首页

> 论文发表知识库

首页 论文发表知识库 问题

人工智能论文答辩题目

发布时间:

人工智能论文答辩题目

基于Python的SIFT和KCF的运动目标匹配与跟踪 毕业论文+项目源码基于Python决策树算法的学生学习行为数据分析 设计报告+代码及数据基于Sring+bootstrap+MySQL的住房公积金管理系统 课程报告+项目源码及数据库文件基于C++的即时通信软件设计 毕业论文+项目源码

本文是给那些正在搞电气自动化毕业设计和写电气自动化毕业论文的朋友提供一个电气自动化毕业设计的选题。1、加速中小型老旧变压器更新换代的节电降耗2、会议电视系统应用探讨3、关于住宅电气设计的探讨4、高压配电设备及其运行5、高速单凭机硬件关键参数设计概论6、照明电路发生故障的原因及排除方法7、代替小型PLC的单片控制器8、固态继电器及在应用中的一些问题探讨9、断线保护装置对人身和设备的保护10、发电机组和大型电动机测温装置的测试和改进11、对当前汽轮发电机在线监测应用的初步分析和建议12、对闭环运行方式配电自动化系统的探讨13、电气设备热故障分析及对策14、电气设备机房的电涌防护15、电锅炉房的电气设计16、大学图书馆电气设计17、配电自动化系统中的通信系统电气化毕业设计 电气自动化毕业论文选题21、人工智能在电气传动中应用的进展2、电气改造工程施工组织设计3、真空技术4、用于基本驱动系统的高性能比变频器SinamicsG1105、脉冲功率装置能源计算机控制技术6、交流调速的功率控制技术7、国外永磁传动技术的新发展8、变频器制动新思路、新方法9、变频器在锅炉给粉器上的应用10、变频器在运行过程中存在的问题及其对策11、变频器应用中的干扰及其抑制12、新世界多层住宅配电设计13、民用建筑应急照明的解析14、交流参数稳压电源及其对谐波的抑制15、建筑防雷综合述论16、建筑电气在住宅室内环境设计中的功能与应用电气化毕业论文 电气自动化论文 电气工程毕业设计 电子电气毕业论文31、GIS在交通中的应用与发展2、能提供低成本风电的新型风力机3、风力发电机组齿轮箱监控设施4、风力发电机组齿轮箱概述5、暖通空调系统故障预测维护与设备管理自动化6、计算机监控系统在化学水汽品质监督中的应用7、机电一体化智能大流量电动执行机构的研究8、机电一体化智能大流量电动执行机构9、富有感染力的灯光照明10、油井高含水计量技术探讨11、基于MSP430单凭机的实时多任务操作系统 12、电机转子动平衡半自动去中系统的研制13、中国电源产业的发展与分析14、运动控制新技术15、一种智能型伺服放大器的设计16、新进制造技术的新发展17、无轴承电机研究和应用前景18、我国机械制造业管理信息化特点及发展趋势19、数控化发展趋势——智能化数控系统20、柔性制造系统的关键技术及发展趋势

我是平院毕业的,只不过我和你不一个院,我是新传的。当时我们院的情况是给出了几个题目,让我们从中选择。我觉得你们院到时候也会这样啊,不着急的。最重要的是和你的导师做好沟通。有不懂的及时问他,及时和他联系。答辩很简单的,不难,很多问题都是在你论文中找的。祝你好运。另外多多珍惜你的大学生活,毕业了以后真的很怀念的。。。

以下是一些计算机本科毕业设计题目供您参考:

人工智能专硕论文答辩

会的,只要是发表论文,都会进行查重的。这是为了防止论文抄袭,保证作者的原创。你写的关于人工智能和机器学习的论文也不例外,是要进行查重的,只有通过查重,才能进行发表的。

那么就要根据自己本身的想法,而且详细的去介绍你的方法。

作为一名教育工作者,我来回答一下这个问题。

首先,从本科教育的人才培养目标来看,本科教育以培养具备初步科研能力的应用型人才为主,而且从当前本科教育的发展趋势来看,普通本科教育更注重学生实践能力的培养,实践课程的比例也有所提升,所以当前本科毕业论文和答辩过程中,实践往往是作为一个考察的重点而出现的。

在毕业论文答辩过程中,关于研究过程的论述是一个主线,而研究方法则是研究过程的一个重要组成部分,对于本科生而言,在阐述研究过程和方法的时候,要注意以下几个内容:

第一:研究过程的连续性和科学性。

研究过程涉及到问题的提出、分析、解决等步骤,这一步骤要阐述完整,同时在每个阶段要有比较明确的结果,同时要有一定的佐证,这个过程要注重与导师的交流,同时也要有自己的想法。不同专业的研究过程和方法往往都具有一定的专业特征,一定要把握住这些专业特征,这一点是非常重要的。

第二:数据支撑。

研究过程和方法是否合理,一个重要的依据就是数据,数据要尽量丰富、完善和准确,出现在毕业论文中的数据,一定要力求准确,如果是引用的数据,一定要注重数据的来源渠道合理且具有一定的权威性。

第三:注重新技术的阐述。

本科教育对于学生创新能力的要求并不高,但是很多专业对于新技术还是非常敏感的,尤其是工科专业,采用新技术往往会带来更多新的收获,也会容易引起导师的关注。

最后,毕业论文答辩一定要做好充分的准备,也要注意对答辩时间的把握。

我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。

2022年济南疫情研究生还会预答辩吗?2022年济南疫情研究生会不会预答辩要看等通知呀?

人工智能毕业论文答辩

会查重,为了规范人工智能学院本科生毕业论文的管理,杜绝学术不端的行为,现对“查重”工作规定如下:第一条 拟申请本科毕业论文答辩的学生,经指导教师同意,在答辩前一个月须向学院提交论文的电子版(具体时间以当年学院规定为准),进行论文的文字复制比比对,逾期未交者不能参加答辩。同时,指导教师需对学生提交的论文版本进行备案。第二条 经比对,论文总文字复制比超过30%(含30%)的,须重新完成论文,下一年重修;论文总文字复制比超过20%(含20%)但未超过30%的,须修改,经指导教师同意后重新提交论文,进行第二次文字复制比比对。第三条 经第二次对比,论文总文字复制比超过 15%(含 15%)的,须重新完成论文,下一年重修;总文字复制比低于 15%(不含15%)的论文允许进入申请答辩程序。指导教师需对进入申请答辩程序的论文版本进行备案。第四条 进入申请答辩程序的论文,以及最后提交给学院的论文,需要与通过文字复制比比对的论文内容基本保持一致。如果有较大修改,需要在指导教师的指导下进行,并需要提交论文的电子版进行再一次的文字复制比比对,总文字复制比低于 20%(不含 20%)的论文允许提交给学院,指导教师需要保存最后提交给学院的论文版本。第五条 如果学生提交的论文不满足第四条条件,本科毕业论文工作领导小组有权取消其答辩资格及成绩。第六条 如果学生对文字复制比的比对结果有异议,经指导教师同意,可以向学院提出申诉,学院将提交给院学术委员会进行评议,其评议结果将为最终结果。

