首页

> 论文发表知识库

首页 论文发表知识库 问题

教育统计数据挖掘运用研究论文

发布时间:

教育统计数据挖掘运用研究论文

中文免费论文地址集锦 一、 综合类 1、蓝之韵论文 门类较全。 2、学生大论文中心 3、蜂朝无忧论文网 门类很全。 4、论文下载中心 门类很全。 5、论文帝国 二、 教育类 1、教研论文交流中心 以中小学教育为主,基础教育、英语教学文章居多。 2、教育教学论文网 以教育论文为主,包含:语文论文 美术论文 物理论文 化学论文 英语论文 历史论文 德育论文 教学论文 数学论文 音乐论文 生物论文 自然论文 体育论文 地理论文 摄影论文 劳动技术 农村教育 毕业论文 素质论文 医学论文 电子电器学 思维科学 计算机论文 活动课教学 书法篆刻论文 创新教育研究 心理健康教育 西部教育论文 信息技术论文 3、教育论文 4、中国园丁网论文大观 5、北大附小学校教师的文章: 三、 专业类 1、优秀论文杂志 以科技类为主。 2、论文资料网 以财经经济管理类为主。 3、法律图书馆 文如其名。 4、法学论文资料库 文如其名。 5、中国总经理网论文集 6、mba职业经理人论坛 7、中国农业在线-农业论文 8、体育论文 9、财经学位论文下载中心 10、公开发表论文_深圳证券交易所 11、中国路桥资讯网论文资料中心 12、论文商务中心 13、法律帝国: 四、 论文写作教学类 1、学术论文 其实是学术论文的写作网站。 五、 博硕士论文 1、论文统计 实际上就是万方的论文统计。 2、台湾博硕士论文咨讯网 3、北京大学学位论文样本收藏 4、学位论文 (清华大学) 中国科技论文在线 论文中国 : 新浪论文网分类: 中国论文联盟: 大学生论文库 论文资料网: 论文下载中心: 毕业论文网: 学位论文: 无忧论文网: 北京语言文化大学论文库:

社会科学发展的进程中,统计学起了很大的推动作用。没有统计学,就没有现代的社会科学。下面是我为大家整理的统计学 教育 分析论文,供大家参考。

摘要:统计学是一门通用的 方法 论的科学,统计思想方法具有极其广泛的应用性。随着国家创新体系的建立,统计学的教育创新已经成为一个重要的议题。本文对统计学普及教育的创新问题进行一些探讨。

关键词:统计学;普及教育;创新

一、大规模的统计学普及教育势在必行

从世界发达国家的情况来看,都比较重视统计学和统计学教育。2006年6月,中国人民大学举办了“2006统计学国际论坛”,笔者参加了这一论坛,并专门就统计学普及教育问题向美国依利诺依大学何旭明教授了解了美国统计学教育的有关情况。何教授讲:“美国的高等院校几乎都开设《统计方法》选修课,而且学生中选《统计方法》课程的人数要多于选修《微积分》课程的人数,因为他们觉得统计更有用。”另外,从最近的英国、美国、日本以及港、台地区的中学教材来看,统计学与概率都是教学内容的重要组成部分,多数教材每个年级都有统计内容。

在国内,统计学也越来越受到重视。1993年12月,贺铿、袁卫两位教授提出的“大统计”的理念,在统计学界从认识上正趋于统一。1998年9月,教育部在将504个本科专业调整为249个的情况下,统计学从原来的二级学科反而被调整为理学类一级学科。这些都为统计学的发展和统计教育的大规模普及奠定了重要基础。

尽管如此,我国统计学教育与发达国家相比还是存在着很大的差距。我国所有的普通高等学校中,具有统计学专业或开设统计学课程的只有100多所,这与美国有成百上千所学校在提供统计教育的状况相比比例是较低的。从我国中学教材来看,统计的内容约占4%。相对上述国家的教科书来说比例也是较低的。

一个国家应用统计学知识的多少,反映一个国家的发达程度。随着我国社会主义市场经济和各项社会事业的快速发展,随着建设创新型国家战略目标的实施,随着高等教育的大众化进程,统计学提高教育和大规模的普及教育无疑都会得到长足发展。统计学教育也会在普及基础上进一步提高,在提高指导下进一步普及。因此笔者认为,较大规模的统计学普及教育已经势在必行。

二、高等院校是统计学普及教育的突破口

实际上,近年来我国的统计学教育已经开始突破统计学专业教育的界限,在一些理工农医以及社会学等大部分学科和专业中,开设了统计课程;统计知识还列入了中小学教学内容。这是可喜的,但笔者认为统计学普及教育还仅仅是初露端倪,大规模的统计学普及教育还未开始,还有许多工作要做。

目前,我国在一些 财经 类院校开设的基本是社会统计学,在理工类院校开设的基本是数理统计学,都还与“大统计”的理念和作为理学类一级学科的统计学存在着很大距离。中小学虽然在数学教材中加入了一些统计学的基本内容,但一方面比例较少,另一方面,据笔者了解,由于受应试教育和基层学校师资条件的制约,教育质量也还存在不少的问题。很多理科教师在大学仅学过数理统计课程,对抽样和描述统计的内容较生疏,因而感觉新教材内容体系较乱,内容不如老教材讲起来“顺溜”。于是知识可以传授给学生,也可以指导学生完成很多的练习题,但蕴涵在知识背后的统计思想能否也讲出来可能就要打很大的折扣了。

另外,国民的统计意识还不强,对统计学的认识也还不够,据笔者了解,一谈到统计,很多人就联想到统计局,联想到大量的统计数据和统计报表等。这些都说明,统计学的普及教育还任重道远。

大规模普及统计教育是一项浩大的系统工程,需要以强大的人力、物力、财力资源为基础。以人力资源为例,尽管我国有一支素质较高的统计学专家队伍,但由于他们承担着国家政府部门或科学研究机构的重要工作,因此显然不可能有过多的时间和精力从事大规模的普及教育工作。同样,国家目前也还不可能投入大量的物力和财力资源开展统计学的普及教育工作。那么,怎样解决人力、物力、财力的问题,开展大规模的统计学普及教育呢?

