我想在(国际航空航天科学)找下这类的资料~然后结合你自己的知识点,肯定能写出来的
航空航天在过去半年中,接连发生了两起重大航天灾难。尽管人们备感痛惜,但这些挫折并不能阻挡人类进军宇宙的步伐。 既然航天活动风险如此之大,为什么人类依然不放弃进军宇宙的梦想呢?人点燃火箭。但是,随着一声巨响,他消失在火焰和烟雾中,人类首次火箭飞行尝试没有成功。 20世纪80年代,改革开放带来了航天技术的春天。1986年,中共中央、国务院批准了《高技术研究发展计划("863"计划)纲要》,把航天技术列为我国高技术研究发展的重点之一。"863"高技术航天领域的专家们对我国航天技术未来的发展进行了深入细致的论证,描绘了我国航天技术发展前景的蓝图,一致认为载人航天是我国继人造卫星工程之后合乎逻辑的下一步发展目标。1992年1月,党中央批准研制载人飞船工程。自此,我国的载人航天工程正式启动。1999年11月20日,我国成功发射了自行研制的第一艘飞船神舟1号,成为世界上第三个发射宇宙飞船的国家。此后,又分别把神舟2、3和4号送上九重天。在1992年开始研制载人飞船之前,我国"863"高技术航天领域的专家们曾为研制哪种运输器这个问题进行了几年的研究,即对从研制飞船起步和越过载人飞船直接发展航天飞机的多种技术方案进行了充分的论证、比较和分析,甚至还激烈地争论过。 2003年10月15日圆了万户的梦,因为在这一天中国人民期待已久的第一艘载人飞船神舟5号顺利升空并安全返回,实现了中华千年飞天的理想。它也打破了美国和苏联.俄罗斯在这一领域的多年垄断格局,成为世界第3个独立自主研制并发射载人航天器的国家,这对世界载人航天事业的发展和振兴中华会起到巨大的推动作用。
航空航天的,是原创的
中国航天事业是在50年代中期开始的,1956年,中国制定了12年科 学发展远景规划,把火箭和喷气技术列为重点发展项目。同年建立了第 一个导弹、火箭研究机构,1958年把发射人造地球卫星列入国家科学规 划,组建机构开展空间物理学研究和探空火箭研制工作,并开展星际航 行的学术活动和实验设备的筹建工作。中国航天事业在创业之初经历了 经济上、技术上的种种困难,经过艰苦奋斗,终于在1960年2月发射成 功第一枚探空试验火箭,同年11月又发射成功第一枚自制的运载火箭, 在60年代后期又研制成功中程和中远程运载火箭,为中国航天事业的发 展奠定了基础。中国于60年代中期制定了研制和发射人造地球卫星的空 间计划。1968年组建了中国空间技术研究院。1970年4月24日,中国第 一颗人造地球卫星“东方红”1号发射成功,使中国成为继苏、美、法 、日之后世界上第五个用自制运载火箭成功地发射卫星的国家。1971年 3月3日发射成功的第二颗人造地球卫星向地面发回了各项科学实验数据 ,正常工作了多年。1975年11月26日首次发射成功返回型人造地球卫星 ,中国成了继美、苏之后世界上第三个掌握卫星返回技术的国家。1980 年5月,向南太平洋发射大型运载火箭取得成功,1981年9月20日首次用 一枚大型运载火箭把三颗空间物理探测卫星送入地球轨道,1982年10月 从水下潜艇发射运载火箭成功。1984年4月,发射一颗对地静止轨道试 验通信卫星“东方红”2号,4月16日卫星定点于东经125度赤道上空, 至1985年10月,中国依靠自己的力量共发射了17颗不同类型的人造地球 卫星。这些卫星为地质、测绘、地震、海洋、农林、环境保护等国民经 济部门和空间科学研究提供了十分有价值的资料。第一颗试验通信卫星 已用于国内通信广播和电视节目传输,对改善边远地区的通信和广播状 况发挥了重要作用。通过一系列航天活动中国已建立了各类人造卫星、 运载火箭、发射设备和测量控制系统的研究、设计、试验和生产的基地 ,建成了能发射近地卫星和对地静止轨道卫星,拥有光测、遥测和雷达 等多种跟踪测量手段的酒泉和西昌航天器发射场;组成了由控制中心地 面台站和测量船构成的卫星测控网,造就了一支富有经验的航天科学技 术队伍,从而有能力不断开拓航天活动。 10月15日到16日神州5号载人飞船发射成功,是中国高科技领域继 “两弹一星”之后又一座光辉的里程碑,中国由此成为世界上继俄罗斯 和美国之后第三个有能力将航天员送上太空的国家
可以是申请专利或公开发表论文
在信息社会中,航天技术的作用将变得更巨大,终将彻底改变地球上的面貌。下面是由我整理的航天技术论文2000字,谢谢你的阅读。
航天技术与信息现代化
摘要介绍了空间信息高速公路的概念、特征,及其对应用卫星的需求,并论述了空间信息高速公路对社会经济发展的巨大推动作用。
经由卫星实况转播这个 短语 是航天技术取得巨大成就的象征,随着卫星通信广播事业的快速发展,这个短语已逐渐被人们省略,而成为日常生活中普遍公认的传播方式。卫星通信用电波把整个世界既快又准确地联系在一起,这种联系一旦中断,经济发展的速度将会大大放慢。
人类社会正进入信息社会,信息已成为世界上最重要的战略资源。信息技术是当代最为活跃的生产力。应用信息技术可提高工农业和服务行业的效益及竞争能力,促进管理和决策的科学化, 推动国民经济各部门逐步转移到新的技术基础上来。大力发展信息产业,加速国民经济信息化,是建立和发展我国社会主义市场经济,保持国民经济持续、快速、健康发展的客观要求。
在信息社会中,航天技术的作用将变得更巨大,进一步丰富其内涵,扩展其外延,最终将彻底改变地球上的面貌。航天技术与计算机的融合,形成了在地球上跨越时间和空间的信息基础结构,它将逐步进入千家万户,从根本上改变人们的生产、生活和相互交往的方式,并加速人类文明和 文化 的传播,增进互相理解和全球意识。因此,加速发展航天技术,从多方面、高效率地利用航天技术, 特别是充分利用空间信息资源,以促进社会生产力的发展,提高人流、物流和能量流的利用率,增进文化交流和人民间的理解和信任,已成为当今世界各国的共识。
一、空间信息高速公路
世上本没有路,路是人走出来的。我国汉朝开辟了经西域通往西方的道路,沟通了我国同西方许多国家在经济和文化方面的联系,被后人称之为“丝绸之路”。1855年德国机械工程师卡尔·本茨发明了世界上第一辆实用的内燃机汽车。当他驾驶这辆木制的三轮汽车,在自己的院子里行走撞到墙上的时候,还没有想到路。7年之后,福特发明了汽车,并于10年后形成产业的时候,人们开始把目光盯在汽车的跑道上,于是1913年柏林西南部出现了世界上第一条高速公路。在此后的数年中,高速公路这种具有魔力的通道,使世界发生了神奇的变化。
信息高速公路作为信息革命的基础设施和通向21世纪的神奇通道,已成为世界各国争夺信息资源,确保竞争优势的筹码。1993年,在美国政府 报告 中,对信息高速公路给出了明确的概念:它是一个能够向用户提供大量信息,由通信网、计算机、数据库,以及日用电子产品组成的完备网络。具体地说,就是在全国范围内,铺设新型光缆作为信息流通的干线,通过光缆和多媒体向全国提供 教育 、科研、卫生、商务、金融、文化娱乐等颇为广泛的服务。
所谓空间信息高速公路,可形象地将它理解为以卫星——光纤为主体,再辅之以 其它 通信手段作为“公路”,并利用集电脑、电话、电报、传真等为一体的多媒体,使信息能够高速传递并可共享的通信网络。这种网络可遍布全国乃至全球。在中国,则将它称之为国家经济信息化基础设施, 其内涵包括4项要素:网络与通信、计算机与信息化设备、信息资源与服务、人与信息化环境。
空间信息高速公路有两个特征:第一个特征是利用通信卫星群和光导纤维网组成混合型全球通信网,实现计算机网络化和信息双向交流;另一个特征就是用多媒体技术普及计算机的使用。卫星通信和数字网络光缆就像高速公路一样,是促进社会经济发展的基础设施。它不仅指地面光缆数字通信网络系统,而且还包括通信卫星、卫星定位和导航、环境和灾害监测信息系统。此外,还应包含社会、经济统计数据库和自然资源数据库系列,以及宏观调控、规划决策和工程设计服务、知识库、逻辑推理人工专家系统。这样就能有效地实现以信息流代替人流、物流与能量流。
在空间信息高速公路中,卫星无线电通信频带宽,极容易实现双向高速率的数据传输和可视电话业务,并且适用于单向多路的电视节目传输,也非常适合于大型跨国企业间的业务联系。由于地面信息高速公路的成本昂贵,需要10~15年甚至更长的时间才能建成,是一个无法在短期内普及服务的巨额投资项目。对于发展中国家来说,空间信息高速公路的建设,可弥补通信基础设施差, 以及区域性通信空缺的不足。
地面信息高速公路的全球化和用户的移动化都十分困难,而空间信息高速公路的全球网络却很容易实现,因此,用它进行全球移动通信,在数率不特别高的情况下,便能实现诸如可视电话之类的双向传输。
空间信息高速公路,更具有能适应现阶段经济发展中所出现的各地区差别悬殊的特点。在中国地广人稀的西部地区,加强卫星远距离教育和电视广播,对于提高西部地区的文化素质,普及科学技术知识,消灭贫困愚昧落后现象无疑有着重大的意义。
因此,空间信息高速公路,一方面利用了光导纤维传送信息量大、信号几乎不失真、速度快而且保密性强的特点;另一方面,又利用了通信卫星的通信方式极其方便、覆盖面十分宽广、特别适合于移动终端和全球个人通信的特点。这两者组合,形成了优势互补,可以认为是最佳的方案。
二、信息社会对应用卫星的需求
1?静止通信卫星网
美国休斯空间通信公司提出了建设全美卫星通信网络的计划。建设投资6?6亿美元,计划发射2颗静止通信卫星,从1998年开始以无线形式向美国用户提供高速双向数据传输和可视电话业务,在美国电信业务中,率先开发频率宽度可根据用户需要而变化的传输业务项目。最近又提出, 到2000年,将美国全国性的卫星通信网络,扩大成全球通信网络,最终发展成全球性空间信息高速公路,设计总投资约32亿美元,由9颗静止通信卫星组成可覆盖全球的通信网络。
2?低轨道卫星群移动通信系统
在通信方面除可利用静止通信卫星网以外,还可利用低轨道上位于不同轨道面的多颗卫星,来转发地面用户的信号。目前全世界已出现了十几种较为有名的方案,有些方案正在付诸实施。例如,美国摩托罗拉公司提出的“铱”卫星系统,由6个极地、近地、近圆轨道面上运行的66颗小型通信卫星组成,每个轨道面均匀分布着11颗卫星。由于这一卫星系统中的卫星轨道距地球表面较低,只有400~500公里,所以无线电信号很强,个人手持式无线电话机很容易获得清晰的信号和语音。“铱”卫星系统的地面设备则由系统控制中心,以及分布在世界各用户国家和地区的关口站和终端设备等组成。又如,美国呼叫公司与其它有关公司创建的全球无线通信网,也称之为全球通信系统。由于以宽带传送,因而能传送电视及高速数据。这一耗资90亿美元的庞大通信网络,将由 840颗低轨道(700公里高度)现代小型通信卫星来覆盖地球95%的地区,它可以双向传输包括电视图象在内的各种信号,以及个人语音通信,具有数据、传真、寻呼和定位功能。该系统的主要特征, 是利用通信卫星群和光纤网实现计算机网络化和信息双向交流,并将成为二次信息革命的主要物质基础与保障。
3?大容量激光卫星通信
激光与普通光源相比,具有很多特殊的性质,譬如激光辐射在“时间”上高度集中,很适合用于快速保密通信。激光辐射在“空间”上高度集中,方向性很强,而且具有高增益,因而用于通信可以传递得非常之远。激光辐射在“波长”上高度集中,因此波长分布范围很窄。激光的相干性、单色性和方向性,使它成为通信的理想载体。在理论上,光的频段宽度达到10?13~10?15赫,这样大的带宽,对每路仅4千赫的电话,可容纳100亿路之多;对带宽为10兆赫的彩色电视,也可同时传输1000万套电视节目而不相互干扰。由此可见,一旦激光卫星通信投入实际应用之后,由于其具有容量大和抗干扰性强等特点,不仅能扩大通信容量,缓和通信频段拥挤的局面,而且可避免洲际通信时的时延现象发生,是实现空间通信和准确快速、保密性强的军事卫星通信的重要途径。卫星激光通信技术无论是在静止轨道上的卫星,还是低轨道的卫星、飞船、航天飞机、空间站,以及深空探测器,都可以利用激光通信技术将它们连接在一起,形成一条无形的光学链路,使信息畅通无阻,因而空间信息高速公路成为名符其实的高速公路。
中国重视信息通信技术的发展,而且已经列入国家计划。面对世界高科技领域的挑战,为加快发展具有中国特色的信息高速公路,而不失时机地推动信息化,中国以“金字”工程为生长点,与卫星通信相结合,逐步形成信息产业。通过“金字”工程的实施,建立国家数据通信基干网和一系列专用网,为发展信息产业奠定基础。根据宏观分析预测,中国目前使用的卫星转发器不到50个,到 2000年中国大约需要145~150个卫星转发器,到2010年,将需要588~837个卫星转发器。
三、空间信息高速公路将推动社会经济发展
随着空间信息高速公路的建成,将使工商企业和整个社会处于一场革命之中,而这场革命的规模和效果是难以预测的。对其发展前景,现初步分析如下:
1?巨大的商业利益
为了建设信息高速公路,美国政府和企业界计划共同投资400多亿美元。根据预测,2010年, 信息高速公路产业所创造的市*2?改变人类生产和生活方式伴随着社会信息化和信息高速公路的建设,人们便能充分利用信息,大大提高物质生产的效率,提高原材料和能源利用率,有可能改变人类的生活方式,并终将从传统的生产和生活中解放出来。将出现电视电话、可视电话会议、电视购物、电视教学、家庭影视室、家庭图书馆、家庭数据库、在家中办公等等一系列新生事物。随之而来的将会给教育、卫生,保健等部门带来一场革命,无论在何时何地,都可向所有图书馆要求检索所需资料,浏览有关图书;随时随地可通过联机方式,立即获得最好的医疗保健服务和其它社会需求服务,医院遇到疑难病症时,可以向远距离的医学专家请教,以求得正确的诊断和治疗。以美国为例,仅医疗支出这一项,每年可节省1000亿美元。此外,可为能源、交通、环境等问题提供一种新的缓解 方法 。
3?推动高新技术发展
建设空间信息高速公路和国家信息基础结构的计划,将成为发展各种高新技术的驱动力。美国认为,在执行“国家信息基础结构”行动计划中,应优先发展的技术包括:半导体与微电子学、计算机、通信、高速网络、多媒体技术、光电子、高清晰电视、应用软件等。比如计算机,必定要向功能更多、性能更优、速度更快、容量更大、体积更小的方向发展,这就对超高速集成电路,新的计算机体系结构与微电子系统集成技术提出了新的要求。而多媒体技术的发展,将采用大量的专用集成电路,对高速信号处理器、视听信号压缩与解压缩、调制解调器、数据存贮器、图象识别、语音识别等器件提出了新的要求。
点击下页还有更多>>>航天技术论文2000字
论文的研究对象预期中(期望)能带来的理论意义(比如开创性的理论研究方法,对某个理论或者计算方法的优化等)、经济效益等。总之就是你这篇论文的意义何在。(反正你做这个论文不是为了堆砌一堆文字吧。)
预期成果可以是专利申请、论文发表、科技成果(包括软件程序)的生产等形式,也可以是同时多种形式。可以通过这篇论文写出预期的目标可以做些什么,改进些什么等等。
开题报告是对研究课题的一种文本解释性材料。这是随着现代科研活动规划的加强和科研课题程序化管理的需要而产生的一种新型的应用方式。
开始报表通常是一个表格形式,它将报表的每个内容转换为相应的列。这样便于开题报告按项目填写,避免遗漏。并方便阅览,一目了然,把握要点。
扩展资料:
开幕报告格式:
由于开题报告是用字反映的论文总体思路,因而篇幅不必太大,但要把计划研究的主题、如何学习、理论应用等主要问题弄清楚,应包括两部分:小结、提纲。
1、概述
开题报告的总结部分首先提出课题,并简要说明课题的目的、相关研究现状、理论应用、研究方法、必要数据等。
2、大纲
论文大纲可以包含在开题报告中,是一个宽泛的大纲,是一个研究思路的基本框架。可以采用全句式或全段落式提纲式。在开始阶段,提纲的目的是明确论文的基本框架。没有必要像论文的目录那样详细。
3、参考文献
开题报告应包括相关参考资料列表。
4、需求
开题报告应当有一页,共不少于四页。布局应当符合下列要求。