首先是方向的确定:研究生报到注册后,应及时主动与导师联系,导师根据学生的意愿和科研工作的需要,确定研究生的研究方向、落实指导小组成员,并制定培养方案。研究生将根据研究方向归入对应的课题小组,参加课题小组的日常学术活动。二是论文的要求:对学术(或学位)论文的基本要求有如下9条。请各位研究生在开展学术研究工作中务必认真参照执行。(1)论文的主要内容,是叙述一套方法在一个特定场合中的应用(当然也可以针对特定领域的问题提出解决的方法、技术及实现算法)。(2)这套方法必须要有所创新或突破,并因而对学术界有所贡献。因此,它或者是解决既有问题的新方法,或者是既有方法的新应用,或者是以一个新的方法开启一整片新的应用领域。(3)在论文中,必须要有能力提出足够的证据来让读者信服:针对这个应用场合,你所提出来的方法确实有比文献中一切既有方法更优越之处,或则确是对所要解决的问题是行之有效的。(4)此外,你必须要能清楚指出这个方法在应用上的限制,并且提出充分证据来说服读者:任何应用场合,只要能够满足你所提出来的假设(前提)条件,你的方法就一定适用,而且你所描述的优点就一定会存在。(5)还必须要在论文中清楚指出这个方法的限制和可能的缺点(相对于其它文献上的既有方法,或者在其它应用场合里)。(6)行文风格上,它是一篇论证严谨,逻辑关系清晰,而且结构有条理的专业论述。也就是说,在方法的叙述过程,必须要清清楚楚地交代这个方法的应用程序以及所有仿真或实验结果的过程,使得这个专业领域内的任何读者,都有办法根据你的描述,在他的实验室下复制出你的研究成果,以便确定你的结论确实是可以“在任何时间、任何地点、任何人”都具有可重复性(可重复性是「科学」的根本要求)。(7)而且,你对这个方法的每一个步骤都必须要提供充分的理由说明「为什么非如此不可」,必要时要有清晰的论证分析。(8)最后,你的论文必须要在适当位置清楚注明所有和你所研究之题目相关的文献。而且,你必须要记得:只要是和你所研究的问题相关的学术文献(尤其是学术期刊论文),你都有必要全部找出来(如果漏掉就是你的过失),仔细读过。(9)第(2)款所谓“对学术界的贡献”,指的是:把你的所有研究成果扣除掉学术界已经发表过的所有成果(不管你实际上有没有参考过,没有参考过也算是你的重大过失),剩下的就是你的贡献。假如这个贡献太少,也构成你论文无法及格的充分理由。上面所叙述的条款要件中,除第(2)款之外,通通都是必须要做到的,因此没有好坏之分。一篇论文的好坏(评定标准),主要是看第(2)款所谓“对学术界的贡献”的多寡与重要性而定。一个判断论文的好坏有一个粗浅办法:假如你的研究成果可以在国外著名学术期刊(journals,而非magazines)上发表,通常就比一篇只能在国外学术会议(conferences)上发表的论文贡献多;一篇国外学术会议的论文又通常比无法发表的论文贡献多;在国际顶尖学术期刊上发表的论文通常比一篇二流的学术期刊论文贡献多。SCI有一种叫做ImpactFactor的指数,统计一个期刊每篇论文被引述的次数。通常这个次数(或指数)愈高,对学术界的影响力就愈大。以人工智能相关领域的期刊而言,ImpactFactor在以上的期刊,都算是顶尖的期刊。这些期刊论文的作者,通常是国外顶尖学府的著名教授指导全球一流的博士生做出来的研究成果。 三、完成学位论文所需要的能力从前面的叙述可以归纳出来,完成学位论文所需要的能力包括以下数项,依它们的培养先后次序逐项讨论。(1)文献检索的能力:在给定(或自己拟定)的题目范围内,你必须有能力利用文献检索系统(尤其是国家图书馆博士学位论文检索系统、Compendex和SCI这三套论文数据索引系统),查出所有相关的论文,而无任何遗漏。你到底要用什么样的关键词和查所程序去保证你已经找出所有相关的文献?这是第一个大的挑战。每一组关键词(包含联集与交集)代表一个论文所构成的集合,假如你用的关键词不恰当,你可能找到的集合太小,没有涵盖所有的相关文献;假如你用的关键词太一般化,通常你找到的集合会太大,除了所有相关文献之外还加上好几十倍的毫不相关的文献。 (2)资料筛选的能力:即使你使用了恰当的搜寻策略,通常找到的文献集合都还是明显地比你所需要的集合大,而且通常文献比数大概在一两百篇或数百篇之间,而其中会和你的研究课题直接且密切相关的论文,通常只有廿、卅篇左右。你如何可以只读论文的题目、摘要、简介和结论,而还没有完全看懂内文,就准确地判断出这篇论文中是否有值得你进一步参考的内容,以便快速地把需要仔细读完的论文从数百篇降低到廿、卅篇?这考验着你从事资料筛选的能力。(3)期刊论文的阅读能力:期刊论文和大学课本截然不同。大学课本是循序渐进地从最基本的知识背景逐步交代出整套有系统的知识,中间没有任何的跳跃,只要你逐页读下去,就可以整本都读懂,不需要在去别的地方找参考数据。但是期刊论文是没头没尾的十几页文献,只交代最核心的创意,并援引许多其它论文的研究成果(但只注明文献出处,而完全没有交代其内容)。因此,要读懂一篇论文,一定要同时读懂数篇或十数篇被援引的其它论文。偏偏,这十几篇被援引的论文又各自援引十数篇其它论文。因此,相对于大学教科书而言,期刊论文是一个极端没有系统的知识,必须要靠读者自己从几十篇论文中撷取出相关的片段,自己组织成一个有系统的知识,然后才有办法开始阅读与吸收。要培养出这种自己组织知识的能力,需要在学校靠着大量而持续的时间去摸索、体会,而不可能只利用业余的零星时间去培养。(4)期刊论文的分析能力:为了确定你的学位论文研究成果确实比所有相关的学术期刊论文都更适合处理你所拟定的应用领域,首先你必须要有能力逐篇分析出所有相关期刊论文的优点与缺点,以及自己的研究成果的优点与缺点,然后再拿他们来做比较,总结出你的论文的优点和缺点(限制)。但是,好的期刊论文往往是国外著名学府的名师和一流的博士生共同的研究成果,假如你要在锁定的应用领域上超越他们,突出自己的优点,这基本上是一个极端困难的挑战。即使只是要找出他们的缺点,都已经是一个相当困难的工作了。研究生则必须要有进行精确批判的能力。但是,这个批判并非个人好恶或情绪化的批判,而是真的找得到充分理由去支持的批判。这个批判的能力,让你有能力自己找到自己的优、缺点,因此也有机会自己精益求精。其实,至少要能够完成这个能力,才勉强可以说你是有独立判断能力。(5)创新的能力:许多本科毕业的工程师也能创新,但是研究生的创新是和全世界同一个学术团体内所有的名师和博士生挑战。因此,两者是站在不同的比较基础上在进行的:前者往往是一个企业内部的闭门造车,后者是一个全球的开放性竞争。其次,工程师的创新往往是无法加以明确证明其适用条件,但是学术的创新却必须要能够在创新的同时厘清这个创新的有效条件。总之,如果说本科生的主要能力是吸收既有知识,那么研究生的主要能力应该是创造知识。 四、期刊论文的分析技巧与程序一般来讲,好的期刊论文有较多的创意。虽然读起来比较吃力,但收获较多而深入,因此比较值得花心思去分析。读论文之前,参考SCIImpactFactor及学长、导师的意见是必要的。一篇期刊论文,主要分成四个部分。(1)Abstract:说明这篇论文的主要贡献、方法特色与主要内容。最慢第二年上学期必须要学会只看Abstract和Introduction便可以判断出这篇论文的重点和你的研究有没有直接关联,从而决定要不要把它给读完。假如你有能力每三十篇论文只根据摘要和简介便能筛选出其中最密切相关的五篇论文,你就比别人的效率高五倍以上。以后不管是做事或做学术研究,都比别人有能力从更广泛的文献中挑出最值得参考的资料。(2)Introduction:Introduction的功能是介绍问题的背景和起源,交代前人在这个题目上已经有过的主要贡献,说清楚前人留下来的未解问题,以及在这个背景下这篇论文想解决的问题和它的重要性。对初学的学生而言,从这里可以了解以前研究的概况。通常如果对你的题目不熟时,先把跟你题目可能相关的论文收集个30~40篇,每篇都只读Abstract和Introduction,而不要读MainBody(正文),只在必要时稍微参考一下后面的Illustrativeexamples和Conclusions,直到你能回答下面这三个问题:(2A)在该领域内最常被引述的方法有哪些?(2B)这些方法可以分成哪些主要派别?(2C)每个派别的主要特色(含优点和缺点)是什么?问题是,你怎么去找到这最初的30~40篇论文?有一种期刊论文叫做reviewpaper,专门在一个题目下面整理出所有相关的论文,并且做简单的回顾。你可以在搜寻Compendex时在keywords中加一个review而筛选出这类论文。然后从相关的数篇reviewpaper开始,从中根据title与Abstract找出你认为跟你研究题目较相关的30~40篇论文。通常只要你反复读过该领域内30~40篇论文的Abstract和Introduction,你就应该可以从Introduction的评论中回答(2A)和(2B)这两个问题。尤其要记得,当你阅读的目的是要回答(2A)和(2B)这两个问题时,你一定要先挑那些Introduction写得比较有观念的论文念(很多论文的Introduction写得像流水帐,没有观念,这种论文刚开始时不要去读它)。假如你读过假如30~40篇论文的Abstract和Introduction之后,还是回答不了(2C),先做下述的工作。你先根据(2A)的答案,把该领域内最常被引述的论文找齐,再把他们根据(2B)的答案分成派别,每个派别按日期先后次序排好。然后,你每次只重新读一派的Abstract和Introduction(必要时简略参考正文,但目的只是读懂Introduction内与这派有关的陈述,而不需要真的看懂所有正文),照日期先后读,读的时候只企图回答一个问题:这一派的创意与主要诉求是什么?这样,你逐派逐派地把每一派的Abstract和Introduction给读完,总结出这一派主要的诉求、方法特色和优点(每一篇论文都会说出自己的优点,仔细读就不会漏掉)。其次,你再把这些论文拿出来,但是只读Introduction,认真回答下述问题:「每篇论文对其它派别有什么批评?」然后你把读到的重点逐一记录到各派别的「缺点」栏内。通过以上程序,你就应该可以掌握到(2A)、(2B)、和(2C)三个问题的答案。