笔者认为,要进行全社会的统计学普及教育,首先应该在各类高等院校中普及统计学教育,即把高等院校作为统计学普及教育的突破口,而后推向全社会。各类高校现有专业教师可以承担统计学普及教育的教学工作,在学校教务部门的统一安排下,着力通过开设跨专业选修课的形式开展统计学普及教育。各类高等院校接受过统计学基础教育的成千上万名大学生会走向社会的众多工作岗位,他们会带着统计学的基本思想方法在各个岗位开花结果,同时也为他们进一步提高和继续进行全社会的统计学普及教育打下了基础。因此,把高等院校作为统计学普及教育的突破口是解决人力、物力、财力资源问题的最好方略和最佳途径。

当然,由中国统计教育学会、重点大学和一流专家牵头,以讲座班的形式开展对一般高等院校的师资培训工作,以研讨会的形式定期沟通和交流各高校统计学普及教育的情况和 经验 也是非常必要和重要的。

高等院校作为统计学普及教育的这个突破口一旦打开,全社会普及统计学教育的蓬勃局面也就很快到来了。笔者甚至认为,高等院校统计学普及教育的局面可能会很壮观,会受到学生的欢迎。

三、在高等院校进行统计学普及教育的一些思考

在各类高等院校中进行统计学普及教育实际上是相对现有教育体制来说的一项教育教学改革,是高等院校教学内容创新的一种尝试,需要领导的重视,教务部门的协调等基本条件作为保证。在这里,就有关教学指导思想和实施方法粗略地谈一下基本想法,以求抛砖引玉。

1、基本思想:将抽样技术、描述统计、概率初步、推断统计、非参数统计、 Excel 在统计分析中的应用结合在一起,并溶入案例教学,向学生较系统地介绍入门阶段最基本的统计思想和方法。

2、基本途径:通过在普通高等院校各专业开设《应用统计方法》选修课,解决统计意识的培养和统计方法普及教育问题,选修课一般为54~72学时为宜。

3、基本目标:各专业的学生通过《应用统计方法》的学习,初步树立统计意识,能够用基本的统计方法,借助于最普及的Excel统计分析软件解决工作中和生活中的实际问题。

4、教材选用:可以选用中国人民大学统计学院贾俊平等编著的《统计学》作为教材,也可以根据教学时间和 其它 具体情况,自编教材。

5、师资问题:各高等院校讲授统计学或者概率统计的教师承担统计学普及教育的教学工作,教务部门承担相关的教学管理工作都是没有太大问题的。当然教师很可能需要进行一些再学习,更新知识结构。例如,讲授概率统计的教师很可能需要学习实际的抽样技术和Excel统计分析软件的应用方法等。

6、学习评价:注重理论联系实际,将“学统计”转化为“做统计”,改革传统考试方法,通过撰写统计 报告 进行考核,从而使学生掌握从数据的收集、整理、分析、写出统计报告的全过程,提高教学效果。

在2004年8月教育部颁布的《普通高等院校本科教学工作水平评估方案(试行)》中,实践教学被视为专业建设与教学改革的重要方面,单独列为一项二级指标,强化了实践教学的地位。各类高等院校率先进行统计学教育的普及工作,不但增强了实践教学的环节,而且也为统计学的社会普及教育打开了突破口,是义不容辞的时代使命。同时,通过大规模地进行统计学普及教育,也会提高统计学在国民心目中的地位,提高统计工作者的社会地位,更重要的是可以提高适应社会主义市场经济的与世界发达国家接轨的国民基本科学素质。

参考文献:

[1]胡学锋.美国统计教育之考察[J].统计与决策.

[2]张国荣.在中国统计教育学会第四次会员代表大会开幕式上的讲话[J].统计教育,

[3]马赞军.大学统计学教学模式探讨[J].统计教育.[4]杨大成.统计 教学方法 当改[J].中国统计.

摘要:以上探讨了在建构主义理论指导下统计学课堂教学方法,统计教学是一门艺术,艺无止境。相信当建构主义理论真正走进统计课堂教学时,统计教学会取得更好的教学效果。

关键词:统计学;教育

一、建构主义理论学生“学”的特点

建构主义对学生学习活动的本质进行了科学的分析,认为学生学习有如下特点:

1、学生学习不是从零开始的,而是基于原有知识经验背景的建构。即学生在学习统计课程之前,头脑里并非一片空白。学生通过日常生活的各种 渠道 和自身的实践,对客观世界中各种自然现象已经形成了自己的看法,建构了大量的朴素概念或前学科概念。这些前概念形形色色,共同构成了影响学生学习统计学概念的系统。学生的前概念是极为重要的,它是影响统计学学习的一个决定性的因素。前概念指导或决定着学生的感知过程,还会对学生解决问题的行为和学习过程产生影响。

2、学生学习知识是一个主体建构的过程,要突出学习者的主体作用。学习不仅仅是知识由外到内的转移和传递,而是学习者主动地建构自己的知识经验的过程,即通过新经验与原有知识经验的反复的、双向的相互作用,充实、丰富和改造学习者原有的知识经验。在这种建构过程中,学生一方面对当前信息的理解要以原有的知识经验为基础,超越外部信息本身;另一方面,对原有知识经验的运用又不只是简单地提取和套用,个体同时需要依据新经验对原有经验本身也做出某种调整和改造,即同化和顺应两方面的统一。学生不是被动信息的吸收者,而是主动地建构信息,这种建构不可能由其他人代替。因此,教师不能直接将知识传递给学生,而是要组织、引导,使学生参与到整个学习过程中去。