《神七问天》Manned space flight, many years of waiting, and so to the "Shenzhou V", to be to the "Shenzhou VI."Lunar satellite, how many people's expectations, looked forward "Chang'e One."Space walk, how many Chinese people look forward to, how many years of waiting for the Chinese!China's space "three-step" program, the first step is to walk in space!2008 Today, September 25, China, will usher in another Olympics, and a "faster", "higher", "stronger"!Shenzhou VII!Shenzhou VII will unite thousands of miles of expectations, asked the day off, crowned with thousands of history. With the release of small satellites flying for three years after the "China City" station to open the door to the VII, will be the pride of the Chinese people, red smoke Feiming, dicey for the clouds. Following after the Shenzhou VI manned spacecraft, a new history of China's space VII, will be carrying the vast land of wishes, surf the sky, aerial view of the world. Moderate Resolution Imaging Spectrometer instrument, multi-mode microwave remote sensor reconnaissance, let us recognize the beautiful Zhigang, Liu Boming and Jing Haipeng, the three "two cream of the crop," the names of the astronauts, it will go down in history is almost 16:39 on September 27, Zhai Zhigang ready extravehicular successful implementation of China's first extravehicular activities in space!16:48, Zhai Zhigang in space taken his first step, the first Chinese space walk started! Step by step, then step by step, every step, as if stepping on people's hearts, and slowly, gently, and his feet are so soft, not rash, a little noise does not seem to fear an inattentive , put the chord to the strained and . We finally made it!16:59, Zhai Zhigang into the orbital module and orbital module door is completely closed to complete the space walk to complete the most difficult "space mission."17:36, completion of Shenzhou VII manned space mission, the capsule successfully sat in front of the TV, cheering had flocked down my throat, but suddenly remembered Liu Boming space note:"Overlooking the home, the same global village; Wang Wang sun and the moon, a space with the city; three horse fly, Qi wish; earth connection, a family."
China's aerospace industry starting in the 1950s, following the development of China's aerospace industry is the main stages: On October 8, 1956, China's first rocket missile development agencies - Department of Defense established the Fifth Research Institute, Qian Xuesen-term president. On July 19, 1964, China's first biological mice contained in Anhui Kwong Tak rocket successfully launched China's space science and exploration taken a step forward. On April 1, 1968, the China Aerospace Medical Engineering Institute set up to begin training astronauts and conduct elections manned space medical engineering research. On April 24, 1970, with the first satellite "Dongfanghong" on the 1st successful launch in Jiuquan, China became the world's first satellite launch of the five countries. On November 26, 1975, the first successful launch recoverable satellite, three days after the successful return of China to become the world's first satellite master the technology in the three countries. On September 7, 1988, in the long march on the 4th Taiyuan launch vehicle successfully launched on the 1st A Fengyun meteorological satellite. On April 7, 1990, "long march 3" carrier rocket successfully launched the US-developed "Asian No. 1" satellite, China in the international commercial satellite launching service has occupied a space in the market. On July 16, 1990, "long march" on the 2nd teamed up for the first time in Xichang rocket successfully launched a manned spacecraft was launched to lay a foundation. In 1992, China's manned spacecraft formally included in the national plan for the development, the project was later to be called the "Shenzhou" spacecraft manned spaceflight project. On November 20, 1999, China successfully launched its first spacecraft - the "Shenzhou" spacecraft, returning module of the spacecraft in central Inner Mongolia Autonomous Region the next day in the successful landing. On January 10, 2001, China successfully launched the "Shenzhou" spacecraft on the 2nd test, in accordance with the scheduled completion of space science and space technology test mission, in January 16 in central Inner Mongolia accurate return. On March 25, 2002, China successfully launched the "Shenzhou" spacecraft on the 3rd, flying around the earth 108 times, on April 1 accurate landing in central Inner Mongolia. On December 30, 2002, China successfully launched the "Shenzhou" spacecraft on the 4th. 中国航天事业起步于20世纪50年代,以下是中国航天事业发展的主要阶段: 1956年10月8日,中国第一个火箭导弹研制机构——国防部第五研究院成立,钱学森任院长。 1964年7月19日,中国第一枚内载小白鼠的生物火箭在安徽广德发射成功,中国空间科学探测迈出了第一步。 1968年4月1日,中国航天医学工程研究所成立,开始选训宇航员和进行载人航天医学工程研究。 1970年4月24日,随着第一颗人造地球卫星“东方红”1号在酒泉发射成功,中国成为世界上第五个发射卫星的国家。 1975年11月26日,首颗返回式卫星发射成功,3天后顺利返回,中国成为世界上第三个掌握卫星返回技术的国家。 1988年9月7日,长征4号运载火箭在太原成功发射了风云1号A气象卫星。 1990年4月7日,“长征3号”运载火箭成功发射美国研制的“亚洲1号”卫星,中国在国际商业卫星发射服务市场中占有了一席之地。 1990年7月16日,“长征”2号捆绑式火箭首次在西昌发射成功,为发射载人航天器打下了基础。 1992年,中国载人飞船正式列入国家计划进行研制,这项工程后来被定名为“神舟”号飞船载人航天工程。 1999年11月20日,中国成功发射第一艘宇宙飞船--“神舟”试验飞船,飞船返回舱于次日在内蒙古自治区中部地区成功着陆。 2001年1月10日,中国成功发射“神舟”2号试验飞船,按照预定计划在太空完成空间科学和技术试验任务后,于1月16日在内蒙古中部地区准确返回。 2002年3月25日,中国成功发射“神舟”3号试验飞船,环绕地球飞行了108圈后,于4月1日准确降落在内蒙古中部地区。 2002年12月30日,中国成功发射“神舟”4号飞船。
范文:给航天英雄杨利伟写封信 Dear June 19, 2004 It is with the most sincere pleasure I write to congratulate you on your becoming the first Chinese greeting to mankind’s mother planet from outer space. Today, our country’s centuries-old dream of journeying to outer space has finally come true. People from all walks of life, with no exception to me, take a pride in being Chinese and your fellow countrymen. As the rocket soared into the sky, your name joined those figures such as Gagarin in space history. You deserve this honor, for you were subject to unimaginable hardships and challenges before the successful launch of the Shenzhou-5 spacecraft. I am fully convinced that it makes a lot of sense for our country to attach importance to space exploration. The space industry has had and is going to have a great impact on China in scientific, political and military areas. May you have health, happiness and outstanding success in all your ventures. Respectfully yours, Frank====================================================一篇简要介绍航天英雄费俊龙的英语短文. Colonel Fèi Jùnlóng ( 费俊龙) (born 1965) is the second Chinese astronaut (or yuhangyuan) to fly into space as part of the Shenzhou program. He was born in Suzhou, Jiangsu province of China and was recruited from high school by the People's Liberation Army Air Force (PLAAF) in 1982 at the age of 17. He graduated with excellent marks from the PLAAF's No. 9 Aviation School, the Changchun Flight College of the PLA Air Force and Flight Training School of the Air Force. In the PLAAF, he was a pilot, flight trainer and flight technology inspector. Colonel Fèi was selected to be an astronaut in 1998. He was in the final five selected for the Shenzhou 5 flight. He was the commander on the Shenzhou 6 flight that launched October 12, 2005, with Niè Hǎishèng (flight engineer). They landed on October 17, 2005. He was married in 1991 and has one son. During his personal time he dabbles in fine arts. Colonel Niè Hǎishèng (聂海胜) (born October 13, 1964) is a Chinese astronaut (yuhangyuan). He was born in Yangdang town of Zaoyang, Hubei Province. After graduating from high school he joined the People's Liberation Army Air Force and became a fighter pilot. During his training at the PLAAF's No. 7 Flying School he was: Commander of a flight squadron Deputy Commander of a group Master navigator Graduating in 1987 and continued a career in the PLAAF. He has reached the rank of Lieutenant Colonel. On June 12, 1989 while flying at 13,000 feet (4000 meters) his plane suffered an explosion and he lost his engine. The plane began to spin to the ground and the cabin began to heat up. Trying to regain control he waited until the plane was 1300 to 1700 feet (400 to 500 meters) before choosing to eject. For his handling of the situation he was honored with third-class merit. 希望可以帮助你。
The history of China's space industry began in February 1956, when Qian Xuesen, a famous scientist, proposed to the Central Committee the opinions on the establishment of China's national defense and aviation industry.