这时你对该领域内主要方法、文献之间的关系算是相当熟悉了,但是你还是只仔细读完Abstract和Introduction而已,正文则只是笼统读过。这时候,你已经掌握到该领域主要的论文,你可以用这些论文测试看看你用来搜寻该领域论文的keywords到底恰当不恰当,并且用修正过的keywords再搜寻一次论文,把该领域的主要文献补齐,也把原来30~40篇论文中后来发现关系较远的论文给筛选掉,只保留大概20篇左右确定跟你关系较近的文献。如果有把握,可以甚至删除一两个你不想用的派别(要有充分的理由),只保留两、三个派别(也要有充分的理由)继续做完以下工作。然后你应该利用(2C)的答案,再进一步回答一个问题(2D):“这个领域内大家认为重要的关键问题有哪些?有哪些特性是大家重视的优点?有哪些特性是大家在意的缺点?这些优点与缺点通常在哪些应用场合时会比较被重视?在哪些应用场合时比较不会被重视?”然后,你就可以整理出这个领域(研究题目)主要的应用场合,以及这些应用场合上该注意的事项。最后,在你真正开始念论文的mainbody之前,你应该要先根据(2A)和(2C)的答案,把各派别内的论文整理在同一个档案夹里,并照时间先后次序排好。然后依照这些派别与你的研究方向的关系远近,一个派别一个派别地逐一把各派的mainbodies念完(一次念完一派)。(3)Mainbody(含simulationand/orexperimentalexamples):在你第一次有系统地念某派别的论文mainbodies时,你只需要念懂:(3A)这篇论文的主要假设是什么(在什么条件下它是有效的),并且评估一下这些假设在现实条件下有多容易(或多难)成立。愈难成立的假设,愈不好用,参考价值也愈低。(3B)在这些假设下,这篇论文主要有什么好处。(3C)这些好处主要表现在哪些公式的哪些项目的简化上。至于整篇论文详细的推导过程,你不需要懂。除了三、五个关键的公式(最后在应用上要使用的公式,你可以从这里评估出这个方法使用上的方便程度或计算效率,以及在非理想情境下这些公式使用起来的可靠度或稳定性)之外,其它公式都不懂也没关系,公式之间的恒等式推导过程可以完全略过去。假如你要看公式,重点是看公式推导过程中引入的假设条件,而不是恒等式的转换。但是,在你开始根据前述问题念论文之前,你应该先把这派别所有的论文都拿出来,逐篇粗略地浏览过去(不要勉强自己每篇或每行都弄到懂,而是轻松地读,能懂就懂,不懂就不懂),从中挑出容易念懂的papers,以及经常被引述的论文。然后把这些论文照时间先后次序依序念下去。记得:你念的时候只要回答(3A)、(3B)、(3C)三个问题就好,不要念太细。这样念完以后,你应该把这一派的主要发展过程,主要假设、主要理论依据、以及主要的成果做一个完整的整理。其次,你还要在根据(2D)的答案以及这一派的主要假设,进一步回答下一个问题:(3D)这一派主要的缺点有哪些。最后,根据(3A)、(3B)、(3C)、(3D)的答案综合整理出:这一派最适合什么时候使用,最不适合什么场合使用。记住:回答完这些问题时,你还是不应该知道恒等式是怎么导出来的!当你是生手的时候,你要评估一个方法的优缺点时,往往必须要参考它的Examples。但是,要记得:老练的论文写作高手会故意只present成功的案例而遮掩失败的案例。所以,simulationexamplesand/orexperiments很棒不一定表示这方法真的很好。你必须要回到这个方法的基本假设上去,以及他在应用时所使用的主要公式(resultantequations)去,凭自己的思考能力,并且参考(2C)和(2D)的答案,自己问问看:当某某假设在某些实用场合上无法成立时,这个方法会不会出什么状况?猜一猜,预测一下这个方法应该会在哪些条件下(应用场合)表现优异,又会在哪些条件下(应用场合)出不良状况?根据这个猜测再检验一次simulationexamplesand/orexperiments,看它的长处与短处是不是确实在这些examples中充分被检验,且充分表现出来。那么,你什么时候才需要弄懂一篇论文所有的恒等式推导过程,或者把整篇论文细细读完?NEVER!你只需要把确定会用到的部分给完全搞懂就好,不确定会不会用到的部分,只需要了解它主要的点子就够了。研究生和大学生最主要的差别:大学生读什么都必须要从头到尾都懂,研究生只需要懂他用得着的部分就好了!大学生因为面对的知识是有固定的范围,所以他那样念。研究生面对的知识是没有范围的,因此他只需要懂他所需要的细腻度就够了。研究生必须学会选择性的阅读,而且必须锻炼出他选择时的准确度以及选择的速度,不要浪费时间去学用不着的细节知识!多吸收“点子”比较重要,而不是细部的知识。 五、论文阅读的补充说明研究生开始学读期刊论文时,最容易犯的毛病就是戒除不掉大学生的习惯:(1)老是想逐行读懂,有一行读不懂就受不了。(2)不敢发挥自己的想象,读论文像在读教科书,论文没写的就不会,瘫痪在那里;被导师逼着去自己猜测或想象时,老怕弄错作者的意思,神经绷紧,脑筋根本动不了。用大学生的心态读书,结果一定时间永远不够用。因此,每次读论文都一定要带着问题去读,每次读的时候都只是试图回答你要回答的问题。因此,一定是选择性地阅读,一定要逐渐由粗而细地一层一层去了解。上面所规划的读论文的次序,就是由粗而细,每读完一轮,你对这问题的知识就增加一层。根据这一层知识就可以问出下一层更细致的问题,再根据这些更细致的问题去重读,就可以理解到更多的内容。因此,一定是一整批一起读懂到某个层次,而不是逐篇逐篇地整篇一次读懂。这样读还有一个好处:第一轮读完后,可以根据第一轮所获得的知识判断出哪些论文与你的议题不相关,不相关的就不需要再读下去了。这样才可以从广泛的论文里逐层准确地筛选出你真正非懂不可的部分。不要读不会用到的东西,白费的力气必须被极小化!其实,绝大部分论文都只需要了解它的主要观念(这往往比较容易),而不需要了解它的详细推导过程(这反而比较费时)。其次,一整批一起读还有一个好处:同一派的观念,有的作者说得较易懂,有的说得不清楚。整批略读过一次之后,就可以规划出一个你以为比较容易懂的阅读次序,而不要硬碰硬地在那里撞墙壁。你可以从甲论文帮你弄懂乙论文的一个段落,没人说读懂甲论文只能靠甲论文的信息。所以,整批阅读很像在玩跳棋,你要去规划出你自己阅读时的「最省力路径」。 六、如何获取应用领域背景知识 应用领域知识是指非专业知识的知识。人工智能大多数研究课题是属于针对应用领域开展的研究工作,因此首先你必须了解你所要解决问题所在领域的背景知识。一般,由于这些背景知识仅仅是非专业性的,因此,重要的选择该领域权威的教科书或专著来读,一般不必阅读学术论文。阅读这些教科书或专著时,你需要针对你自己的目标来阅读,回答下面这三个问题:(5A)在该领域内最核心的知识有哪些?(5B)那些知识与你的研究背景相关?(5C)能够用来说明你的研究工作(含优点和缺点)的实例知识是什么?问题是,你怎么去把握这些领域知识选择?必要时,请询问这些领域的专家。 七、论文报告的要求与技巧报告一篇论文,要求做到以下部分(依报告次序排列):(1)投影片第一页必须列出论文的题目、作者、论文出处与年份。(2)以下每一页投影片只能讲一个观念,不可以在一张投影片里讲两个观念。(3)说明这篇论文所研究的问题的重点,以及这个问题可能和哪些应用相关。(4)清楚交代这篇论文的主要假设,主要公式,与主要应用方式(以及应用上可能的解题流程)。(5)说明这篇论文的范例(simulationexamplesand/orexperiments),预测这个方法在不同场合时可能会有的准确度或好用的程度(6)你个人的分析、评价与批评,包括:(6A)这篇论文最主要的创意是什么?(6B)这些创意在应用上有什么好处?(6C)这些创意和应用上的好处是在哪些条件下才能成立?(6D)这篇论文最主要的缺点或局限是什么?(6E)这些缺点或局限在应用上有什么坏处?(6F)这些缺点和应用上的坏处是因为哪些因素而引入的?(6G)你建议学长学弟什么时候参考这篇论文的哪些部分(点子)?一般来讲,刚开始报告论文(第一年上学期)时只要做到能把前四项要素说清楚就好了,但是第一年结束后(暑假开始)必须要设法做到六项要素都能触及。第二年下学期开始的时候,必须要做到六项都能说清楚。注意:读论文和报告论文时,最重要的是它的创意和观念架构,而不是数学上恒等式推导过程的细节(顶多只要抓出关键的equation去弄懂以及说明清楚即可)。你报告观念与分析创意,别人容易听懂又觉得有趣;你讲恒等式,大家不耐烦又浪费时间。 八、对研究生毕业的指标要求 研究生要求申请毕业答辩,必须发表一定数量的论文(注意,导师必须为第一作者或通信作者方为有效,论文作者单位除了给出学生本人所属院系外,还应该列入“福建省仿脑智能系统重点实验室(厦门大学)”,对应的英文是:“Fujian Keylab. of The Brain-like Intelligent Systems(Xiamen University)”),并完成了导师规定的科研工作。具体规定如下:(1)硕士研究生要求起码发表1篇以上论文,论文必须是国内核心刊物的或被EI收录的学术会议的。(2)博士研究生要求起码发表2篇以上论文,论文必须是国内外学术期刊且被SCI或EI收录的。(3)所有的研究生,均必须完成导师指定的科研任务,并按照导师要求提交所有发表的学术论文副本、开发的源程序代码与系统说明报告、学位论文,以及其他应该提交的科研成果。 九、其他要求 研究生要主动接受导师及指导小组的指导,积极参加课题小组的各项学术活动,遵守人工智能研究所的规章制度,精诚团结、互相帮助、刻苦钻研、勤奋学习,高质量地开展科学研究与技术开发工作。这个上面的内容有些借鉴他人的,你也可以在网上再找找,或许有更好的学习计划也不一定。工作的话一般要熟悉人工智能基础知识,了解游戏中常用的 ai 算法,并能根据需求建立模型等等。其他的就要根据工作的需要了,比如你是找游戏设计方面的工作要求会设计 ai 行为模型,了解游戏中常用的 ai 算法。需要的公司一般是信息技术、科技、家电之类的公司,现在有真材实料的人还怕找不到工作?什么招聘网人才网不就是为大家准备的吗?你可以去招聘网看看也有助于对自己未来的一点打算和定位。人工智能的未来潜力还是很大的,祝你成功学习进步!