3、学生学习既是个体建构过程,也是社会建构过程。虽然知识是在个体与环境的相互作用中建构起来的,但社会性的相互作用也很重要,甚至更重要。因为人的高级心理机能的发展是社会性相互作用内化的结果(正如统计的特点具有社会性)。此外,每个学习者都有自己的经验世界,不同的学习者对某种问题可以有不同的假设和推论,学习者可以通过相互沟通和交流,相互争辩和讨论,合作完成一定的任务,共同解决问题,从而形成更丰富、更灵活的理解。同时,学生可以与教师、统计专家等展开充分沟通。这种社会性相互作用可以为知识建构创设一个广泛的学习共同体,从而为知识建构提供丰富的资源和积极的支持。因此,课堂上师生交互和生生交互活动起到了很重要的作用,“学习共同体”的形成以及对课堂社会环境和情境的营建是学生获得学习成效的重要途径。

二、建构主义理论教师“教”的特点

建构主义理论认为教师在课堂中的作用,可以概括为教师是课堂教学的组织者、发现者和中介者。

1、教师是课堂教学的组织者,起主导作用和导向作用。教师应当发挥“导向”的作用和教学组织者的作用,努力调动学生的积极性,帮助他们发现问题,进而去“解决问题”。

2、教师是课堂教学的发现者。教师要高度重视对学生错误的诊断与纠正,并用科学的原理和原则,给予正确的引导与指引。

3、教师是课堂教学的中介者。教师是学生与教育方针及知识的桥梁。教师既要把最新的知识和分析方法提供给学生,也要注意提高学生的综合素质。

从辩证法的角度看,教学是一个不断发展的动态过程,教与学是对立统一的矛盾运动,随着教学活动的变化,矛盾的主要方面,或在教师,或在学生。分开来看,“教”的主体是教师,客体是学生,教师发挥主导作用,学生发挥能动作用;“学”的主体是学生,客体是教师,学生进行认识活动和实践活动,教师则对这些活动施加影响。合起来看,在教学活动这一不断发展、循环往复的全过程中,教师与学生的主体客体地位是相互依存、相互规定,又在一定条件下相互转化的。因此,“基于教师在课堂中组织者、发现者和中介者”的角色作用,教师可以实行“提出问题──探索问题──解决问题”的模式组织课堂教学。

“基于学生为主体,教师为主导”的教学思想,在教学过程中,“学”与“导”的活动、学生与教师之间的关系应该是互动的、融合的,在和谐中不断向前发展。因此,按照“学与导和谐发展”的教学要求,教师在课堂教学中按照“提出问题──探索问题──解决问题”的模式组织课堂教学时,可以采取“诱导试学——引导探学——开导活学”方法组织课堂教学。

(1)设置情境,提出问题,激发学生学习的兴趣和热情

教师引导学生学习首先要从现实的、有兴趣的、富有挑战性的真实问题情境开始。让学生一开始进入学习探索就真切地感受到统计就在自己身边,体验到学习统计的价值,从而激发起学习统计的兴趣,萌发积极主动探索统计理论和方法的求知欲望。教师要通过对课堂的组织,让学生对学习统计产生学习兴趣,“热爱是最好的老师”,兴趣盎然地进入了对统计学知识的探索,学生才能学有所长。(2)探索问题,增强学生主角意识,激励学生积极参与

“基于教师在课堂中组织者、发现者和中介者”的角色作用,课堂教学方式应从根本上改变原有的教师讲、学生听,教师指挥、学生操作的教学现象。学生要在自己生活经验的基础上不断地提出问题,分析问题,对各种信息进行加工转换,对新经验和旧经验进行综合概括,解释有关现象。在教学过程中,教师可以提供一定的支持和引导,设计有思考价值、有意义的问题。学生可以进行小组合作研究探索,教师允许学生从不同的角度去观察分析,允许学生用自己喜欢的方法学习,通过各自想法的交流、碰撞,发现学生有价值的建设性建议及方法 措施 ,及时制止学生运用统计方法计算分析问题时可能出现的偏差,使问题得到正确的解决。

(3)解决问题,培养学生创新能力,提高学生综合素质

在以往统计学教学中,我们关注比较多的是学生能否记住计算公式、方法、意义、应用条件,能否利用这些知识完成所设问题的正确计算。而“基于教师在课堂中组织者、发现者和中介者”的角色作用,教师在课堂中,就应该更加关注学生能否将科学知识与自己的生活经验紧密联系起来,关注学生在灵活应用统计学知识、创造性地解决实际问题时所表现出来的情感、态度和价值观。并通过实践活动,使学生对学习统计产生兴趣,变抽象的科学法则、科学方法为得心应手的工具,从而使学生在解决问题过程中,体验参与学习统计的快乐,享受成功解决实际问题的愉悦。

三、以建构主义理论为指导统计学教法探讨

1、设计课堂教学新模式

统计学课程旨在培养学生能够运用统计学基本理论和定量分析方法,对经济现象进行定性和定量的分析和评价。统计学课程内容基本分为三个模块两个层次。第一模块:研究统计学的一般问题,属于基础理论。第二模块:推断统计的理论与方法,相关与回归分析,属于一般的统计方法及其在社会经济领域的运用。第三模块:时间序列分析与预测,统计指数与因素分析,统计综合评价,属于社会经济统计方法的特有问题,侧重于各种统计分析方法运用。两个层