In April 1956, the aviation industry commission of the people's Republic of China was established to lead China's aviation and rocket industry.
中国航天史是从1956年二月开始的,当时著名科学家钱学森向中央提出《建立中国国防航空工业的意见》。
1956年四月,成立中华人民共和国航空工业委员会,统一领导了中国的航空和火箭事业。
扩展资料
中国航天发展有四大里程碑:
(1)第一个想到利用火箭飞天的人——明朝的万户
14世纪末期,明朝的士大夫万户把47个自制的火箭绑在椅子上,自己坐在椅子上,双手举着大风筝。他最先开始设想利用火箭的推力,飞上天空,然后利用风筝平稳着陆。不幸火箭爆炸,万户也为此献出了宝贵的生命。但他的行为却鼓舞和震撼了人们的内心。促使人们更努力的去钻研。
(2)东方红一号——中国第一颗人造卫星
1970 年中国第一颗人造卫星“东方红1 号”成功升空!成为了中国航天发展史上第二个里程碑。
(3) 载人航天
2003 年10 月15 日,中国神舟五号载人飞船升空,表明中国掌握载人航天技术,成为中国航天事业发展史上的第三个里程碑。
(4)深空探测-嫦娥奔月
2007年10月24日18时05分,随着嫦娥一号成功奔月,嫦娥工程顺利完成了一期工程。
此后,神舟九号与天宫一号相继发射,并成功对接。
2016年9月15日22时04分09秒,天宫二号空间实验室在酒泉卫星发射中心发射成功 。
中国航天事业是在50年代中期开始的,1956年,中国制定了12年科 学发展远景规划,把火箭和喷气技术列为重点发展项目。同年建立了第 一个导弹、火箭研究机构,1958年把发射人造地球卫星列入国家科学规 划,组建机构开展空间物理学研究和探空火箭研制工作,并开展星际航 行的学术活动和实验设备的筹建工作。中国航天事业在创业之初经历了 经济上、技术上的种种困难,经过艰苦奋斗,终于在1960年2月发射成 功第一枚探空试验火箭,同年11月又发射成功第一枚自制的运载火箭, 在60年代后期又研制成功中程和中远程运载火箭,为中国航天事业的发 展奠定了基础。中国于60年代中期制定了研制和发射人造地球卫星的空 间计划。1968年组建了中国空间技术研究院。1970年4月24日,中国第 一颗人造地球卫星“东方红”1号发射成功,使中国成为继苏、美、法 、日之后世界上第五个用自制运载火箭成功地发射卫星的国家。1971年 3月3日发射成功的第二颗人造地球卫星向地面发回了各项科学实验数据 ,正常工作了多年。1975年11月26日首次发射成功返回型人造地球卫星 ,中国成了继美、苏之后世界上第三个掌握卫星返回技术的国家。1980 年5月,向南太平洋发射大型运载火箭取得成功,1981年9月20日首次用 一枚大型运载火箭把三颗空间物理探测卫星送入地球轨道,1982年10月 从水下潜艇发射运载火箭成功。1984年4月,发射一颗对地静止轨道试 验通信卫星“东方红”2号,4月16日卫星定点于东经125度赤道上空, 至1985年10月,中国依靠自己的力量共发射了17颗不同类型的人造地球 卫星。这些卫星为地质、测绘、地震、海洋、农林、环境保护等国民经 济部门和空间科学研究提供了十分有价值的资料。第一颗试验通信卫星 已用于国内通信广播和电视节目传输,对改善边远地区的通信和广播状 况发挥了重要作用。通过一系列航天活动中国已建立了各类人造卫星、 运载火箭、发射设备和测量控制系统的研究、设计、试验和生产的基地 ,建成了能发射近地卫星和对地静止轨道卫星,拥有光测、遥测和雷达 等多种跟踪测量手段的酒泉和西昌航天器发射场;组成了由控制中心地 面台站和测量船构成的卫星测控网,造就了一支富有经验的航天科学技 术队伍,从而有能力不断开拓航天活动。 10月15日到16日神州5号载人飞船发射成功,是中国高科技领域继 “两弹一星”之后又一座光辉的里程碑,中国由此成为世界上继俄罗斯 和美国之后第三个有能力将航天员送上太空的国家
[1]靳军号,. 把握历史发展机遇 推进通用航空改革发展[J]. 中国民用航空,2009,(6). [2]芮清凯,. 中国航空百年历史的缩影[J]. 中国图书评论,2007,(12). [3]大伟,. 回顾百年历史 展示飞翔文明——记航空百年回顾展开幕[J]. 航空知识,2003,(10). [4]吴大观. 对航空工业两个重大历史问题的思考[J]. 航空发动机,2001,(1). [5]张祖善. 我国航空高等工程教育专业设置的历史变迁[J]. 航空史研究,1998,(2). [6]侯志宏,周府伯,. 航空航天医学历史回顾[J]. 吉林医学,2009,(5). [7]朱静渊,. 第一代航天人揭秘两弹发射历史细节[J]. 神州,2008,(10). [8]张冉燃. 中国航天的历史跨越[J]. 瞭望,2005,(10). [9]卢颖. 人类航天历史上的灾难[J]. 中国青年科技,2003,(10). [10]梁圆. 中华民族迈向伟大复兴的历史丰碑——从“两弹一星”到载人航天[J]. 国防科技工业,2003,(11). [11]北晨. 人类历史的航天灾难一览[J]. 安全与健康,2003,(21). [12]李志黎,陈炳文,刘文科. 回顾历史 展望未来 发展中国航天事业[J]. 中国软科学,1997,(6). [13]王金华. 载人航天国际合作的历史和现状[J]. 国际太空,1996,(4). [14]李洪兴,陆方琴. 南京航空航天大学的历史与现状[J]. 江南论坛,1994,(S1).
随着全球化时代的到来,航空运输企业所起的作用越来越重要。下文是我为大家整理的航空公司的优秀论文的 范文 ,希望能对大家有所帮助,欢迎大家阅读参考!
浅析航空公司机供品成本管理
摘要:找出航空公司机供品成本管理的问题和薄弱环节,对症下药,采取各种手段,全员、全流程控制,提升机供品成本管控水平,降低成本、增强航空公司竞争能力。
关键词:机供品;成本管理;薄弱环节;提升
一、航空公司机供品成本简介
1.机供品成本的定义及范围。
机供品全称机上供应品,是为了保障航班机组和旅客的需要,配上飞机的各种消耗品和用具(不含餐食)。主要包括小食品(果仁、小饼干等)、饮料、酒类、服务用品(水杯、拖鞋、毛毯、小毛巾等)、卫生用品(香水、香皂、面巾纸等)、餐具(碗、盘、咖啡壶等)等几大类,特点是种类繁多,单位价值较低。
2.加强机供品成本管理的重要性。
机供品成本在航空公司营运成本中占比较低,但从绝对额来看,仍是一项金额较大的成本:以一个50架飞机规模的中型航空公司为例,每年的机供品支出大约在4000万元左右。当前油价高企,航空公司各项刚性营运成本居高不下,整个航空业在微利和亏损的边缘徘徊,各公司航油、起降等大项成本控制已经做得非常细致,下一步做好机供品这种相对小项成本控制,对航空公司的生存和发展有着举足轻重的作用。
二、当前航空公司机供品成本管理存在的问题和薄弱环节
(一)采购环节存在缺陷
1.对机供品成本重视程度不够。和航油、起降等大项成本相比,对机供品成本管控相对粗放,前端采购环节缺乏明确的流程和 规章制度 ,经常出现业务部门自购自用的违规现象。
2.采购协议签订流程不规范。采购协议的签订,财务等监督部门前期谈判参与力度不够,经常是协议主要条款基本确定后再由相关部门会签;前期供应商资质,行业情况调查等相关工作做的不细致,合作后容易出现因供应商提供商品质量不合格,开具的票据不合法等问题给公司带来风险和损失。
(二)库存和配送管理相对粗放
1.机供品库存管理分散,缺乏信息化手段。
因机供品种类繁多,很多公司是由客舱、机务、财务等多部门进行管理,比较分散且政策不统一,各部门基本上都是靠手工或者电子表格进行管理,缺乏专业的信息软件,效率低下,无法及时监控库存和降低不合理损耗。
2.配送计划不精细,缺乏灵活性。
业务部门的机供品航班配送计划往往是制定后很长一段期间不调整,缺少定期与实际执行情况进行对比分析的机制,不能根据实际情况的变化,灵活调整计划,容易造成机供品的浪费和不正常损耗。
(三)机上用品非正常损耗现象突出
1.野蛮使用造成的用具非正常损坏。
部分相关人员对机上用具不爱护,在配送和回收的过程中野蛮装卸,使用过程中不按照操作流程,盲目操作,导致餐用具的损坏率居高不下,大大增加了机供品成本。
2.机组和其他工作人员违规偷带造成的机供品非正常损耗。
各公司虽然大都出台了对员工偷带机上供应品的处罚规定,但因为缺少有效的监控手段和办法,各项规定基本上都停留在纸面上,很难切实的落实下去,该项机供品的非正常损耗依旧是居高不下。
三、提高航空公司机供品成本管理水平的几点做法
(一)加强机供品采购管理,强化前馈控制
1.由专业部门组织公开采购。
指定专门的部门负责机供品的采购,业务部门提出需求后,由采购部门牵头,联合业务、财务、纪检等部门成立采购小组对大项采购进行公开招标,避免由使用部门直接联系供应商进行采购。
2.细化协议签订流程、明确各部门权责。
出台合同管理规定,规范协议签订过程中各个操作环节,责任明确到部门,对大额合同需成立联合小组参与协议签订的全过程。
(二)提高库存管控能力,加强配送计划控制
1.细化库管制度,严抓落实。
建立严格的机供品库存管理制度,将机供品管理统一归集到库管部门,使用部门按规定流程领用,财务和纪检部门进行监督,定期组织实物盘点,严控库存损耗。
2.引进信息化手段,提高库管工作效率和质量。
根据公司规模大小适时引进相应的库存管理信息系统,如仓库管理软件、条码系统等,逐渐摒弃用手工账进行管理的方式,提高效率、节省成本。
3.建立配送计划的制定和跟踪分析流程。
加强对机供品配送计划制定质量的监督,建立对配送计划的跟踪分析机制,定期对配送计划的实际执行情况进行分析,根据情况的变化,不断地修正和调整配送计划,提高配送计划的精准度,这样不但可以降低配送成本,还可以减少回收环节的不正常损耗。
(三)加强机供品使用过程的监控,细化规定、落实责任