中山大学人工智能学院博士毕业要求是,学生需要完成一定量的课程学习,并在研究领域取得一定的成果,才能获得博士学位。学生需要完成学位论文,提出新的理论或方法,并在学术期刊上发表论文,以证明自己的研究成果。此外,学生还需要参加学术会议,发表报告,并参加研讨会,以展示自己的研究成果。最后,学生需要通过博士论文答辩,以证明自己的研究成果。总之,中山大学人工智能学院博士毕业要求是,学生需要完成一定量的课程学习,并在研究领域取得一定的成果,才能获得博士学位。

人工智能包括很多方面, 机器学习是其中一种, 你的方向正是可以理解人在学习过程中的一些微妙的逻辑, 如果你把这个过程模拟到计算机的程序里面去运行, 你就可以实现机器学习的功能了。 机器学习, 人工智能领域的,一般大公司才会有这方面的需求, 腾讯,百度我看到有招这方面的人才。

人工智能小论文题目

不是的! 1、三D设计是新一代数字化、虚拟化、智能化设计平台的基础。它是建立在平面和二维设计的基础上,让设计目标更立体化,更形象化的一种新兴设计方法。学习设计的美术的确很重要。主要是要对立体方面有感觉,但如果经过自己的锻炼和对软件的熟练程度。克服这点小问题应该是可以的。最主要的就是你有足够的时间锻炼自己。熟练对软件的掌握。要相信自己可以。不要硬着头皮去做。每个东西都技巧。 2、人工智能技术的基本原理、控制方法及应用。在简述人工智能的理论与方法基础上,较详细地介绍了人工智能在工业领域中的应用,包括人工智能基础知识专家系统、智能控制、计算智能及其应用、数据挖掘与智能决策、智能制造、智能机器人、综合集成智能系统和智能系统及装备实例等。

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。以下是我精心整理的人工智能的利与弊论文的相关资料,希望对你有帮助!