反映了知识、能力、素质培养的要求。在建构主义学习环境下,教师和学生的地位、作用和传统教学相比已发生很大变化。因而首先教师必须改变传统的教育思想与教育观念,以现代教育思想和学习理论为指导,利用多媒体等现代化技术优势,探索最优的课堂教学模式。课堂教学中应进一步发挥好学生的主体作用,让学生主动地参与到获取知识的过程中去,做到:(1)合理处理好教材,创造性地使用教材,充分展示学习内容的实用意义。(2)教学思路清晰,过程流畅、自然。(3)采用启发式、精讲多练式、答疑式、案例式等教学方法,构建情景逼近式的教学模式,努力提高课堂教学效果。

2、设计课内课外相融共生的大课堂

课堂教学不仅要教会想要传授给学生的知识,还要教会学生在书本之外查阅图书、报刊、杂志、网络等资料,以开阔视野,扩大知识面,吸取精华,为我所用,要教给学生发现问题、分析问题、解决问题的方法。此外,还要通过课内设计的实训教学内容激发学生主动参与的热情,实训教学内容主要包括统计调查方案的编制、调查问卷的设计、统计表统计图的制作、综合指标分析、统计案例分析等内容。统计实训的课内教学采用精讲、示范、多练、答疑的方式;课外教学采用学生自行分散复习和有组织分组制表、制图、社会调查、整理计算分析等方式。

3、实行点、线、面、体相结合的大统计

“点”是指让学生根据某一知识点完成作业、实习。“线”是指让学生针对某一问题进行深入分析。“面”是指让学生把若干知识点联系起来进行综合的分析和实训。“体”是指让学生能就学科体系及相关学科的内容进行深入、全面、综合的分析与应用。在讲授基本理论和基本知识的同时,注重学生基本技能培养、综合能力培养、设计能力的培养。使学生能从高度整体把握统计的思路和统计分析、评价思想。

4、充分发挥学生的主体作用

建构主义理论强调学习者在建构性学习中的积极作用,是要求教师在课堂教学中善于激发学生的好奇心和求知欲,使学生主动积极的学习。教学中应根据统计教学内容和学生特点,选择适当的教学方法,灵活运用适当的教学手段,设置悬念,使学生产生好奇心和强烈的求知欲。统计学教学过程中涉及到特有的概念及科学家,教学中可以适当拓展,开阔学生的视野,影响学生的心智,塑造学生的灵魂,在潜移默化中激发学生学习统计的兴趣;教师的教学语言要准确生动形象,善于设疑,启发学生思维,活跃课堂气氛,使学生充满求知思索的激情;做到理论联系实际,强化学习的动机,激发学生学习统计持久的浓厚的兴趣,激励学生不断提高对自己能力的欲求,不断增强自己的学习信心,不断地在自我实现中超越自我。

5、设置情境,在交互中实现教学目标

学校是社会的一个细胞,是社会的一个重要组成部分。课堂也不单纯是“老师教、学生学”的木讷课堂。课堂中的社会性环境主要包括两方面,一是师生之间的交互,二是学生之间的交互。建构主义认为,每个学习者都有自己的经验世界,不同的学习者可以对某种问题形成不同的假设和推论。师生在课堂上可以通过合作解决问题、小组讨论、意见交流、 辩论 等形式,促进学习者之间的沟通和互动。统计教学要从过去主要关注“人机交互”到关注“人际交互”;从只关注学生与教师、教学信息的交互到关注学生之间的交互以及学生与校外专家、实践工作者的交互;从关注个别化学习到同时关注学习共同体的建立。教学中要充分利用社会性资源,调动学生的学习情趣,拓展学生的知识面,在交互中实现最佳的教学效果。

6、构建科学的考核评价体系

建构主义理论强调学习是诊断性学习和 反思 性学习和自主性学习,这意味着学生必须从事自我监控、自我测试、自我检查、自我约束等活动,以诊断和判断学习中所追求的是否是自己设置的目标。在教学中,应该根据理论和实训教学的不同特点、不同教学内容的具体组织方式,不断的反馈,使学生自己及时评价。同时,在学生成绩考试评定中,应采取了灵活的考试方式

笔试、有口试,也有设计方案和调查报告,笔试内容也应着重考核学生运用所学知识分析问题解决问题的能力,注重知识、能力和素质的综合评价。

以上探讨了在建构主义理论指导下统计学课堂教学方法,统计教学是一门艺术,艺无止境。相信当建构主义理论真正走进统计课堂教学时,统计教学会取得更好的教学效果。

浅谈统计学教育分析论文相关 文章 :