1.建立严格的机供品使用管理制度,明确管理责任。细化机上用具操作规范,建立针对机供品非正常损耗的奖惩制度,将每项机供品的管理责任落实到个人。
2.领导牵头成立联合小组,现场检查问题。由主管领导牵头,由纪检、业务等部门组成联合检查小组,采用暗访、突击检查等方式对航班机供品使用情况进行抽查,发现问题现场取证。
3.严格追责制度,发现问题按章处理。对违反机供品管理固定的人员,查实后严格按照奖惩制度进行处理,使其真正的因为违规违法行为受到严厉的惩罚,只有公平公正、严格按章办事,才能保证相关制度的真正落地。
(四)优化机供品回收流程,加强机供品的回收控制
1.梳理机供品回收流程,提高效率。
对机供品的回收流程进行认真梳理,对那些影响效率的工作环节进行重新设计,在满足内控需要的情况下尽量简化交接手续,有条件的可以借助信息化系统,用手持终端扫描等手段,提高效率。
2.建立奖惩制度,考核回收差错率。
出台机供品回收的管理规范,定期检查机供品回收情况,对回收差异率进行考核,及时将检查结果向计划制定部门通报,协助计划部门提升计划质量。
3.库房建立回收机供品存放区,单独管控。
在机供品库房设立回收机供品专用存放区,制定回收机供品再配送的详细流程和规定,加强对回收机供品的检查和数据统计,通过对回收机供品的单独管控,提升管控质量。
四、航空公司机供品管理的几点体会
1.机供品成本的全流程控制。
机供品的成本的管理重点不能仅放在财务审核环节,而是应扩大范围,从采购环节开始,控制采购成本;加强在使用过程中的管控,减少不合理损耗;细化账单审核和专项分析,做到对机供品业务的全流程控制。
2.机供品成本的全员控制。
机供品成本的管理仅仅通过财务部门的努力是很难推进和落实的,航空公司应该提高对该项成本的重视程度,强化制度建设和 文化 宣贯,使得采购、业务、库管以及其他部门的员工都能够认识到成本控制的重要性,发动全员加强对机供品成本的监控。
3.控制 措施 的持续落实和不断改进。
机供品管理规范和控制措施出台后,要真正实现优化成本的作用,必须严抓落实,对违规行为持续检查和处理,并根据实际情况不断地调整和改进管控措施,逐渐形成对机供品的全方位管控机制。
浅探航空公司风险防范体系建立
摘 要:
航空公司通过建立事件前期预防、过程控制、后期弥补的风险防控机制,在公司内部设立风险控制部门对有关工作进行统一管理。航空公司风险防控机制建设的目的是把航空公司的日常运营活动统一纳入法制化管理,以降低公司日常运营成本,提升航空公司日常运营效率,对航空公司的运营与发展进行制度保障与支持。
关键词:
企业风险;内部控制;管理体系;机制建设
1 风险的概念
风险一词本身是中性的,即风险本身并无好坏之分。风险是人类活动的内在特征,它来源于对未来结果的不可知性。因此,风险通常被定义为对未来结果不确定性的暴露。不确定性可以被认为是一个或几个事件(结果)发生的概率分布。从风险管理的实践角度来讲,未来可能存在的结果及其服从的概率分布特征常常是不可知的。因此人们在管理风险的时候,常常需要对此进行主观的推断并制定出风向管理的制度和体系。航空公司的风险防范体系就是基于上述的认知来建立的。
2 航空公司风险防控工作的思路
前期预防是基石
如果仅仅只注重风险事件发生以后的有关补救工作的跟进,往往意味着更高的成本和更鸡肋一般的效果,而且经常是在有关事件转坏、有关事项进入法律程序阶段,由法院和仲裁等第三方介入解决,比航空公司内部直接采取措施的成本高出许多,且结果具有不确定性。例如,航空公司在涉及经济合同或 劳动合同 引起的纠纷时,有时从法律角度存在胜算,但因受法治环境、媒体舆论或宏观干预的影响而出现负面结果,或在胜诉后的执行过程中存在难度。又如,一些投资活动往往因事先防范措施不到位而导致失败。 而有效的事先防范,能促进航空公司加强自身免疫系统,防风险与未然,切实提高抗风险能力,保障航空公司正常、持续、健康的运转,达到事半功倍的效果。
过程控制是关键
如果前期注意了预防,但是在过程中忽略了控制跟进,万一风险事件发生并造成了无法挽回损失后再去想办法弥补,也正所谓形同亡羊补牢,不仅使公司陷入被动境地,而且多半于事无果。譬如某合约签订时对己公司非常有利,但在进入实施旅行阶段后依旧存在很多不确定因素,各种会议备忘录、谅解协议、补充协议等都会对原有的条款造成影响。又比如,让一些代理公司颇为头疼的欠款问题,多数也源于缺乏有效的过程跟进和控制。因此,风险的过程控制是风险防范的关键因素,事关风险管理的走向和成效,应将过程控制深深地融入于航空公司运作的每一个步骤、每一个职能部门,直到每一个工作岗位。只有过程控制到位了,才能保障航空公司风险防范体系切实发挥作用。
3 航空公司风险防控机制建设的要点
融合性
航空公司的风险防控机制作为公司整体管理体系的一个重要组成部分,其作用发挥应与其他管理体系相互融合统一,同时在建构成本和效益考量方面存在一致性。
整体性
航空公司风险防控机制建设应注重各个细节、每项内容和内部各个有关部门的密切协调,以紧密相连并密不可分的管理,来实现预期的前期预防和过程控制的目的。
实操性
航空公司风险防控机制建设要一定注意能够与公司现有的运营模式、人员现状、外部环境、 企业文化 等各个要素紧密结合,通过细化各项措施和强化对接模式,确保具有现实可操作。
4 航空公司风险管理的架构
设立风险管理委员会
由航空公司最高管理者负责,决策层领导和专业人士组成。负责组织领导航空公司风险防控工作,组织制定风险防控总体目标、工作方案和实施计划。
组建合规审查委员会
由专业职能部门组成,必要时邀请外部专家加入。负责对航空公司经营管理的合规性进行全面的分析检查,对于发现出现和将来可能出现的风险事件以及风险政策出现失误、失控的情形,及时提出改进方案。
设立风险管理委员会办公室
由相关业务人员组成。负责在管理委员会领导下制定航空公司风险管理制度,组织实施有关防控措施,拟定有关风险评估 报告 ,协调风险管理相关环节协作事宜等。
5 航空公司风险管理体系的内容
确立航空公司风险防控体制架构
航空公司风险防控体制的建构应基于航空公司管理的主要风险要素,具体有以下十九个:(1)资产管理;(2)采购业务;(3)工程项目;(4)资金活动;(5)合同管理;(6)销售业务;(7)人力资源;(8)生产运营;(9)信息系统;(10)组织机构;(11)内部信息沟通;(12)安全运行;(13)企业文化;(14)财务报告;(15)全面预算;(16)发展战略;(17)业务外包;(18)社会责任;(19)风险评估与应对。上述十九要素是航空公司风险管理的核心,可根据公司具体的情况逐步完善。
风险管理评估
航空公司风险防控体系的建构和运作具有长期性、连续性。根据宏观经济环境的变化及公司中长期运营战略的
不断调整,航空公司面临的风险也不断与时俱变。此时就需要重新评估公司所面临的各类风险变化,并及时对公司的风险防控机制进行合理调整。譬如,在前些年国家对当时实行 公司法 进行大幅修改后,当时商务活动的很多规则发生变化,如公司章程的重要性被大幅提高,从而对航空公司风险防控体系的完善提出新的要求,需对航空公司资产管理、采购业务、合同管理、生产运营、业务外包、工程项目等一系列风险管理项目予以调整。因此,要把对航空公司日常运营的风险评估形成规范化常态化管理。通过对航空公司日常运营各有关重要事项进行全面梳理调查,根据 年度 工作计划 ,拟订风险防控关键点,做好风险防控有效预案等各项工作。
6 航空公司风险防控机制建构顺序
尽职调查
航空公司风险防控机制所基于的十九个风险要素都具有一定的相对独立性,每个公司在建构自己的有关机制体系的时候都立足于自身不同的特点与实际现实状况,各航空公司在相关工作的开展过程中对日常管理中各主要风险要素的侧重也有所不同。为确保航空公司风险防控机制的各个风险要素与航空公司自身管理体系相匹配,以使各风险要素的构建具有实操性,首先需要进行周密的尽职调查。
体系建设
在周密严谨的尽职调查后,航空公司逐步建设风险防控机制的各要素,包括各要素模板、运作指南、风险提示、流程管控等,并将航空公司现有的相关制度纳入风险管理体系。
系统培训
航空公司上至管理层下至每个员工都应在日常工作中对航空公司风险防控机制的各风险要素有着充分的认识并自觉在工作中贯彻执行有关内容,相关培训工作应该在项目的初始阶段就应被充分考虑并与项目的开展同步实施。
具体实施
在航空公司风险防控机制的体系建设及相关培训宣贯工作完成后,进入具体实施阶段。次阶段的要点是要使公司的每个员工都能在自己所负责的日常工作中自觉自然自愿并一丝不苟地贯彻实施有关内容。
后续修正
在航空公司风险防控机制的具体实行中,对于所呈现的有关问题,由特设机构的人员进行及时有效地调整与修正,以确保体系有效运行。
总之,航空公司风险防控机制的体系建设对航空公司的健康有序发展至关重要,需要得到航空公司管理层的高度重视,对其作出科学合理的统筹安排,并辅以各部门各环节的紧密配合和有力执行。航空公司风险防控机制的体系建设的目标是把公司日常所有运营活动统一纳入都纳入风险和法治化管理,以降低公司日常运营成本,提升航空公司日常运营效率,对航空公司的运营与发展进行制度保障与支持。只有航空公司风险防控体系的各要素运行良好,才能确保航空公司风险整体可控,为航空公司可持续性的高效增长提供强有力的保障。
参考文献
[1]何庆光,王玉梅.内部控制与企业风险的防范和化解[J].经济与社会发展,2004,(8).
[2]王星.构建企业内部控制引入风险管理之研究[J].现代商业,2009,(6).
[3]高立法.企业全面风险管理实务(第二版) [M].北京:经济管理出版社,2012,(6).
[4]美国COSO制定发布,方红星,王宏译.企业风险管理—整合框架[M].沈阳:东北 财经 大学出版社,2005,(9).
[5]胡杰武,万里霜.企业风险管理[M].北京:北京交通大学出版社,2009,(9).
[6]上海国家会计学院.企业风险管理[M].北京:经济科学出版社,2012,(6).