摘要:自1956年人工智能诞生起,几十年的发展让其有了许多的进步,并广泛用于机器视觉,专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学等各大领域,并且与人类生活联系越来越紧密。在安全性没有得到确切认证的情况下广泛发展人工智能是否是可行的做法,人工智能是否会战胜人类智能,现在还存在广泛的争论。本文从人工智能的概况,应用领域与人类生活的联系等方面讨论,联系有关理论,认为人工智能的发展需要在人类智能可控的范围内进行。

关键字:人工智能 超越 人类智能 退化

一.人工智能的概况

(一)人工智能的概念

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

(二)人工智能的兴起

1956年,被认为是人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论。他请他们到 Vermont参加 " Dartmouth人工智能夏季研究会"。从那时起,这个领域被命名为 "人工智能"。1976年Newell 和Simon提出了物理符号系统假设,认为物理符号系统是表现智能行为必要和充分的条件。 Minsky从心理学的研究出发,提出了框架知识表示方法。到80年代,Minsky认为人的智能,根本不存在统一的理论。以McCarthy和Nilsson等为代表,主张用逻辑来研究人工智能,即用形式化的方法描述客观世界。逻辑学派在人工智能研究中,强调的是概念化知识表示、模型论语义、演绎推理等。 McCarthy主张任何事物都可以用统一的逻辑框架来表示,在常识推理中以非单调逻辑为中心。传统的人工智能研究思路是“自上而下”式的,它的目标是让机器模仿人,认为人脑的思维活动可以通过一些公式和规则

来定义,因此希望通过把人类的思维方式翻译成程序语言输入机器,来使机器有朝一日产生像人类一样的思维能力。这一理论指导了早期人工智能的研究。

(三)人工智能的发展状况

1956年,Samuel研制了跳棋程序,它在1959年击败了Samuel本人

1959年美籍华人学者、洛克菲勒大学教授王浩 自动定理证明

1976年 “四色定理”的证明

1977年,曾是赫伯特·西蒙的研究生、斯坦福大学青年学者费根鲍姆

(),在第五届国际人工智能大会上提出了”知识工程”的概念 1976年美国斯坦福大学肖特列夫开发医学专家系统MYCIN

80年代,AI 被引入了市场,并显示出实用价值

1997年 “深蓝”

2011年9月,在印度古瓦哈蒂举行的电脑科技展上,一个“聪明机器(Cleverbot)”成功过近800名观众,使他们难以分辨对话出自真人还是电脑软件。当日参加聊天试验的30名志愿者被安排进行4分钟在线文字聊天,聊天的对象可能是“聪明机器人”,也可能是一个真人。他们的对话内容展示在一个

大屏幕上,1334名普通观众观看对话内容后进行投票。结果,超过的观众 把人与“聪明机器人”的对话误认成人与人之间的对话“聪明机器人”的发明 者、英国人罗洛·卡彭特很高兴地告诉记者:“过一半以上观众,你可以说聪明机器人算是通过了"图灵测试"

二.人们对人工智能的依靠

(一)人工智能主要应用领域

目前人工智能主要的应用领域在机器视觉(指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别),专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。

(二)人们生活与人工智能的密切关系

从智能手机、自动驾驶汽车到医疗机器人,人工智能革命已经到来。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通

中推荐最畅通的线路;帮助识别信用卡„„虽然很多时候我们甚至没有意识到它的存在,但我们的生活却因它悄悄改变。

在美国硅谷,尼古拉斯·亚宁早上起来准备去上班,到公司需要40分钟车程。这位在Google工作的技术员走向他的Lexus汽车。汽车即将驶上加州拥挤的高速路,此时他的“司机”———汽车开始掌控大局。亚宁的这辆车是Google正在实验的自动驾驶汽车,安装有复杂的人工智能技术,使得他可以放松地坐在驾驶座上充当乘客。

在马萨诸塞州贝德福特的iRobot公司,一名参观者看着5英尺高的机器人爱娃小心翼翼地行走在大厅里,躲避着周围的障碍物———包括人类。今年年底它将开始自己的第一份真正工作———远程医疗助手,让数千英里之外的专家通过安装在它“头”上的视频屏幕给医院的病人看病。当医生准备看望下一位病人时,他只需点击电脑地图上的新位置。爱娃根据地图找到并赶往下一个病房,它还会自己乘坐电梯。

在华盛顿普尔曼,华盛顿州立大学的研究者们正在给“智能”房间安装上感应器,使之能够根据需要自动调节房间的光线,监控住户的一切活动,包括他们每天睡眠多少小时,锻炼多少分钟。听上去有点像是被监禁,但事实上,倡导者们认为这样的技术就像一个富有爱心的保姆:智能房屋可以帮助老年人,尤其是有身体或智力障碍的老人过上独立的生活。

从今年夏天在火星登陆的好奇号太空探测器,到仪表盘能够与人对话的汽车,再到智能手机,人工智能正在改变我们的生活———有时候以一种显而易见的方式,更多的时候,我们甚至没有意识到它的存在。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通中推荐最畅通的线路;帮助识别信用卡;告诉驾驶员什么时候越过了道路中央的分道线。

甚至连烤面包机也即将加入人工智能革命。你可以将一个面包放进去,用智能手机拍张照片,手机将把所有需要的信息传送给烤面包机,指导它如何将面包烤得恰到好处。

从某个方便说,人工智能几乎无处不在,从控制数码相机的光圈和快门速度的智能感应器,到干衣机中的温度和湿度探测器,再到汽车中的自动泊车功能。更复杂的应用还在源源不断地走出实验室。

三.人工智能的弊端

(一)关于人工智能超越人类智能的假说

人工智能只可以作为人类智能的补充,但是人工智能的发展速度远远超过人类智能的发展速度,即根据进化论来说人工智能的进化速度比人类智能进化得快许多。由于人工智能起步较低,故现在和人类智能有一定差距,但其表现出了在局部超越了人类智能的现状,让人有理由相信人工智能超越人类智能只是时间上的问题。

人工智能超越人类智能论据有:一是达尔文进化论;二是类比人类的创造性即由于人类智能的不断探索欲会把自己独有创造赋予人工智能,这会导致人工智能战胜人类智能;三是“量变质变定律”人工智能不断的在某些领域超越人类智能,最终将在质上战胜人类智能。

其代表人物有四川大学社科系教授王黔玲从世界观角度提出的“人工智能将超越人类智能”的论断。华东师范大学哲学系教授郦全民认为在好奇心的驱使下,在不前进就会落后的“象棋皇后”效应的作用下,人类不会停止对比自己先进的更高的智能系统的探索。而进化法则又不可违背,将使得进化之链朝着超越人类的方向发展。因此地球上出现超越人类的高智能物种是进化的必然。代维也大胆预测“人工智能将在不远的将来战胜人类智能,但会有自己的存在方式,不会对人类构成威胁”。约翰·麦卡锡——人工智能之父认为“没有理由相信我们不能写出一个能使电脑像人一样思考的公式。”斯蒂芬·霍金 说过“在我看来,如果非常复杂的化学分子可以在人体内活动并使人类产生智慧的话,那么太阳复杂的电子电路也可以使计算机以智能化的方式采取行动。”德国班贝克大学心理学教授德尔纳认为“有灵魂的机器是存在的。”