1. 统计学教学专业论文范文

2. 统计学教学优秀毕业论文

3. 统计学专业课程建设模式探究论文

4. 统计学课程教学专业论文

5. 统计学教学专业优秀硕士论文

6. 统计学课程教学相关论文

统计数据质量作为衡量统计工作绩效水平的重要依据,社会各界对其给予了更多的关注,也提出了更高的要求。下文是我为大家搜集整理的关于统计方面论文范文的内容,欢迎大家阅读参考!统计方面论文范文篇1 论我国统计方法制度改革 统计方法制度是我国统计工作的基础与规范,关系到什么是统计、怎样统计的问题,关系到统计质量的问题,关系到服务于决策者和社会等问题。随着市场经济体制建设的深入发展,统计工作进入到一个由旧体制向新体制转变的关键时期,统计方法制度伴随着生产经济方式的转变,进行了一系列改革。但是还存在着一些问题没有解决,提出相应的解决措施已经成为一个重要的课题,本文就此详细的进行了论述。 一、统计方法制度基本特点 统计方法制度是统计管理工作的一个重要的对象,是统计工作的一个基础与规范,贯彻与执行以及实施统计方法的相关制度就包括:我国基层中的统计工作者其统计工作、政府部门中统计工作者的统计工作、以及政府综合性的统计工作者其统计工作。 其主要的特点就包括以下几点: 首先,全面性。统计方法相关制度就是包括了各个领域,包括资源、流通、生产、以及分配等等,涉及到了三次产业以及国民经济的相关部门。从社会经济的各个方面来看,它就全面的反映了政治文明、社会文明、物质文明、以及科技文明、以及环境文明等等。 其次,可比性。从纵向上来说,我国的一些统计制度就在很大程度上保证了一定的可比性以及稳定性。统计制度就在很大程度上反映了长期的稳定与发展,这也是能够成为一个长期制度的原因,也是因为这种原因,才能够在经济运行的过程中发现一些存在的问题以及规律,从计算的方法来看,在我国的统计方法制度中,也在很大程度上保证了可比性以及稳定性。 此外,系统性。从管理的角度来说,统计方法制度就包括了部门、地方、以及国家的统计方法的制度。在时间上来说,这就包括了年报以及定报。从标准来说,这已经形成了一套标准。从其管理的方面来看,已经本文由论文联盟http://收集整理基本上形成了一种固定的模式。 二、我国的统计方法改革存在的问题 近年来,社会各界对统计信息的需求量剧增,无论是宏观管理还是微观经济活动,对统计信息的依赖程度愈来愈大,要求愈来愈高,与统计力量薄弱,统计法制不健全,协调监督不力,技术手段滞后,形成的反差很大。现行的统计体制的弊端越来越显示出来,主要表现在以下几方面: 第一,常规统计的内容以及范围还存在着一些缺口。在我国的一些常规性统计中,其调查制度的一些内容以及范围还存在着缺口,其覆盖面不是很全,这就意味着对我国的国民核算体系还缺乏一定的支撑作用。主要体现在以下几点:价格的统计制度不是很健全、常规服务业的缺口也比较大、以及一些专业的统计范围不是很健全。 第二,专业性统计制度之间的协调性较差。这就往往体现在年报以及普查之间的矛盾;抽样调查与全面报表的矛盾;核算统计相关制度与专业性统计制度的矛盾;我国的统计制度还没有形成一个完整的、协调的、有机的整体。 第三,统计的标准化程度还没有对现在的需要完全相适应,目前来说,很多的统计标准其在制定以及修订的过程中,往往是以国际的标准以及与国际标准相联系的标准予以展开的,而没有与实际相联系起来,没有结合着自身的发展以及相关的制度改革相联系,这类的标准是较少的。尤其是目前的一些在一定程度上制约了改革的调查单位,与城乡一体化相互配合的一些支出分类,以及反映出我国的一些企业登记与注册的标准等等都需要做到对其研究、制定、以及改革。 第四,重复性调查比较多,对基层来说起负担较重。统计信息的浪费比较严重。因为缺乏一种对制度的平衡以及整体性设计,这就造成了专业制度其内部、各个专业之间、部门统计以及综合统计之间的一种重复性调查,这就在很大程度上加大了工作量。首先,基层的统计数据其质量不是很高。其次,造成了数出多门以及一门多数或者是数据打架的一种情况。在这个过程中很多的统计信息就会被湮没,使得可以运用的信息较少,造成了不必要的浪费。 三、制度方法改革的思路及策略 综上所述,随着形势的发展,统计工作的现行体制、制度、方法等弊端就越加暴露出来,只有加大改革的力度,加快统计方法、制度的改革步伐,转变职能,统计工作才有生气,才有希望,才能不断地向前发展。 (一)完善统计指标体系 在不断的改革以及对社会经济发展的规律不但的认识基础上,要做到不断的去发现并要捕捉到经济发展中的一些难点以及热点问题,要对当前的一些适用的统计指标要保留,对一些过时的、陈旧的、不适用社会发展的一些指标予以去除,对指标体系做到不断的改进以及完善,使得整个的指标体系在真实的基础上反映出实际情况,做到对社会各个方面的统计与要求能够适应。 (二)改进统计的方法 统计工作应该要在实际的情况以及新环境的基础上,根据实际的调查对象其不同的特征来对统计方法进行改革,在实行普查的基础上,依靠着抽样调查以及全面报表体系,并且要利用一些非全面的调查方法,加强利用行政记录。对调查方法进行改革中,首先要保证数据的质量,早保证质量的基础上再对成本加以考虑,用比较少的花费以及比较小的一种力量,来实现一种统计的目的。目前来说,在调查方法体系中,存在的一个主要的问题就是推进行政管理体系以及调查方法之间的一种考核还存在的一些矛盾,怎样去协调以及管理,这就需要我们运用智慧去研究以及解决。 此外,还要对统计的标准化水平予以提升,还要不断的对国民经济的核算体系进行完善等。 四、结束语 总之,对我国的统计方法进行改革有着极为现实的意义,鉴于在统计方法制度中存在的一些问题,就应该不断的采取相应的措施,促进我国的统计方法制度的不断发展与完善。 统计方面论文范文篇2 浅析中等职业学校统计教学方法 1 《统计学》课程教学面临的挑战 《统计学》的课程特点——概念多而且概念之间的关系十分复杂、公式多且计算有一定难度等。如果学生不做必要的课外阅读、练习和实践活动,是很难理解和掌握的。特别是指数、抽样调查这部分概念抽象难以理解,公式复杂不易计算,这些对于学生学好这一课程面临的困难是可想而知的。 现在中等职业学生的特点: 中职学校的学生是一个特殊的群体,由于当前严峻的升学和就业形势,导致多数人认为上中职学校没有发展前途,基础好的学生都上了高中,中职学校的生源都是被挑选后剩余的学生。他们在初中时期,大部分成绩不是很好,甚至有的学生是个别教师“遗忘的角落”。因此,在很大程度上,这一批学生心理上存在着一定的缺陷,对自己不自信、甚至破罐破摔,缺乏学习兴趣、甚至厌学。大部分学生理论学习热情不高,缺乏钻研精神,缺乏积极的学习动机,学习目标不明确,学习上得过且过、效率低下。并且,他们的信息来源非常广泛,外界诱惑非常大,因此课程学习远远不能满足他们的心理需要。他们热衷于网络、游戏、追星、享乐等,根本无心学习。因此,采用传统的教学方法不能适应当代中职教育的要求。另外,中职生源知识基础比较差,但智力素质并不差。