我的航天技术论文在过去半年中,接连发生了两起重大航天灾难。尽管人们备感痛惜,但这些挫折并不能阻挡人类进军宇宙的步伐。 既然航天活动风险如此之大,为什么人类依然不放弃进军宇宙的梦想呢?从长期看,地球的资源是有限的,人类总有一天必须走出自己的摇篮;从中短期看,航天活动可带来巨大回报,是一个国家综合国力的体现。进军宇宙是人类现在和未来的一项伟大事业。于是,载人航天成为现代航天科技发展的重中之重……中国载人航天技术的发展及其意义和前景俗话说,天高任鸟飞,海阔凭鱼跃。人类在漫长的社会进步中不断扩展自身的生存空间。现在,人类的活动范围已经历了从陆地到海洋,从海洋到大气层空间,再从大气层空间到太空的逐步发展过程。人类活动范围的每一次扩展都是一次伟大的飞跃。中国载人航天技术的发展历程很久以前,人类就有飞出地球、探知太空奥秘和开发宇宙资源的愿望,我国古代的不少神话故事便是突出的反映。最典型的是流传很广的嫦娥奔月,它描写一个叫嫦娥的美女,偷吃了丈夫后羿从西王母那里求得的长生不老的仙药后,身体变轻飘到月亮上去了。历史上第一个试验乘火箭上天的人是15世纪中国官员万户。1945年,美国学者基姆在他的《火箭与喷气发动机》一书中是这样描写的:万户先做了两个大风筝,并排装在一把椅子的两边。然后,他在椅子下面捆绑了47支当时能买到的最大火箭。准备完毕后,万户坐在椅子当中,然后命其仆人点燃火箭。但是,随着一声巨响,他消失在火焰和烟雾中,人类首次火箭飞行尝试没有成功。20世纪80年代,改革开放带来了航天技术的春天。1986年,中共中央、国务院批准了《高技术研究发展计划("863"计划)纲要》,把航天技术列为我国高技术研究发展的重点之一。"863"高技术航天领域的专家们对我国航天技术未来的发展进行了深入细致的论证,描绘了我国航天技术发展前景的蓝图,一致认为载人航天是我国继人造卫星工程之后合乎逻辑的下一步发展目标。1992年1月,党中央批准研制载人飞船工程。自此,我国的载人航天工程正式启动。1999年11月20日,我国成功发射了自行研制的第一艘飞船神舟1号,成为世界上第三个发射宇宙飞船的国家。此后,又分别把神舟2、3和4号送上九重天。在1992年开始研制载人飞船之前,我国"863"高技术航天领域的专家们曾为研制哪种运输器这个问题进行了几年的研究,即对从研制飞船起步和越过载人飞船直接发展航天飞机的多种技术方案进行了充分的论证、比较和分析,甚至还激烈地争论过。2003年10月15日圆了万户的梦,因为在这一天中国人民期待已久的第一艘载人飞船神舟5号顺利升空并安全返回,实现了中华千年飞天的理想。它也打破了美国和苏联.俄罗斯在这一领域的多年垄断格局,成为世界第3个独立自主研制并发射载人航天器的国家,这对世界载人航天事业的发展和振兴中华会起到巨大的推动作用。载人航天的重大意义历史上,远洋航海技术的兴起,导致了世界贸易的发展、世界市场的开辟和近代科学的一系列成就,开始了一个"全球文明"的时代。当代载人航天技术的问世,则使人类走出地球这一摇篮而到达太空,开始了一个"空间文明"的新时代。载人航天是航天技术向更高阶段的发展。不过,由于载人航天技术与无人航天技术有很大差别,主要反映在安全性、复杂性和成本高三个方面,所以从1961年第一名航天员上天到现在,它还没有表现出特别明显的用途。但从可以预见的未来来看,人类现在面临的资源枯竭、人口急增等急待解决的几大问题,只有通过开放地球、扩大人类生存空间来解决。即使在当代,发展载人航天也可以起到以下作用:首先,它能体现一个国家综合国力和提升国际威望。因为航天技术的水平与成就是一个国家经济、科学和技术实力的综合反映。载人航天是航天技术向更高阶段的发展,载人航天的突破--用本国的载人航天器将航天员送入太空并安全返回,更是一个国家综合国力强大的标志。发展载人航天需要依靠先进的技术水平、发达的工业基础和雄厚的经济实力。迄今为止,只有俄罗斯和美国实现了载人航天。其他拥有一定航天技术基础或较强经济实力的国家,虽欲染指载人航天,但因力不从心,所以只能求助于与他们合作,出钱出资,用俄、美的载人航天器将本国航天员送上太空,以图逐步加入世界"载人航天俱乐部"。邓小平同志曾经说过:没有两弹一星就没有中国的大国地位。所以,我国航天员进入太空,也能像上世纪六七十年代我国拥有"两弹一星"那样,引起全世界注视,提高我国的国际地位,振奋民族精神,增强全民的凝聚力。其次,它能体现现代科技多个领域的成就,同时又给现代科技各个领域提出新的发展需求,从而可以大大促进整个科技的发展,并将为培养和造就航天科技人才作贡献。例如,就载人航天器本身的研制和运行而言,它对通信、遥感、推进、测量、材料、计算机、系统工程、自动控制、环境控制和生命保障等技术提出了很高的要求,因而大大推动了这些技术的进步。再有,载人航天的发展能促进太空资源的开发,为地球上的人类造福。载人航天器所处的高远位置和微重力等特殊环境,可为科研提供一个理想的实验场所,它在推动生命科学与生物技术、微重力科学与应用等许多方面正发挥着重要作用,并有望在一些前沿学科上取得突破性进展,为人类带来巨大的效益。一些国家已经在太空制药、太空育种和太空材料加工等领域取得显著成果,并准备建造太空工厂,其效率和效益不可限量。另外,地球能容纳的人口是有限的,大约80亿~110亿,因此有些人已经开始研究向外空移民的方案;地球上的能源也日益紧张,那么是否可以到别的星球开发矿藏呢?这是科学家所关心的一个问题,而且不是天方夜潭,因为类似载人登月等许多过去可望不可及的神话和幻想,如今有不少都变成了现实。最后,载人航天具有巨大的军事潜力。使用载人航天器可以很好地完成侦察和监视任务;灵活部署、修理和组装大型军用卫星;安全而连续地指挥和控制地面军事力量;还能作为特殊武器的试验场。例如,早在1965年12月,美国双子星座7号飞船上的航天员就曾用红外遥感器监视和跟踪了1枚潜射导弹的发射,所获信息比潜艇上的观察人员报告的还要快。第1次、2次海湾战期间,和平号空间站与"国际空间站"上的航天员对战区进行了大量观测活动,取得了许多有用的信息。中国载人航天的未来前景中国载人航天将实施"三步走"的发展战略。中国在成功发射4艘无人试验飞船的基础上,已将首位航天员送入太空,实现了载人航天的历史性突破。然而这只是第一步。第二步除继续用载人飞船进行对地观测和空间试验外,重点包括出舱活动、空间交会对接试验和发射长期自主飞行、短期有人照料的空间实验室,以尽早建成完整配套的空间工程大系统,解决一定规模的空间应用问题。第三步是建造更大的长期有人照料的空间站。航空航天技术 为航空航天活动的顺利进行而创立的一系列高级复杂的施工作业程序。它涉及人力资源配置,设备仪器搭配与安装使用等艰深的学术作业。是国家,民族,乃至整个人类发展的高度追求。航空航天电子技术 航空航天电子技术(electronics for aeronautics and astronautics)[编辑本段]概述应用于航空工程和航天工程的电子与电磁波理论和技术。在现代航空和航天工程中电子系统是重要的系统之一。[编辑本段]组成它按功能分为通信、导航、雷达、目标识别、遥测、遥控、遥感、火控、制导、电子对抗等系统。各种系统一般包括飞行器上的电子系统和相应的地面电子系统两部分,这两部分通过电磁波传输信号合成为一个系统。和这些电子系统有关的电子理论和技术有通信理论、电磁场理论、电波传播、天线、检测理论和技术、编码理论和技术、信号处理技术等,而微电子技术和电子计算机技术则是提高各种电子系统性能的基础。它们的发展使飞行器上的电子系统进一步小型化和具有实时处理更大量数据的能力,进而使飞机的性能(机动能力、火控能力、全天候飞行、自动着陆等)大为提高,航天器的功能(科学探测、资源勘测、通信广播、侦察预警等)日益扩大。[编辑本段]特点一、航空航天飞行器上电子设备的特点是:①要求体积小、重量轻和功耗小;②能在恶劣的环境条件下工作;③高效率、高可靠和长寿命。在高性能飞机和航天器上,这些要求尤为严格。飞机和航天器的舱室容积、载重和电源受到严格限制。卫星上设备重量每增加1公斤,运载火箭的发射重量就要增加几百公斤或更多。导弹和航天器要承受严重的冲击过载、强振动和粒子辐射等。一些航天器的工作时间很长,如静止轨道通信卫星的长达7~10年,而深空探测器的工作时间更长。因此,航空航天用的电子元器件要经过极严格的质量控制和筛选,而电子系统的设计需要充分运用可靠性理论和冗余技术。二、航空航天电子技术的主要发展方向是:①充分利用电子计算机和大规模集成电路,提高航空航天电子系统的综合化、自动化和智能化水平;②提高实时信号处理和数据处理的能力和数据传输的速率;③发展高速率和超高速率的大规模集成电路;④发展更高频率波段(毫米波、红外、光频)的电子技术;⑤发展可靠性更高和寿命更长的各种电子元器件。航空航天基本知识我们知道,人类的家园是地球,而地球的外面覆盖着一层大气,如果没有水和大气以及适宜的温度和环境,生物是很难生存的。通常,在人们的眼中,“天”很高,要想冲出厚厚的大气层,进入太空非常非常困难。其实,与地球相比,大气层是很稀薄的。人们知道,地球的直径大约为12700千米,而大气层的厚度只有100 -800千米。如果将地球比作一个苹果的话,那么,我们可以把大气层看成是苹果的皮,可这层“苹果皮”本身却是变化多端的。比如最贴近地球表面的一层,叫作对流层,其高度从海平面起一直到大约11000米止,其顶界是随纬度、季节等情况而变化的,在赤道地区为17000米,在中纬度地区(如北京、天津地区)为11000米,在地球两极地区则为7000-8000米。对流层的主要特点是,空气温度随着高度的增加而降低,因而又称为变温层,平均而言高度每上升1000米,气温约下降℃。与此同时,气压也随高度的增加而降低。由于地球引力的作用,在 5500米的高度范围内,包含了大气总量的一半,而整个对流层,大约占了全部大气质量的四分之三。由于几乎所有的水蒸气都集中在这一层大气内,再加上大量的微粒,因而,这里也是风云变幻最为剧烈的一层。从大约11000米的高度起,直到30500米左右,其大气温度基本不变,平均保持在℃上下,因此被称为同温层(实际情况是:在25000米以下,气温随高度的升高而上升。在同温层顶,气温约升至-43至-33℃)。同温层的气温之所以具有这样的特点,是因为该层大气离地球表面较远,受地面温度的影响较小,并且其顶部存在着臭氧,能够直接吸收太阳的辐射热等。同温层所包含的空气质量大约占整个大气的四分之一弱。在这一层大气内,没有上下对流,只有水平方向的风,所以又叫作平流层。另外,该层大气几乎不存在水蒸气,基本上没有云、雾、雨、雹等气象变化的现象,这对飞行器的平稳飞行是非常有利的。不过,由于空气密度很小,飞机在这一高度层上又不适宜机动飞行。人类的航空活动差不多都集中在对流层和同温层内。为了保证飞机和发动机的工作效率,飞机飞行的高度一般不超过30千米的界限。从30千米到80-100千米的高度范围,被称为中间层。这一层空气的特点是:以 45千米为界,温度先升后降。由于大量的臭氧存在,其气温先由同温层顶的-33℃提高到17至40℃左右;从45千米起,随着高度的升高,气温又开始下降,一直降低到℃至-113℃。中间层的空气已经很稀薄了,其空气质量约只占整个大气层的1/3000。在80千米高度上,空气的密度只有地面的五万分之一;而在100千米高度上,空气的密度仅为地面的一千万分之八。由于空气非常稀薄,并且气体开始呈现电离现象,因此,人们一般把飞行高度达到80—100千米的飞行器,看成是不依靠大气飞行的航天器。