(二)人类退化的假说

从智能手机、自动驾驶汽车到医疗机器人,人工智能革命已经到来。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通中

第5 / 6页

推荐最畅通的线路;帮助识别信用卡等。虽然很多时候我们甚至没有意识到它的存在,但我们的生活却因它悄悄改变。人们总是趋向于安逸的生活,人工智能的出现满足了人们许多的需求,这会导致人们满足于享受当前的生活而忘记许多自己的本能。根据达尔文的进化学说,那些我们不在经常使用的本能会在生物的繁衍中逐渐的退化消失。人工智能化的发展,我们的衣食住行都可以有简单的解决方法,并且也越来越为人们所依赖。就像过去几千年我们没有电话手机,一样可以有自己的通讯方式,可是现在手机发展不过几十年,就没有几个人能离得开手机了。试想一下日益进入我们生活中的人工智能,等你习惯后还能离得开吗。如果有了人工智能,你什么都不用自己动手,那经过生物衍变,人类的未来还能剩下什么呢。经过退化衍变的人类还有什么能力呢。

四.结语

现阶段人工智能在专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学等方面都有许多的应用,并且范围越来越广,虽然看似都是促进科学发展的,但是我们得注意其使用的度,就像克隆的应用一样,具有双面性的东西在发展时都应该慎重考虑。人工智能智能作为一种工具被人类智能限定在一定的范围里发展,才能在保证其安全的条件下最大程度的为人类发挥作用。 参考文献:

【1】史忠植. 高级人工智能(第二版). 科学出版社, 2006.

【2】玛格丽特·博登,人工智能哲学,上海译文出版社2001-11-01

【3】 Russell S., Peter Norvig,人工智能——一种现代方法(第二版)北京:人民邮电出版社, 2004 【4】史忠植. 智能主体及其应用.科学出版社,2000.

【5】 叶世伟, 史忠植 译. 神经网络原理(Simon Haykin: Neural Networks) . 机械工业出版社,2004.

【6】蔡自兴,徐光佑,人工智能及其应用(第三版). 北京:清华大学出版社,2003年

【7】卢格尔,人工智能,机械工业出版社,2009-03-01

【8】CarolynAbate,人工智能改变生活,南方都市报,2012-09-30

【9】门泽尔,机器人的未来,上海辞书出版社,2002年

【10】钱学森,关于思维科学,上海人民出版社,1986

【11】钱铁云,人工智能是否可以超越人类智能?,科学社会与辩证法,2004

【12】代维,人工智能VS人类智能。20年后谁称雄,青年探索,2002

【13】姜长阳,人类正在退化,自然辨证法研究,2000年11期

只要谈及科技对人类的意义,有一个词语出语率颇高――“双刃剑”。即科技在给人们带来便捷、舒适和高质量生活的同时,也不可避免地会带来诸多弊端。在这种种弊端中,有看得见的,如环境污染;而更多的则是看不见的,如科技对文化的冲击。

有关科技的利与弊,近年来舆论界一直争论不休,莫衷一是。这一现象也直接反映在了高考语文试题中――连续几年的高考作文都涉及到这一话题,且有逐年增多的趋势。

据统计,在近几年高考作文中讨论最多的话题是“科技对文化(尤其是传统文化)的冲击”――即科技会不会对文化构成冲击?又会构成什么样的冲击?如2012年高考湖北卷作文题就提供了这样一则材料:

语文课堂上,老师在讲到杜甫《春望》“烽火连三月,家书抵万金”时,不无感慨地说:“可惜啊,我们现在已经很难见到家书了,书信这种形式恐怕要消失了。”学生甲:“没有啊,我上大学的表哥就经常给我写信,我觉得这种交流方式是不可替代的。”学生乙:“信息技术这么发达,打电话、发短信、写邮件更便捷,谁还用笔写信啊?”学生丙:“即使不用笔写信,也不能说明书信消失了,只不过是书信的形式变了。”学生丁:“要是这样说的话,改变的又何止是书信?社会发展了,科技进步了,很多东西都在悄然改变。”……

诚然,电话、短信、邮件在带给我们方便、快捷的同时,也消减了我们生活中的诗意。可是我们不妨思量一下,“云中谁寄锦书来”或许能带给我们诗意和遐想,可在“烽火连三月”的情况下,恐怕还是一条快捷的短信更让人放心。因此,我们要充分考虑到两者的得失,对如何处理好科技与文化的关系作出深刻的反思:是为了保存传统的美好而抱残守缺,还是为了方便快捷就抛弃传统?是在传统的树干上嫁接上时尚的枝条,还是在崭新的文化中打上旧补丁?笔者想:应该思考这类问题的绝不仅仅是我们的中学生,更有我们的决策者、我们的专家,甚至我们每一个普普通通的公民。反思永远强于抱怨,只有总结反思,才能使我们的下一步走得更好,走得更稳健,从而一步步接近我们理想中的伊甸园。

与此一脉相承的是2014年高考广东卷的作文题。所不同的是广东卷的材料放弃了书信与手机,取而代之的是黑白胶片与数码技术:

黑白胶片的时代,照片很少,只记录下人生的几个瞬间,在家人一次次的翻看中,它能唤起许多永不褪色的记忆。但照片渐渐泛黄,日益模糊。数码技术的时代,照片很多,记录着日常生活的点点滴滴,可以随时上传到网络与人分享。它从不泛黄,永不模糊,但在快速浏览与频繁更新中,值得珍惜的“点滴”也可能被稀释。

黑白胶片与数码技术就像尺素与短信、马车与高铁、书法与“键谈”、远足与网游、品茗与快餐,品评它们又岂是一个“利”字或“弊”字可以概括的?这当中,掺和有科技的因素,有文化的因素,有传统的因素,有心理习惯的因素……其实,人们最希望拥有的是现代科技的便捷加上传统文化的醇香,而这恰如鱼与熊掌,兼而得之实在不易。

高考作文涉及到的又一方面的话题是“科技对传统审美观念的冲击”。如2014年高考辽宁卷作文题提供了这样一则材料:

夜晚,祖孙二人倚窗远眺。“瞧万家灯火,大街通明,霓虹闪耀,真美!”男孩说,“要是没有电,没有现代科技,没有高楼林立,上哪儿看去?”老人颔首,又沉思摇头:“可惜满天繁星没有了。沧海桑田,转眼之间啊!当年那些祖先,山洞边点燃篝火,看月亮初升,星汉灿烂,他们欣赏的也许才是美景。”

读罢这则材料,笔者觉得:如果“当年那些祖先”能够“穿越”回来,即便他们依然认为篝火、明月、星汉是大自然中最美丽的景观,但他们还乐意栖居在山洞里燃着篝火欣赏那满天繁星吗?现代科技早已潜入到了人们的灵魂深处,纵然我们会偶尔生出几许怀旧的情愫,那不过是我们在内心珍存的原始记忆陨落时的惆怅,纵然我们心向往之,也未必愿意返璞归真。在现代社会中,像陶渊明、梭罗这些真正倾心于自然的隐者已经很难寻觅了。

高考作文所涉及的有关科技的材料,还触及到了近乎于“科幻”的话题。如2014年高考天津卷的作文材料,讲的是一则带有几分科幻色彩的故事,揭示了现代科技给人带来的“荒诞感”:

也许将来有这么一天,我们发明了一种智慧芯片,有了它,任何人都能古今中外无一不知,天文地理无所不晓。比如说,你在心里默念一声“物理”,人类有史以来有关物理的一切公式、定律便纷纷浮现出来,比老师讲的还多,比书本印的还全。你逛秦淮河时,脱口一句“旧时王谢堂前燕”,旁边卖雪糕的老大娘就接茬说“飞入寻常百姓家”,还慈祥地告诉你,这首诗的作者是刘禹锡,这时一个金发碧眼的外国小女孩抢着说,诗名《乌衣巷》,出自《全唐诗》365卷4117页……这将是怎样的情形啊!