他们的思维敏捷,动手能力较强,对新事物、新观念容易接受,适应性强,且追求时尚,追求财富,出人头地的梦想非常强烈。所以,我们必须注重发掘他们的潜力,努力实施“因材施教”。加强实践教学环节,改变“填鸭式”的传统教学方法,培养学生的操作能力,让学生在实践中学习、在实践中进步。 2 统计学教学设想 在教学内容上,依据excel的函数功能、电子表格功能、数据分析功能,结合统计学原理的基本理论和方法,整合教学内容。 传统方式上的数据整理是使用纸上表格,填入数据、文字,再利用计算器计算所需的结果,如求和、分类汇总、求平均值、数列分析等数学运算,但往往因为数据过于庞大复杂,不仅计算起来十分辛苦,而且容易出错。现在计算机已非常普及,无论是高校、高职和中专,培养出来的学生不会用统计软件分析数据,不管哪一个层次,都已说不过去。统计学是一门应用的方法型学科,统计学应从数据技巧教学转向数据分析的训练。统计学应与计算机教学有机地合为一体,让学生掌握一些常用统计软件的使用。这样既培养了学生搜集数据、分析数据的能力,还培养学生处理大量数据的能力,即数据挖掘的能力。 excel电子表格软件是大家生活工作上常用的一款软件,其提供的统计分析功能虽然比不上专业统计软件,但它比专业统计软件易学易用,便于掌握,已能满足常用的统计方面的要求。excel可以进行数据运算,绘制图表、统计运算等,应用于数据整理、数据描述、抽样分析与参数估计、时间数列分析,不仅可以减少繁琐的重复计算,而且一旦编制好一个工作底稿,以后只要更改其中任一数据,就可以轻松地重新自动计算结果。这样,一方面可以减轻数据整理工作量,学习统计不再意味着整天埋头于一堆枯燥无味的数据中,另一方面可以提高学生的学习兴趣。 通过统计实践学习统计。 统计的教学不能只停留在课本上,我们应以学生为中心,案例教学与情景教学应成为统计课程的重要内容。在统计教学过程中,我们应增加统计实际案例,通过计算机对大量实际数据进行处理,可以在试验室进行,亦可在课堂上进行讨论,这样学生不仅理解了统计思想和方法,而且锻炼和培养了研究和解决问题的能力。还可以通过课堂现场教学、引导学生先读后写再议、模拟实验、利用课余时间完成项目,通过参加学校组织的某些团队、小组或自己组织去开展一些与专业有关的活动,如社会调查、专题研究、提供咨询、参与企业管理等方法。全方位地激发学生的学习兴趣、培养学生的专业能力、方法能力和社会能力。 比如同学们在设计调查问卷和调查方案的基础上,让他们组成若干调查小组(如以寝室为单位),在校园内真正进行一次统计调查活动,从具体调查对象和单位的确定,样本的抽取(不一定要很大),问卷的发放、回收与审核,数据输入与资料整理,估计与分析,一直到调查报告的编写,调查总结或体会的形成,全部由同学自己来完成。这样,同学们就亲身参与了统计调查、统计整理和统计分析(含统计推断)的整个过程,效果很好。 统计教学与日常生活相结合。 统计是一种社会调查活动,不论是宏观社会的整体调查研究,还是微观事物的观察分析,都需要统计。从微观上说,在日常生活中无处不存在着“统计”。例如,开学时,辅导员要统计一下到校的学生人数;篮球比赛中教练员要统计每个队员的投篮命中率、犯规的次数;农户在农作物收获后统计其产量等。再例如,家庭中的商品选购,买房买车,储蓄炒股,节水省电,参与彩票等等。在统计教学过程中,尽量把生活中的例子融入到统计课堂教学中。比如讲到正态分布,我们可以联系到我们的日常生活,你会发现许多现象呈现常态,虽有差异,偏离正常,但表现过高或过低的情况总是比较少,而且越不正常的可能性越少。比如人生目标,现实中“总统”只有一个,真正的发明家也不太多,而普通人随处可见。明确了这一规律,我们就不必为我们不是“总统”或“发明家”而气馁,我们应该像大多数普通人一样根据自己的实际情况树立一个通过努力就可以达到的目标。再说身边的朋友,最要好、最贴心的不会很多,明争暗斗、勾心斗角的也是少数,而不冷不热、不疏不亲的“点头朋友”却随处可见。“点头朋友”约占95%,也就说你在大街上随便碰到的100 个朋友中,大约只有五个是好朋友或坏朋友,其余都是“点头朋友”。明白了这一点,我们就应好好珍惜那少数几个难能可贵的好朋友们,对那95%的“点头朋友”要少些期待和要求,对那些无可救药的坏朋友则应该敬而远之,避免不必要的麻烦。这样书本上的知识也讲了,与实际生活相联系又增加了趣味性。 从宏观上说,一个国家一个社会更是离不开统计。在当代社会,统计学的应用越来越普及,人口学中的统计学应用(进行优生优育)、社会发展与评价、持续发展与环境保护、资源保护与利用、宏观经济监测与预测、政府统计数据收集与质量保证等都依赖于各类科学的统计方法。统计学在企业生产、经济生活中的应用也十分广泛,其中包括了保险精算、金融业数据库建设与风险管理、宏观经济监测与预测等一系列经济研究应用问题。 既然是处处离不开统计,那么我们就可以定期带领着同学们阅读各大新闻报纸及浏览各大统计官方网站,学习统计知识的同时又了解了国家大事。 改革考试方式和内容,合理评定学生成绩。 考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于《统计学原理》的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育、特别是应有利于学生的创造能力的培养之目的相差较远。在过去的《统计学》教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习《统计学》课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类专业培养高素质的经济管理人才是格格不入的。为此,需要对《统计学》考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出《统计学》的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不拘一格,除了普遍采用的闭卷考试外,还在教学中用讨论、答辩和小论文的方式进行考核,采取灵活多样的考试组织形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中提交的读书报告、上机操作和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。 3 结束语 教师在教学过程中要时刻明确学生是课堂的主体,教师要结合学生状况,灵活设计课堂模式,激发学生学习兴趣,了解和贯彻课程内容对学生能力和学生个性发展的要求,把学生放在教学的主导地位,引导学生发挥其主观能动性,培养学生信息学习的积极性、创造性和主观能动性,建立起能促进学生全面发展的教育教学模式。 猜你喜欢: 1. 统计方面论文优秀范文参考 2. 统计方面的论文范文 3. 统计学术论文范文 4. 统计优秀论文范文 5. 统计学论文范文

