修改并完善程序;毕业设计中期检查。

第十一周——第十二周:设计并制作印制电路板;完成硬件的安装和调试。完成整个系统的软件、硬件的调试。

第十三周——第十四周:研究工作总结,撰写毕业论文。

第十五周——第十六周:论文修改及评阅,论文答辩。

特色与创新

路灯控制器内应同时设有光控和时控模块,该模块先服从光度控制,再服从时间控制,能满足达到一定光度开关路灯和达到特定时间开关路灯的要求。同时,路灯为红外感测路灯。针对校园人、车流量的高低峰时段对路灯分为节能状态和标准状态。在人车流量的高峰期如清晨上班时间和傍晚18点—23点,路灯要保持持续标准亮度,而在深夜路灯将转为节能状态,通过红外感测,只在有人、车通过时才变亮。

相关百科

热门百科

首页
发表服务