不知道是否真的有那么一天,不知道这样的情形是否真的会出现,也不知道这样的情形出现究竟是喜是悲。

平心而论,科技带给我们的永远是利大于弊,否则我们绝不会视之为“第一生产力”,也不会有那么多仁人志士为科技献身,为科技发展不遗余力了。我们现在要探究的是在发展科技的同时怎样将它的负面效应降到最低,乃至使之成为促进文化传承与发展的助力;而不是因噎废食,视科技为文化的宿敌,甚至视若洪水猛兽――而承担这一重任的主力,将会是今天走上考场的一代青年。从这一意义上看,让他们先写这样的文章真的很有价值。想必“科技”这一话题在随后的高考作文中仍会有一定的地位。

人工智能主题论文题目

人工智能毕业设计(论文)课题简介JHF1 基于VGA采集卡的VGA信号实时采集技术的研究传统VGA信号采集通常采用软件抓屏或VGA转AV方式,但两者都面临着各种自身无法克服的弱点。软件抓屏方式通过在计算机上安装软件方式实现,通过软件进行抓屏和压缩,严重影响采集计算机的性能;在播放视频文件时,无法实时采集到画面,出现视频卡壳或者黑屏的现象。采用VGA转AV方式,VGA信号转换为视频以后,即使不压缩,清晰度也大大降低,文字、网页等内容几乎无法看清,再经过压缩,信号质量可能会更差,很难满足实际教学的需求。传统VGA信号的采集方式严重制约着多媒体教学及远程教育的发展。采用基于VGA采集卡的VGA信号实时采集技术,即直接采集设备的VGA数据,既能保证信号的连续实时,又能保证清晰不失真,从而完美解决了VGA信号的实时采集压缩这一难题。JHF2 基于PC的网络视频服务器的设计视频服务器可以看作是不带镜头的网络摄像机,或是不带硬盘的DVR,它的结构也大体上与数字硬盘录像机相似,是由一个或多个模拟视频输入口、图像数字处理器、压缩芯片和一个具有网络连接功能的服务器所构成。视频服务器将输入的模拟视频信号数字化处理后,以数字信号的模式传送至网络上,从而实现远程实时监控的目的。由于视频服务器将模拟摄像机成功地“转化”为网络摄像机,因此它也是网络监控系统与当前CCTV模拟系统进行整合的最佳途径。网络视频服务器除了可以达到与网络摄像机相同的功能外,在设备的配置上更显灵活,克服了网络摄像机通常受到本身镜头与机身功能较弱等不足。JHF3 教育资源库管理系统的设计教育资源库是教育信息化中的主要组成部分,教育资源库的建设包括软硬件平台、资源和服务等方面的建设。教育资源库软件平台是支撑教育资源管理和使用的基础平台,是整个软件平台的核心。系统平台支持基于B/S结构的各类Web应用,通过“Web Service”技术提供了一整套接口机制实现跨平台、跨服务器的系统耦合,实现统一用户、统一登录、统一产品入口等重要功能。从资源使用和管理的流程出发,平台的功能包括资源目录浏览、资源检索、资源前台服务管理、系统后台管理、计费管理、资源统计、个人知识管理器等主要功能,对八类标准资源子库实施操作。SSD1 ▲应用不确定性推理评估交通流及安全性城市交通拥已经成为社会急需解决的迫切问题,也是当前个学科协同作战的重大课题。拟采用人工智能中的不确定性推理方法评估交通流及安全性问题,并提出合理的建议。SSD2 ▲大学校园安全报警系统研制根据校具体情况,联系公安部处、学生处等有关部门,研制该系统软件,对于解决灾害和突发事件等建立安全预警专家系统有实际意义,且能通过计算机软件和人工智能的工具实现理论与实际相结合。SSD3 基于PC的数字硬盘录像机的设计数字硬盘录像机硬件组成上采用PC机,通用性强;软件采用了嵌入式LINUX操作系统,以及在此基础上开发的应用软件,没有版权问题的困扰。既无需购买昂贵的操作系统,又遗弃了使用盗版软件的尴尬。操作系统为嵌入式LINUX系统,操作系统可以做的相对比较小,既可以加载在硬盘上,也可以固化在优盘、CF卡、电子硬盘上,写入数据后永不丢失,便于系统本身的稳定以及方便升级。系统稳定性好、通用性强、适用性广,对断电、非法操作、病毒等均不受影响。GSY1 基于支持向量机行人检测模板匹配的方法在行人检测问题中也是适用,用于匹配的模板的形状类似棒棒糖。多数清况下,行人会在手放在身体两侧,这意味在多数清况下,行人是有可能被检测,此外行人的运动也具有特征,同样也可被检测出来.有多种特征选择算法可供选择,选择了小波系数作为窗口的局部特征,这里小波系数是对特定滤波器的响应.特征选定以后,可以按照训练支持向量机方法,诸如自举方法进一步改善系统性能。GSY2 基于行人检测的WEB服务探测技术1)感知界面 互联网出现使人为中心的人机交互逐步演变为人网交互,用计算机代替人实现对多媒体数据流自动分析,进而实现网络多媒体数据有效的管理,查询和组织,交互检索,可视化反馈界面,网络交互.面向WWW的多媒体的检索系统.2)多媒体推理 从智能和推理地角度,任何涉及多媒体处理的活动,如多媒体展示,多媒体著作,视觉设计,都可以当作多媒体推理.GSY3 地理信息系统的设计与实现将地理信息系统技术应用决策和管理,论述系统的设计方法,实现方案和技术特点.GSY4 一种自适应逃逸微粒群算法针对收敛速度慢,容易陷入局部最小等缺点,给出一种自适应逃逸微粒群算法,逃逸行为是一种变异操作,逃逸微粒群能有效进行全局和局部搜索,收敛速度快,采用复杂函数优化仿真自适应逃逸微粒群算法结果.GSY5 几何配准与立体观察几何配准是图象空间叠加,镶嵌,加网格的前题,是分析和比较同一类型或不同类型的成像系统在同一时间摄取同一景物的图象的首要条件,否则就不可能正确绘出各类型(平面和立体)的复合图象或时间上变化图形。

智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。以下是我整理的人工智能的论文的相关 文章 ,欢迎阅读!