数据挖掘论文数据

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

Web数据挖掘技术探析论文

在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

引言

当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

计算机web数据挖掘概述

1.计算机web数据挖掘的由来

计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

2.计算机Web数据挖掘含义及特征

(1)Web数据挖掘的含义

Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

(2)Web数据挖掘的特点

计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

(3)计算机web数据挖掘技术的类别

web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

计算机web数据挖掘技术与电子商务的关系

借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

计算机web数据挖掘在电子商务中的具体应用

(1)电子商务中的web数据挖掘的过程

在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

(2)Web数据挖掘技术在电子商务中的应用

目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

结语

本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

关键词: 电子商务;数据挖掘;应用

1概述

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

2数据挖掘技术概述

数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

3Web数据挖掘特点

Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

4电子商务中Web挖掘中技术的应用分析

1)电子商务中序列模式分析的应用

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

2)电子商务中关联规则的应用

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

3)电子商务中路径分析技术的应用

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

4)电子商务中分类分析的应用

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

参考文献:

[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):

[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

数据挖掘算法的研究和应用论文

Web数据挖掘技术探析论文

在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

引言

当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

计算机web数据挖掘概述

1.计算机web数据挖掘的由来

计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

2.计算机Web数据挖掘含义及特征

(1)Web数据挖掘的含义

Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

(2)Web数据挖掘的特点

计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

(3)计算机web数据挖掘技术的类别

web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

计算机web数据挖掘技术与电子商务的关系

借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

计算机web数据挖掘在电子商务中的具体应用

(1)电子商务中的web数据挖掘的过程

在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

(2)Web数据挖掘技术在电子商务中的应用

目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

结语

本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

关键词: 电子商务;数据挖掘;应用

1概述

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

2数据挖掘技术概述

数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

3Web数据挖掘特点

Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

4电子商务中Web挖掘中技术的应用分析

1)电子商务中序列模式分析的应用

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

2)电子商务中关联规则的应用

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

3)电子商务中路径分析技术的应用

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

4)电子商务中分类分析的应用

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

参考文献:

[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):

[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

图像数据挖掘论文

Web数据挖掘技术探析论文

在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

引言

当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

计算机web数据挖掘概述

1.计算机web数据挖掘的由来

计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

2.计算机Web数据挖掘含义及特征

(1)Web数据挖掘的含义

Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

(2)Web数据挖掘的特点

计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

(3)计算机web数据挖掘技术的类别

web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

计算机web数据挖掘技术与电子商务的关系

借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

计算机web数据挖掘在电子商务中的具体应用

(1)电子商务中的web数据挖掘的过程

在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

(2)Web数据挖掘技术在电子商务中的应用

目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

结语

本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

关键词: 电子商务;数据挖掘;应用

1概述

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

2数据挖掘技术概述

数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

3Web数据挖掘特点

Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

4电子商务中Web挖掘中技术的应用分析

1)电子商务中序列模式分析的应用

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

2)电子商务中关联规则的应用

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

3)电子商务中路径分析技术的应用

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

4)电子商务中分类分析的应用

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

参考文献:

[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):

[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

数据挖掘论文报告

数据挖掘是从大量数据中提取人们感兴趣知识的高级处理过程, 这些知识是隐含的、 事先未知的, 并且是可信的、 新颖的、 潜在有用的、 能被人们理解的模式。随着信息化的普及和数据库的广泛应用,很多大型企业事业单位积累了数百亿字节的数据, 分析利用如此海量的数据,是数据挖掘技术的用武之地。数据挖掘在争取与保留客户、 交叉销售、 趋势分析与市场预测、 欺诈检测与风险防范等方面的成功应用令人鼓舞。

论文开题报告评语

论文的评语对学生今后的论文写作和发展影响巨大而深远,导师应该加以重视,那么,论文的开题报告评语要如何写呢?