1967年10月,美国试飞员约瑟夫·沃尔克驾驶X-15A火箭飞机飞出了 7297千米/小时的惊人速度,创造了有人驾驶飞机速度的世界纪录。而且,他还曾多次飞到了80千米以上的高空,成为美国第一个“驾驶飞机的宇航员”。按照美国航空航天局规定:飞行高度超过80千米的飞行员即可称为宇航员.在中间层之上直至800千米高空的范围,称作电离层。其特点是:含有大量的带正电或负电的离子,空气具有导电性。并且,其温度随高度的增大而迅速升高,在200千米高度时,气温可达400℃。所以,这里又被人们叫作“暖层”。在电离层顶端之外,便是大气的最外层——“散逸层”了。由于地球引力的减弱,气体分子和等离子体与地球已若即若离。电离层和散逸层的空气密度极低,对太空飞行器的影响已很小,因此,人类大部分的航天活动都是在它们之内(或之外)进行的。航空与航天的区别:航空与航天是人们经常接触的两个技术名词,两者虽然仅一字之差,却被称为两大技术门类,这是为什么呢?您稍加注意即可发现,航空技术主要是研制军用飞机、民用飞机及吸气发动机,航天技术主要是研制无人航天器、载人航天器、运载火箭和导弹武器,最能集中体现两者成果的是航空器和航天器。从航空器与航天器的重大区别上即可看出两个技术领域的显著差异。第一,飞行环境不同。所有航空器都是在稠密大气层中飞行的,其工作高度有限。现代飞机最大飞行高度也就是距离地面30多千米。即使以后飞机上升高度提高,它也离不开稠密大气层。而航天器冲出稠密大气层后,要在近于真空的宇宙空间以类似自然天体的运动规律飞行,其运行轨道的近地点高度至少也在100千米以上。对在运行中的航天器来讲,还要研究太空飞行环境。第二,动力装置不同。航空器都应用吸气发动机提供推力,吸收空气中的氧气作氧化剂,本身只携带燃烧剂。而航天器其发射和运行都应用火箭发动机提供推力,既带燃烧剂又带氧化剂。吸气发动机离开空气就无法工作,而火箭发动机离开空气则阻力减小有效推力更大。吸气发动机包括燃烧剂箱在内都可随飞机多次使用,而发射航天器的运载火箭都是一次性使用。虽然航天飞机的固体助推器经过回收可以重复使用20次,其轨道器液体火箭发动机可以重复使用50次,但与航空器使用的吸气发动机比较起来,使用次数仍然是很少的。吸气发动机所用的燃烧剂仅为航空汽油和航空煤油,而火箭发动机所用的推进剂却是多种多样的,既有液体的,也有固体的,还有固液型的。第三,飞行速度不同。现代飞机最快速度也就是音速的三倍多,且是军用飞机。至于目前正在使用的客机,都是以亚音速飞行的。而航天器为了不致坠地,都是以非常高的速度在太空运行的。如在距地面600千米高的圆形轨道上运行的航天器,其速度是音速的22倍。所有航天器正常运行时都处于失重状态,若长期载人会使人产生失重生理效应,并影响健康。正因如此,航天员与飞机驾驶员比较起来,其选拔和训练要严格得多。一般人买票即可坐飞机,而花重金到太空遨游的人还必须通过专门培训。第四,工作时限不同。无论是军用还是民用飞机,最大航程计约2万千米,最长飞行时间不超过一昼夜。其活动范围和工作时间都很有限,主要用于军事和交通运输。虽然通用轻型飞机应用广泛,但每次活动范围相对更小。而航天器在轨道上可持续工作非常长时间,如目前仍在使用的联盟TM号载人飞船,可与空间站对接后在太空运行数月之久。再如航天飞机,能在轨道上飞行7-30天,约小时即可围绕地球飞行一周。载人航天器运行时间最长的当属和平号空间站,它在太空飞行了整整15个年头。至于无人航天器,如各种应用卫星,一般都在绕地轨道上工作多年。有的深空探测器,如先驱者10号,已在太空飞行了32年,正在飞出太阳系向银河系遨游。航空器的优点是能多次重复使用,而航天器除航天飞机外,只能一次性使用,载人宇宙飞船也不例外。第五,升降方式不同。飞机的升空是从起飞线开始滑跑到离开地面,加速爬升到安全高度为止的运动过程。它返回地面降落时只要经过下滑和着陆即可。只有个别飞机如英国的“鹞”型战斗机采用发动机喷口转向的方式使飞机能够垂直起落,但机身并未竖起,仍处于水平位置。而至今为止的航天器发射,包括地面和海上的发射,顶部装着航天器的运载火箭都是垂直腾空的。在完成发射过程中,运载火箭要按程序掉头转向和逐级脱离,最终将航天器送入预定轨道运行。有的航天器发射,中间还要经过多次变轨,情况更为复杂。航天飞机虽然也能施放航天器,但它本身亦是垂直发射升空的。至于返回式航天器,其回归地面必须经历离轨、过渡、再入和着陆四个阶段,远比飞机降落困难。航空器的起飞、飞行和降落与航天器的发射、运行和返回,虽然都离不开地面中心的指挥,但两者的地面设施和保障系统及其工作性能与内容也是大有区别的。世界航空航天大事件:风筝起源古代中国,约14世纪传到欧洲公元前500-400年中国人就开始制作木鸟并试验原始飞行器1909年世界第一架轻型飞机在法国诞生1903年12月14日至17日,由莱特兄弟设计制造的“飞行者”1号飞机,在人类航空史上首次实现了自主操纵飞行.这次试飞成功成为一个划时代的事件,人类航空史从此进入新的纪元1947年10月14日美国著名试飞员查尔斯·耶格尔驾驶X—1飞机实现了突破音障飞行1969年7月20日22时56分20秒,阿姆斯特迈出一小步成为全体地球人类的一大步1957年10月4日前苏联发射世界第一颗人造地球卫星。半年后,美国的人造卫星上天1959年9月12日前苏联发射“月球”2号探测器,为世界上第一个撞击月球表面的航天器1961年4月12日前苏联宇航员加加林成为世界第一位飞入太空的人1969年7月20日美国宇航员阿姆斯特朗乘坐“阿波罗”11号飞船,成为人类踏上月球的第一人1970年12月15日前苏联“金星”7号探测器首次在金星上着陆1971年4月9日前苏联“礼炮”1号空间站成为人类进入太空的第一个空间站。两年后,美国将“天空实验室”空间站送入太空1971年12月2日前苏联“火星”3号探测器在火星表面着陆。5年后,美国的“海盗”火星探测器登陆火星1981年4月12日世界第一架航天飞机---美国“哥伦比亚”号航天飞机发射成功1986年1月28日美国航天飞机“挑战者”号在升空73秒后爆炸1986年2月20日前苏联发射“和平”号空间站,服役已经超期8年,至今仍在运行,是目前最成功的人类空间站1993年11月1日美、俄签署协议,决定在“和平”号空间站的基础上,建造一座国际空间站,命名为阿尔法国际空间站我国航空航天大事件:1956年10月8日,我国第一个火箭导弹研究机构———国防部第五研究院成立。1970年4月24日,长征一号运载火箭在酒泉卫星发射中心成功地发射了东方红一号卫星,我国成为世界上第三个独立研制和发射卫星的国家。1975年11月26日,长征二号运载火箭在酒泉卫星发射中心成功地发射了我国第一颗返回式科学试验卫星,并于3天后成功回收。1984年4月8日,长征三号运载火箭在西昌卫星发射中心成功地发射了我国第一颗地球同步轨道卫星———东方红二号试验通信卫星。1990年4月7日,中国用自行研制的长征三号运载火箭在西昌卫星发射中心成功地发射了亚洲一号通信卫星,这是中国长征系列运载火箭首次发射国外卫星,使我国在世界航天商业发射服务领域占有了一席之地。1999年10月,我国和巴西联合研制的第一颗地球资源卫星顺利升空,并正常运行,这是我国首次在空间技术领域进行的全面国际合作。2003年10月15日,“神舟”五号飞船成功发射,并于2003年10月16日圆满回收,使我国成为世界上第三个独立掌握载人航天技术的国家。2003年12月和2004年7月,我国与欧洲空间局联合研制并发射了“探测一号”和“探测二号”科学卫星,“地球空间双星探测计划”取得圆满成功。2004年1月23日,我国绕月探测工程正式由国务院批准立项。2005年10月12日,神六成功发射.
我知道你是航院的,也知道你是应付老师布置的作业,但是咱不能恁直接是不
你们才七百字啊?我们让写三千字
飞行器及其动力装置、附件、仪表所用的各类材料,是航空航天工程技术发展的决定性因素之一。航空航天材料科学是材料科学中富有开拓性的一个分支。飞行器的设计不断地向材料科学提出新的课题,推动航空航天材料科学向前发展;各种新材料的出现也给飞行器的设计提供新的可能性,极大地促进了航空航天技术的发展。 航空航天材料的进展取决于下列3个因素:①材料科学理论的新发现:例如,铝合金的时效强化理论导致硬铝合金的发展;高分子材料刚性分子链的定向排列理论导致高强度、高模量芳纶有机纤维的发展。②材料加工工艺的进展:例如,古老的铸、锻技术已发展成为定向凝固技术、精密锻压技术,从而使高性能的叶片材料得到实际应用;复合材料增强纤维铺层设计和工艺技术的发展,使它在不同的受力方向上具有最优特性,从而使复合材料具有“可设计性”,并为它的应用开拓了广阔的前景;热等静压技术、超细粉末制造技术等新型工艺技术的成就创造出具有崭新性能的一代新型航空航天材料和制件,如热等静压的粉末冶金涡轮盘、高效能陶瓷制件等。③材料性能测试与无损检测技术的进步:现代电子光学仪器已经可以观察到材料的分子结构;材料机械性能的测试装置已经可以模拟飞行器的载荷谱,而且无损检测技术也有了飞速的进步。材料性能测试与无损检测技术正在提供越来越多的、更为精细的信息,为飞行器的设计提供更接近于实际使用条件的材料性能数据,为生产提供保证产品质量的检测手段。一种新型航空航天材料只有在这三个方面都已经发展到成熟阶段,才有可能应用于飞行器上。因此,世界各国都把航空航天材料放在优先发展的地位。中国在50年代就创建了北京航空材料研究所和北京航天材料工艺研究所,从事航空航天材料的应用研究。 简况18世纪60年代发生的欧洲工业革命使纺织工业、冶金工业、机器制造工业得到很大的发展,从而结束了人类只能利用自然材料向天空挑战的时代。1903年美国莱特兄弟制造出第一架装有活塞式航空发动机的飞机,当时使用的材料有木材(占47%),钢(占35%)和布(占18%),飞机的飞行速度只有16公里/时。1906年德国冶金学家发明了可以时效强化的硬铝,使制造全金属结构的飞机成为可能。40年代出现的全金属结构飞机的承载能力已大大增加,飞行速度超过了600公里/时。在合金强化理论的基础上发展起来的一系列高温合金使得喷气式发动机的性能得以不断提高。50年代钛合金的研制成功和应用对克服机翼蒙皮的“热障”问题起了重大作用,飞机的性能大幅度提高,最大飞行速度达到了3倍音速。40年代初期出现的德国 V-2火箭只使用了一般的航空材料。50年代以后,材料烧蚀防热理论的出现以及烧蚀材料的研制成功,解决了弹道导弹弹头的再入防热问题。60年代以来,航空航天材料性能的不断提高,一些飞行器部件使用了更先进的复合材料,如碳纤维或硼纤维增强的环氧树脂基复合材料、金属基复合材料等,以减轻结构重量。返回型航天器和航天飞机在再入大气层时会遇到比弹道导弹弹头再入时间长得多的空气动力加热过程,但加热速度较慢,热流较小。采用抗氧化性能更好的碳-碳复合材料陶瓷隔热瓦等特殊材料可以解决防热问题。 分类飞行器发展到80年代已成为机械加电子的高度一体化的产品。它要求使用品种繁多的、具有先进性能的结构材料和具有电、光、热和磁等多种性能的功能材料。航空航天材料按材料的使用对象不同可分为飞机材料、航空发动机材料、火箭和导弹材料和航天器材料等;按材料的化学成分不同可分为金属与合金材料、有机非金属材料、无机非金属材料和复合材料。 材料应具备的条件用航空航天材料制造的许多零件往往需要在超高温、超低温、高真空、高应力、强腐蚀等极端条件下工作,有的则受到重量和容纳空间的限制,需要以最小的体积和质量发挥在通常情况下等效的功能,有的需要在大气层中或外层空间长期运行,不可能停机检查或更换零件,因而要有极高的可靠性和质量保证。