建筑智能化设计的相关探讨

【摘要】智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。智能化系统在智能建筑中起着重要的作用,在管理过程中,要科学管理、综合考究、有效安排、合理利用。以求达到最佳效果,确保建筑项目安全施工。本文将综合阐述有关智能建筑中智能化系统的设计概念、以及在设计和施工的过程中应该注意的相关问题。

【关键词】智能建筑;智能化系统;设计

一、建筑智能化系统的设计原则

(一)先进性。智能建筑的智能化系统是随着信息电子科学技术的发展而不断发展的,因此,在系统设计时应当分析智能化系统的发展状况,吸收开放的先进设计理念,以完善智能建筑功能的发挥。

(二)可靠性。在智能化系统设计时应当采用模块化设计理念,将智能化系统的各个子系统相互隔离,以确保在部分子系统发生故障的过程中不会影响其他子系统或链路的正常运行,由此提高系统运行的可靠性。

(三)标准化。随着智能化系统的快速发展,相关的系统设计标准也相继制定。在系统设计中应当严格按照系统标准进行设计,以方便系统的施工与维护。

(四)实用性。智能化系统的设计应当能够充分实现接收有线电视、图像、监控设备、多媒体通信、安全防范、语音、数据等功能,确保其在完善用户的信息沟通与娱乐的同时能够提高用户环境的安全性。

(五)经济性。智能化系统内部包含着多个子系统,其子系统又包含多种构件和设备,因此在系统设计过程中应当在考虑质量保证的同时尽量节省投资成本。

(六)扩展性。在电子信息技术的迅速发展状况下,当前的智能化系统设计内容会出现一定程度的约束与局限。所以,在进行智能化系统设计时应当考虑设计内容的可扩展性,确保智能建筑能够在未来的技术发展下得到更新扩展。

二、建筑智能化系统的设计

(一)供电系统设计

智能化系统的子系统通常需要进行单独供电,因此需要重视供电系统的设计。一般计算机网络系统会采用UPS 进行集中供电,在不间断电源机房其供电出线也需要进行集中供电,而供电进线则满足一定的容量要求即可;对于未使用不间断电源供电的的工作站,也应当采用单独回路进行供电,以避免电路混用危害系统运行,如安全防范系统应当使用单独回路进行集中供电,以保证其与消防联动系统在应对紧急情况时能够正常工作。

(二)接地系统设计

智能建筑的接地将直接影响到设备与工作人员安全、系统工作的可靠性与稳定性、信息传输的质量等。在建筑接地系统设计时应当根据建筑的功用与智能化系统工作要求进行设计,保证能够为其在应用部位提供响应接地端。其需要安装的有静电接地系统、辅助等电位铜排、防雷接地系统、安全保护接地系统、工作接地系统、直流接地系统等部分。其包括两种接地方式:

1、联合接地方式,其在应用中需注意:由于计算机等设备的抗雷击性能不高,且其系统包含超大规模的集成电路容易造成抗高频干扰差,很可能会受到其他系统的干扰,所以应当对计算的直流电源采用单独接地的方式;在使用联合接地方式时其接地电阻有可能会大于1Ω,所以对有特殊要求的智能化子系统均要采用单独接地。

2、单独接地方式,在使用统一接地时主要利用自然接地体,若不再使用人工接地体其应当满足以下条件:接地电阻应当在1Ω以下,即小于规定值;建筑基础内部的钢筋应当互相连接形成电气通路及闭合环,且闭合环英应当与地面保持以上的距离;建筑基础表面未设置绝缘防水层。由于单独接地方式具有施工简单方便、接地可靠、节省成本等优点,因此在智能建筑接地系统设计中得到了较广泛的应用。

(三)智能化管理间与智能化竖井

通常计算机网络系统对于数据通信线路有必要的长度与性能要求,在智能建筑智能化系统设计中,一般使用铜质双绞线作为计算机系统的水平线路,而铜质双绞线会影响到网络传输的带宽,所以根据布线标准与规范,应当保证网络交换机与计算机之间使用的铜质双绞线长度在100m的范围以内;根据管路的弯度与竖直条件,智能化管理间到建筑物的边缘距离应当在60m的范围内;在网络管理间应当安置相应的网络机柜,其周围要留设合理的安装与维护空间,其平面面积应当在5~10m2之间。

(四)综合布线系统设计

在综合布线系统设计中,一般的语音电缆或水平子系统数据电缆应当采用支持带宽100M的D级别系统和5e类的UTP电缆,以满足大量用户的扩展要求;其水平线缆的总长度应当在100m范围以内,其中水平布线电缆的最佳长度为90m,电信间配线架上的跳线与接线软线长度应当不小于5m,对于情况不明确的公共空间其电缆应当按照以下公式进行计算:

C=(102-H)/ W=C-5

其中H表示水平电缆的长度;C表示设备电缆、工作区电缆与电信间跳线的长度总和;W表示工作区电缆的最大长度,其值应当在22m以下;D表示设备电缆与电信间跳线的总长度。

三、目前智能建筑存在的问题

(一)国产化系统集成产品

现在占据国内智能建筑市场的产品仍然属于国外的几家公司,如美国的江森自控、IBM、朗讯科技和Honeywell等。国产系统集成产品没有主动权,这就很难使智能建筑完全真正地适应中国国情。

(二)技术障碍

在整个智能建筑领域仍然存在着一些技术上的缺陷,比如网络频宽的限制:数据传输量迅速增加和多媒体的使用,要求有宽阔的通讯空间;使用天线局域网络也要重新分配宝贵的音波频律。在新网络科技如ATM、Frame-relay等问世后,通讯空间的问题可获部分解决,但缺乏全面而完整的数据模型,各个建筑物自动化和应用系统之间仍然无法有效地交换数据。另外数据安全性和无缝话音与数据通讯之间还存在着矛盾,很多机构非常关注其内部资讯系统的安全性,以及保护其电脑和话音系统免被非法接达的问题,但如果把某建筑物隔离起来提供保护的话,就会导致无法使用更先进的通讯工具。

(三)人才缺乏

从事智能建筑的人才包括设计专门管理人才、安防产品技术支持工程师、布线、安防产品开发高级工程师、销售工程师(负责安防、综合布线产品的区域市场销售工作)、防盗报警、监控产品、大屏幕开发高级工程师、软件开发工程师(主要负责楼宇自控系统软件开发),而最为紧缺的是智能建筑系统设计管理人才。它需要懂得电子、通讯和建筑三方面专业知识的复合型人才。就智能建筑项目来说,工程的设计和施工是两个方面。而既懂工程设计,又懂施工方案的人,却是少而又少。设计与施工如何衔接和连贯好,关系到工程的进度与质量。

智能建筑是高科技的产物,智能建筑学科是多学科的交叉和融汇,人才培养应该是多层次、多方位的,只有强调理论与实践紧密结合,设计与技术紧密结合,施工与产品紧密结合,才能培养出新一代的智能建筑人才。

四、结束语

智能建筑设计中的智能化系统是一项科技水平高施工难度大的高科技建筑,无论是对智能化系统的规划还是对其进行管理,都要进行优化控制,以达到智能建筑的最优化设计。智能化系统施工设计质量好坏将直接关系着智能建筑整体质量和使用寿命。因此,相关研究和设计人员应当加强智能化系统的综合分析与管理, 总结 智能化系统施工中的 经验 与问题,以不断提高智能化系统施工设计水平和质量。

参考文献:

[1] 翟伟盛,浅谈智能化系统管理及维护,消费导刊,2009年10期

[2] 金红峰,浅谈智能化系统管理及维护的一点心得,艺术科技,2007年03期

[3] 邵胜华,智能化建筑智能化安装工程管理探究[J] 理论研究,2010(7)

下一页分享更优秀的>>>人工智能的论文

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。以下是我精心整理的有关人工智能论文的相关资料,希望对你有帮助!

浅谈逻辑学与人工智能

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

1 人工智能学科的诞生

12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N 形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机) ,创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2 逻辑学的发展

逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。 从17世纪德国数学家、哲学家莱布尼兹(G. LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

3 逻辑学在人工智能学科的研究方面的应用

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型, 1978年查德提出的可能性模型, 1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

4 人工智能——当代逻辑发展的动力

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

5 结语

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

相关百科

热门百科

首页
发表服务