不同的工作环境要求航空航天材料具有不同的特性。 高的比强度和比刚度对飞行器材料的基本要求是:材质轻、强度高、刚度好。减轻飞行器本身的结构重量就意味着增加运载能力,提高机动性能,加大飞行距离或射程,减少燃油或推进剂的消耗。比强度和比刚度是衡量航空航天材料力学性能优劣的重要参数: 比强度=/ 比刚度=/式中[kg2][kg2]为材料的强度,为材料的弹性模量,为材料的比重。 飞行器除了受静载荷的作用外还要经受由于起飞和降落、发动机振动、转动件的高速旋转、机动飞行和突风等因素产生的交变载荷,因此材料的疲劳性能也受到人们极大的重视。 优良的耐高低温性能飞行器所经受的高温环境是空气动力加热、发动机燃气以及太空中太阳的辐照造成的。航空器要长时间在空气中飞行,有的飞行速度高达3倍音速,所使用的高温材料要具有良好的高温持久强度、蠕变强度、热疲劳强度,在空气和腐蚀介质中要有高的抗氧化性能和抗热腐蚀性能,并应具有在高温下长期工作的组织结构稳定性。火箭发动机燃气温度可达3000[2oc]以上,喷射速度可达十余个马赫数,而且固体火箭燃气中还夹杂有固体粒子,弹道导弹头部在再入大气层时速度高达20个马赫数以上,温度高达上万摄氏度,有时还会受到粒子云的侵蚀,因此在航天技术领域中所涉及的高温环境往往同时包括高温高速气流和粒子的冲刷。在这种条件下需要利用材料所具有的熔解热、蒸发热、升华热、分解热、化合热以及高温粘性等物理性能来设计高温耐烧蚀材料和发冷却材料以满足高温环境的要求。太阳辐照会造成在外层空间运行的卫星和飞船表面温度的交变,一般采用温控涂层和隔热材料来解决。低温环境的形成来自大自然和低温推进剂。飞机在同温层以亚音速飞行时表面温度会降到-50[2oc]左右,极圈以内各地域的严冬会使机场环境温度下降到-40[2oc]以下。 在这种环境下要求金属构件或橡胶轮胎不产生脆化现象。液体火箭使用液氧(沸点为-183[2oc])和液氢(沸点为-253[2oc])作推进剂,这为材料提出了更严峻的环境条件。部分金属材料和绝大多数高分子材料在这种条件下都会变脆。通过发展或选择合适的材料,如纯铝和铝合金、钛合金、低温钢、聚四氟乙烯、聚酰亚胺和全氟聚醚等,才能解决超低温下结构承受载荷的能力和密封等问题。 耐老化和耐腐蚀各种介质和大气环境对材料的作用表现为腐蚀和老化。航空航天材料接触的介质是飞机用燃料(如汽油、煤油)、火箭用推进剂(如浓硝酸、四氧化二氮、肼类)和各种润滑剂、液压油等。其中多数对金属和非金属材料都有强烈的腐蚀作用或溶胀作用。在大气中受太阳的辐照、风雨的侵蚀、地下潮湿环境中长期贮存时产生的霉菌会加速高分子材料的老化过程。耐腐蚀性能、抗老化性能、抗霉菌性能是航空航天材料应该具备的良好特性。 适应空间环境空间环境对材料的作用主要表现为高真空(×10[55-1]帕)和宇宙射线辐照的影响。金属材料在高真空下互相接触时,由于表面被高真空环境所净化而加速了分子扩散过程,出现“冷焊”现象;非金属材料在高真空和宇宙射线辐照下会加速挥发和老化,有时这种现象会使光学镜头因挥发物沉积而被污染,密封结构因老化而失效。航天材料一般是通过地面模拟试验来选择和发展的,以求适应于空间环境。 寿命和安全为了减轻飞行器的结构重量,选取尽可能小的安全余量而达到绝对可靠的安全寿命,被认为是飞行器设计的奋斗目标。对于导弹或运载火箭等短时间一次使用的飞行器,人们力求把材料性能发挥到极限程度。为了充分利用材料强度并保证安全,对于金属材料已经使用“损伤容限设计原则”。这就要求材料不但具有高的比强度,而且还要有高的断裂韧性。在模拟使用的条件下测定出材料的裂纹起始寿命和裂纹的扩展速率等数据,并计算出允许的裂纹长度和相应的寿命,以此作为设计、生产和使用的重要依据。对于有机非金属材料则要求进行自然老化和人工加速老化试验,确定其寿命的保险期。复合材料的破损模式、寿命和安全也是一项重要的研究课题。
我的航天技术论文在过去半年中,接连发生了两起重大航天灾难。尽管人们备感痛惜,但这些挫折并不能阻挡人类进军宇宙的步伐。 既然航天活动风险如此之大,为什么人类依然不放弃进军宇宙的梦想呢?从长期看,地球的资源是有限的,人类总有一天必须走出自己的摇篮;从中短期看,航天活动可带来巨大回报,是一个国家综合国力的体现。进军宇宙是人类现在和未来的一项伟大事业。于是,载人航天成为现代航天科技发展的重中之重……中国载人航天技术的发展及其意义和前景俗话说,天高任鸟飞,海阔凭鱼跃。人类在漫长的社会进步中不断扩展自身的生存空间。现在,人类的活动范围已经历了从陆地到海洋,从海洋到大气层空间,再从大气层空间到太空的逐步发展过程。人类活动范围的每一次扩展都是一次伟大的飞跃。中国载人航天技术的发展历程很久以前,人类就有飞出地球、探知太空奥秘和开发宇宙资源的愿望,我国古代的不少神话故事便是突出的反映。最典型的是流传很广的嫦娥奔月,它描写一个叫嫦娥的美女,偷吃了丈夫后羿从西王母那里求得的长生不老的仙药后,身体变轻飘到月亮上去了。历史上第一个试验乘火箭上天的人是15世纪中国官员万户。1945年,美国学者基姆在他的《火箭与喷气发动机》一书中是这样描写的:万户先做了两个大风筝,并排装在一把椅子的两边。然后,他在椅子下面捆绑了47支当时能买到的最大火箭。准备完毕后,万户坐在椅子当中,然后命其仆人点燃火箭。但是,随着一声巨响,他消失在火焰和烟雾中,人类首次火箭飞行尝试没有成功。20世纪80年代,改革开放带来了航天技术的春天。1986年,中共中央、国务院批准了《高技术研究发展计划("863"计划)纲要》,把航天技术列为我国高技术研究发展的重点之一。"863"高技术航天领域的专家们对我国航天技术未来的发展进行了深入细致的论证,描绘了我国航天技术发展前景的蓝图,一致认为载人航天是我国继人造卫星工程之后合乎逻辑的下一步发展目标。1992年1月,党中央批准研制载人飞船工程。自此,我国的载人航天工程正式启动。1999年11月20日,我国成功发射了自行研制的第一艘飞船神舟1号,成为世界上第三个发射宇宙飞船的国家。此后,又分别把神舟2、3和4号送上九重天。在1992年开始研制载人飞船之前,我国"863"高技术航天领域的专家们曾为研制哪种运输器这个问题进行了几年的研究,即对从研制飞船起步和越过载人飞船直接发展航天飞机的多种技术方案进行了充分的论证、比较和分析,甚至还激烈地争论过。2003年10月15日圆了万户的梦,因为在这一天中国人民期待已久的第一艘载人飞船神舟5号顺利升空并安全返回,实现了中华千年飞天的理想。它也打破了美国和苏联.俄罗斯在这一领域的多年垄断格局,成为世界第3个独立自主研制并发射载人航天器的国家,这对世界载人航天事业的发展和振兴中华会起到巨大的推动作用。载人航天的重大意义历史上,远洋航海技术的兴起,导致了世界贸易的发展、世界市场的开辟和近代科学的一系列成就,开始了一个"全球文明"的时代。当代载人航天技术的问世,则使人类走出地球这一摇篮而到达太空,开始了一个"空间文明"的新时代。载人航天是航天技术向更高阶段的发展。不过,由于载人航天技术与无人航天技术有很大差别,主要反映在安全性、复杂性和成本高三个方面,所以从1961年第一名航天员上天到现在,它还没有表现出特别明显的用途。但从可以预见的未来来看,人类现在面临的资源枯竭、人口急增等急待解决的几大问题,只有通过开放地球、扩大人类生存空间来解决。即使在当代,发展载人航天也可以起到以下作用:首先,它能体现一个国家综合国力和提升国际威望。因为航天技术的水平与成就是一个国家经济、科学和技术实力的综合反映。载人航天是航天技术向更高阶段的发展,载人航天的突破--用本国的载人航天器将航天员送入太空并安全返回,更是一个国家综合国力强大的标志。发展载人航天需要依靠先进的技术水平、发达的工业基础和雄厚的经济实力。迄今为止,只有俄罗斯和美国实现了载人航天。其他拥有一定航天技术基础或较强经济实力的国家,虽欲染指载人航天,但因力不从心,所以只能求助于与他们合作,出钱出资,用俄、美的载人航天器将本国航天员送上太空,以图逐步加入世界"载人航天俱乐部"。邓小平同志曾经说过:没有两弹一星就没有中国的大国地位。所以,我国航天员进入太空,也能像上世纪六七十年代我国拥有"两弹一星"那样,引起全世界注视,提高我国的国际地位,振奋民族精神,增强全民的凝聚力。其次,它能体现现代科技多个领域的成就,同时又给现代科技各个领域提出新的发展需求,从而可以大大促进整个科技的发展,并将为培养和造就航天科技人才作贡献。例如,就载人航天器本身的研制和运行而言,它对通信、遥感、推进、测量、材料、计算机、系统工程、自动控制、环境控制和生命保障等技术提出了很高的要求,因而大大推动了这些技术的进步。再有,载人航天的发展能促进太空资源的开发,为地球上的人类造福。载人航天器所处的高远位置和微重力等特殊环境,可为科研提供一个理想的实验场所,它在推动生命科学与生物技术、微重力科学与应用等许多方面正发挥着重要作用,并有望在一些前沿学科上取得突破性进展,为人类带来巨大的效益。一些国家已经在太空制药、太空育种和太空材料加工等领域取得显著成果,并准备建造太空工厂,其效率和效益不可限量。另外,地球能容纳的人口是有限的,大约80亿~110亿,因此有些人已经开始研究向外空移民的方案;地球上的能源也日益紧张,那么是否可以到别的星球开发矿藏呢?这是科学家所关心的一个问题,而且不是天方夜潭,因为类似载人登月等许多过去可望不可及的神话和幻想,如今有不少都变成了现实。最后,载人航天具有巨大的军事潜力。使用载人航天器可以很好地完成侦察和监视任务;灵活部署、修理和组装大型军用卫星;安全而连续地指挥和控制地面军事力量;还能作为特殊武器的试验场。例如,早在1965年12月,美国双子星座7号飞船上的航天员就曾用红外遥感器监视和跟踪了1枚潜射导弹的发射,所获信息比潜艇上的观察人员报告的还要快。第1次、2次海湾战期间,和平号空间站与"国际空间站"上的航天员对战区进行了大量观测活动,取得了许多有用的信息。中国载人航天的未来前景中国载人航天将实施"三步走"的发展战略。中国在成功发射4艘无人试验飞船的基础上,已将首位航天员送入太空,实现了载人航天的历史性突破。然而这只是第一步。第二步除继续用载人飞船进行对地观测和空间试验外,重点包括出舱活动、空间交会对接试验和发射长期自主飞行、短期有人照料的空间实验室,以尽早建成完整配套的空间工程大系统,解决一定规模的空间应用问题。第三步是建造更大的长期有人照料的空间站。航空航天技术 为航空航天活动的顺利进行而创立的一系列高级复杂的施工作业程序。它涉及人力资源配置,设备仪器搭配与安装使用等艰深的学术作业。是国家,民族,乃至整个人类发展的高度追求。航空航天电子技术 航空航天电子技术(electronics for aeronautics and astronautics)[编辑本段]概述应用于航空工程和航天工程的电子与电磁波理论和技术。在现代航空和航天工程中电子系统是重要的系统之一。[编辑本段]组成它按功能分为通信、导航、雷达、目标识别、遥测、遥控、遥感、火控、制导、电子对抗等系统。各种系统一般包括飞行器上的电子系统和相应的地面电子系统两部分,这两部分通过电磁波传输信号合成为一个系统。和这些电子系统有关的电子理论和技术有通信理论、电磁场理论、电波传播、天线、检测理论和技术、编码理论和技术、信号处理技术等,而微电子技术和电子计算机技术则是提高各种电子系统性能的基础。它们的发展使飞行器上的电子系统进一步小型化和具有实时处理更大量数据的能力,进而使飞机的性能(机动能力、火控能力、全天候飞行、自动着陆等)大为提高,航天器的功能(科学探测、资源勘测、通信广播、侦察预警等)日益扩大。[编辑本段]特点一、航空航天飞行器上电子设备的特点是:①要求体积小、重量轻和功耗小;②能在恶劣的环境条件下工作;③高效率、高可靠和长寿命。在高性能飞机和航天器上,这些要求尤为严格。飞机和航天器的舱室容积、载重和电源受到严格限制。卫星上设备重量每增加1公斤,运载火箭的发射重量就要增加几百公斤或更多。导弹和航天器要承受严重的冲击过载、强振动和粒子辐射等。一些航天器的工作时间很长,如静止轨道通信卫星的长达7~10年,而深空探测器的工作时间更长。因此,航空航天用的电子元器件要经过极严格的质量控制和筛选,而电子系统的设计需要充分运用可靠性理论和冗余技术。二、航空航天电子技术的主要发展方向是:①充分利用电子计算机和大规模集成电路,提高航空航天电子系统的综合化、自动化和智能化水平;②提高实时信号处理和数据处理的能力和数据传输的速率;③发展高速率和超高速率的大规模集成电路;④发展更高频率波段(毫米波、红外、光频)的电子技术;⑤发展可靠性更高和寿命更长的各种电子元器件。航空航天基本知识我们知道,人类的家园是地球,而地球的外面覆盖着一层大气,如果没有水和大气以及适宜的温度和环境,生物是很难生存的。通常,在人们的眼中,“天”很高,要想冲出厚厚的大气层,进入太空非常非常困难。其实,与地球相比,大气层是很稀薄的。人们知道,地球的直径大约为12700千米,而大气层的厚度只有100 -800千米。如果将地球比作一个苹果的话,那么,我们可以把大气层看成是苹果的皮,可这层“苹果皮”本身却是变化多端的。比如最贴近地球表面的一层,叫作对流层,其高度从海平面起一直到大约11000米止,其顶界是随纬度、季节等情况而变化的,在赤道地区为17000米,在中纬度地区(如北京、天津地区)为11000米,在地球两极地区则为7000-8000米。对流层的主要特点是,空气温度随着高度的增加而降低,因而又称为变温层,平均而言高度每上升1000米,气温约下降℃。与此同时,气压也随高度的增加而降低。由于地球引力的作用,在 5500米的高度范围内,包含了大气总量的一半,而整个对流层,大约占了全部大气质量的四分之三。由于几乎所有的水蒸气都集中在这一层大气内,再加上大量的微粒,因而,这里也是风云变幻最为剧烈的一层。从大约11000米的高度起,直到30500米左右,其大气温度基本不变,平均保持在℃上下,因此被称为同温层(实际情况是:在25000米以下,气温随高度的升高而上升。在同温层顶,气温约升至-43至-33℃)。同温层的气温之所以具有这样的特点,是因为该层大气离地球表面较远,受地面温度的影响较小,并且其顶部存在着臭氧,能够直接吸收太阳的辐射热等。同温层所包含的空气质量大约占整个大气的四分之一弱。在这一层大气内,没有上下对流,只有水平方向的风,所以又叫作平流层。另外,该层大气几乎不存在水蒸气,基本上没有云、雾、雨、雹等气象变化的现象,这对飞行器的平稳飞行是非常有利的。不过,由于空气密度很小,飞机在这一高度层上又不适宜机动飞行。人类的航空活动差不多都集中在对流层和同温层内。为了保证飞机和发动机的工作效率,飞机飞行的高度一般不超过30千米的界限。从30千米到80-100千米的高度范围,被称为中间层。这一层空气的特点是:以 45千米为界,温度先升后降。由于大量的臭氧存在,其气温先由同温层顶的-33℃提高到17至40℃左右;从45千米起,随着高度的升高,气温又开始下降,一直降低到℃至-113℃。中间层的空气已经很稀薄了,其空气质量约只占整个大气层的1/3000。在80千米高度上,空气的密度只有地面的五万分之一;而在100千米高度上,空气的密度仅为地面的一千万分之八。由于空气非常稀薄,并且气体开始呈现电离现象,因此,人们一般把飞行高度达到80—100千米的飞行器,看成是不依靠大气飞行的航天器。1967年10月,美国试飞员约瑟夫·沃尔克驾驶X-15A火箭飞机飞出了 7297千米/小时的惊人速度,创造了有人驾驶飞机速度的世界纪录。而且,他还曾多次飞到了80千米以上的高空,成为美国第一个“驾驶飞机的宇航员”。按照美国航空航天局规定:飞行高度超过80千米的飞行员即可称为宇航员.在中间层之上直至800千米高空的范围,称作电离层。其特点是:含有大量的带正电或负电的离子,空气具有导电性。并且,其温度随高度的增大而迅速升高,在200千米高度时,气温可达400℃。所以,这里又被人们叫作“暖层”。在电离层顶端之外,便是大气的最外层——“散逸层”了。由于地球引力的减弱,气体分子和等离子体与地球已若即若离。电离层和散逸层的空气密度极低,对太空飞行器的影响已很小,因此,人类大部分的航天活动都是在它们之内(或之外)进行的。航空与航天的区别:航空与航天是人们经常接触的两个技术名词,两者虽然仅一字之差,却被称为两大技术门类,这是为什么呢?您稍加注意即可发现,航空技术主要是研制军用飞机、民用飞机及吸气发动机,航天技术主要是研制无人航天器、载人航天器、运载火箭和导弹武器,最能集中体现两者成果的是航空器和航天器。从航空器与航天器的重大区别上即可看出两个技术领域的显著差异。第一,飞行环境不同。所有航空器都是在稠密大气层中飞行的,其工作高度有限。现代飞机最大飞行高度也就是距离地面30多千米。即使以后飞机上升高度提高,它也离不开稠密大气层。而航天器冲出稠密大气层后,要在近于真空的宇宙空间以类似自然天体的运动规律飞行,其运行轨道的近地点高度至少也在100千米以上。对在运行中的航天器来讲,还要研究太空飞行环境。第二,动力装置不同。航空器都应用吸气发动机提供推力,吸收空气中的氧气作氧化剂,本身只携带燃烧剂。而航天器其发射和运行都应用火箭发动机提供推力,既带燃烧剂又带氧化剂。吸气发动机离开空气就无法工作,而火箭发动机离开空气则阻力减小有效推力更大。吸气发动机包括燃烧剂箱在内都可随飞机多次使用,而发射航天器的运载火箭都是一次性使用。虽然航天飞机的固体助推器经过回收可以重复使用20次,其轨道器液体火箭发动机可以重复使用50次,但与航空器使用的吸气发动机比较起来,使用次数仍然是很少的。吸气发动机所用的燃烧剂仅为航空汽油和航空煤油,而火箭发动机所用的推进剂却是多种多样的,既有液体的,也有固体的,还有固液型的。第三,飞行速度不同。现代飞机最快速度也就是音速的三倍多,且是军用飞机。至于目前正在使用的客机,都是以亚音速飞行的。而航天器为了不致坠地,都是以非常高的速度在太空运行的。如在距地面600千米高的圆形轨道上运行的航天器,其速度是音速的22倍。所有航天器正常运行时都处于失重状态,若长期载人会使人产生失重生理效应,并影响健康。正因如此,航天员与飞机驾驶员比较起来,其选拔和训练要严格得多。一般人买票即可坐飞机,而花重金到太空遨游的人还必须通过专门培训。第四,工作时限不同。无论是军用还是民用飞机,最大航程计约2万千米,最长飞行时间不超过一昼夜。其活动范围和工作时间都很有限,主要用于军事和交通运输。虽然通用轻型飞机应用广泛,但每次活动范围相对更小。而航天器在轨道上可持续工作非常长时间,如目前仍在使用的联盟TM号载人飞船,可与空间站对接后在太空运行数月之久。再如航天飞机,能在轨道上飞行7-30天,约小时即可围绕地球飞行一周。载人航天器运行时间最长的当属和平号空间站,它在太空飞行了整整15个年头。至于无人航天器,如各种应用卫星,一般都在绕地轨道上工作多年。有的深空探测器,如先驱者10号,已在太空飞行了32年,正在飞出太阳系向银河系遨游。航空器的优点是能多次重复使用,而航天器除航天飞机外,只能一次性使用,载人宇宙飞船也不例外。第五,升降方式不同。飞机的升空是从起飞线开始滑跑到离开地面,加速爬升到安全高度为止的运动过程。它返回地面降落时只要经过下滑和着陆即可。只有个别飞机如英国的“鹞”型战斗机采用发动机喷口转向的方式使飞机能够垂直起落,但机身并未竖起,仍处于水平位置。而至今为止的航天器发射,包括地面和海上的发射,顶部装着航天器的运载火箭都是垂直腾空的。在完成发射过程中,运载火箭要按程序掉头转向和逐级脱离,最终将航天器送入预定轨道运行。有的航天器发射,中间还要经过多次变轨,情况更为复杂。航天飞机虽然也能施放航天器,但它本身亦是垂直发射升空的。至于返回式航天器,其回归地面必须经历离轨、过渡、再入和着陆四个阶段,远比飞机降落困难。航空器的起飞、飞行和降落与航天器的发射、运行和返回,虽然都离不开地面中心的指挥,但两者的地面设施和保障系统及其工作性能与内容也是大有区别的。世界航空航天大事件:风筝起源古代中国,约14世纪传到欧洲公元前500-400年中国人就开始制作木鸟并试验原始飞行器1909年世界第一架轻型飞机在法国诞生1903年12月14日至17日,由莱特兄弟设计制造的“飞行者”1号飞机,在人类航空史上首次实现了自主操纵飞行.这次试飞成功成为一个划时代的事件,人类航空史从此进入新的纪元1947年10月14日美国著名试飞员查尔斯·耶格尔驾驶X—1飞机实现了突破音障飞行1969年7月20日22时56分20秒,阿姆斯特迈出一小步成为全体地球人类的一大步1957年10月4日前苏联发射世界第一颗人造地球卫星。半年后,美国的人造卫星上天1959年9月12日前苏联发射“月球”2号探测器,为世界上第一个撞击月球表面的航天器1961年4月12日前苏联宇航员加加林成为世界第一位飞入太空的人1969年7月20日美国宇航员阿姆斯特朗乘坐“阿波罗”11号飞船,成为人类踏上月球的第一人1970年12月15日前苏联“金星”7号探测器首次在金星上着陆1971年4月9日前苏联“礼炮”1号空间站成为人类进入太空的第一个空间站。两年后,美国将“天空实验室”空间站送入太空1971年12月2日前苏联“火星”3号探测器在火星表面着陆。5年后,美国的“海盗”火星探测器登陆火星1981年4月12日世界第一架航天飞机---美国“哥伦比亚”号航天飞机发射成功1986年1月28日美国航天飞机“挑战者”号在升空73秒后爆炸1986年2月20日前苏联发射“和平”号空间站,服役已经超期8年,至今仍在运行,是目前最成功的人类空间站1993年11月1日美、俄签署协议,决定在“和平”号空间站的基础上,建造一座国际空间站,命名为阿尔法国际空间站我国航空航天大事件:1956年10月8日,我国第一个火箭导弹研究机构———国防部第五研究院成立。1970年4月24日,长征一号运载火箭在酒泉卫星发射中心成功地发射了东方红一号卫星,我国成为世界上第三个独立研制和发射卫星的国家。1975年11月26日,长征二号运载火箭在酒泉卫星发射中心成功地发射了我国第一颗返回式科学试验卫星,并于3天后成功回收。1984年4月8日,长征三号运载火箭在西昌卫星发射中心成功地发射了我国第一颗地球同步轨道卫星———东方红二号试验通信卫星。1990年4月7日,中国用自行研制的长征三号运载火箭在西昌卫星发射中心成功地发射了亚洲一号通信卫星,这是中国长征系列运载火箭首次发射国外卫星,使我国在世界航天商业发射服务领域占有了一席之地。1999年10月,我国和巴西联合研制的第一颗地球资源卫星顺利升空,并正常运行,这是我国首次在空间技术领域进行的全面国际合作。2003年10月15日,“神舟”五号飞船成功发射,并于2003年10月16日圆满回收,使我国成为世界上第三个独立掌握载人航天技术的国家。2003年12月和2004年7月,我国与欧洲空间局联合研制并发射了“探测一号”和“探测二号”科学卫星,“地球空间双星探测计划”取得圆满成功。2004年1月23日,我国绕月探测工程正式由国务院批准立项。2005年10月12日,神六成功发射.