1.学生xx的选题,紧扣专业方向、紧扣现实,做到理论与实践结合、与实习体会结合,有现实意义,有完成选题的能力和条件,其开题报告体现了我院培养高级实用型人才的目标的要求。且该生对于所开课题进行了较为详尽的调研,参考了许多文献,最后确定的课题具有一定的实用价值。本课题是学生所学专业知识的延续,符合学生专业发展方向,对于提高学生的基本知识和技能,对于提高学生的研究能力有益。研究方法和研究计划基本合理,难度合适,学生能够在预定时间内完成该课题的设计。

2.该生对本课题相关的知识与理论研究比较透彻,参考了许多的文献资料,具有一定的研究价值。本课题结构合理,内容完整,主要观点突出,并且时效性强,是学生学习方向的延续,对于提高学生的能力有利。

3.该生通过与课题组成员和老师充分讨论,参考了许多文献,确定了具有一定的市场价值的课题。本课题初步确定的论文设计思路基本明确,通过分析Grice的合作原则在国际商务谈判中的运用可以提高国际商务谈判的效率,以及促进国际贸易的发展。本课题的研究方法和研究步骤基本合理,难道合适,学生能够在预定时间内完成该课题的设计。

4. 该生用dreamweave和access数据库等技术对甘孜旅游网站进行设计,设计清新美观,主要问题回答准确,基本概念清楚,望对论文中指正的数据库存放问题进行修改。

5. 该生专业素养比较好,对所提问题回答流利,正确率高,对实现过程中遇到的难题认识到位,时间把握得当,若能用比较新的运行环境进行实现相对好。

6. 该生对数据库的设计细节讲解详细,研究深入,论坛设计部分独立完成,有一定的科研能力,答辩中思路清晰,回答得简明扼要,语言流利。答辩组经过认真讨论,一致同意通过该生成绩为良好,但要求该生纠正论文中尚存的某些错误。

7. 在十分钟的陈述中,该生介绍了论文的主要观点、内容与结构,以及论文的写作过程,条理清晰,语言无大错,对老师的提问做出了基本正确的回答,体现了一定的专业素养。但设计过程有点小问题,流程图不很完善,希望及时纠正。

8. 从答辩可以看出该生总体专业基础比较扎实,准备工作充分,对论文内容非常熟悉,能简洁明了的陈述设计思想和过程,系统展示流畅,回答问题有理有据,基本概念清楚,论文有一定创新。希望继续完善论文中的部分文字和符号,争取规范使用。

9. 该生在规定时间内比较流利、清楚的阐述论文的主要内容,能恰当回答与论文有关的问题,态度谦虚,体现了比较扎实的计算机基础。建议把图像的打开功能用适当的文字表达出来,继续完善使论文格式规范化。

10. 结合数学知识用计算机技术来处理地质问题,对方法原理掌握透彻,论文有比较好的创新。对快速傅里叶和小波变换图的结果分析到位,处理结果良好,计算机基础素养好。答辩中主要问题回答准确、深入。论文中变换的指标若有对比会更好。

11. 论文陈述清楚,讲解简单明了,存在不足在于缺少自己的新观点、新方法,多为套用他人研究成果,论文格式方面应多规范。

12. 答辩的准备工作充分,对老师的提问能详实回答,并对设计过程中所遇困境能反复探讨研究,找出更好的解决方法,专业技术比较好。若能结合专业改进使静态的网页成为动态的则更好,不足在于数据库中表的描述方式不太对,望改进。

13. 论文陈述清晰明白,开门见山,直接入题。对老师的提问能流利作答,思路清晰,但对论文中的部分代码解释不楚,有少量语言错误,望今后的研究中多创新。

14. 该生能在规定时间内陈述论文的主要内容,但答辩中回答问题不是很流畅,对设计的细节技术不太熟,回答问题不够切题。

15. 从五部分对论文进行阐述,重点突出,答辩流畅、熟练,知识掌握基本到位,时间符合要求。不足是论文中有部分概念错误。

1、xxx同学的学位论文,将计算机辅助设计技术覆盖产品设计的全过程是当前CAD研究的主要内容。传统意义下的CAD技术着重于辅助产品的详细设计和绘图输出,因而有较大的局限性。本文以图形单元作为产品设计资讯的载体,通过运动分析、功能映射、变型设计、关联设计等手段,将计算机辅助设计技术全面地融入产品概念设计过程,取得了一系列有创造性的研究成果:

1.将零件结构划分为零件、功能结构和基因单元三个层次,以功能结构为单位组织基因单元,有利于实现基于功能的零件概念设计。

2.提出了产品骨架单元的提取方法,通过插入、删除、替代、分解、整合、克隆、派生等多种骨架单元置换手段,在保持功能不变的条件下,对产品进行变型设计。与传统的基于尺寸的产品参数化设计不同,上述变形设计能导致产品结构的变化,因而为创新型设计提供了有效的CAD手段。骨架单元表示完整地体现了该结构与产品中其他结构的约束关系。在保证产品中各结构单元有序性、一致性的前提下,减少了所附加大数据量,有利于在概念设计中,对设计方案反复进行斟酌与修改。

3.在关联设计中,归纳总结了五种关联的约束模型,为详细设计阶段自动生成导出单元提供了设计依据。

4.以图形单元置换、叠代技术为核心,构造了单元化产品信息建模原型系统。在此基础上开发了MCADDS系统,并在冲剪机床设计XJD型转辙机传统系统设计中获得了成功的应用。

5.论文内容丰富、条理清晰、结构完整,特别是在运用CAD技术辅助产品的变型设计以及在设计过程中对设计方案的反复修改方面有重要突破。本文是一篇优秀的博士学位论文,建议提交答辩。

从某种角度来说,研究生学位论文评语既是对研究生学位论文研究工作的评价,也反映了评阅人综合水平。既反映了评阅人的学术水平,也反映了评阅人的写作文风。它属于应用写作中一种专业应用文写作,值得我们研究。

2、xxx同学的硕士毕业论文《消费者网上购物的网站体验对网上购买意愿影响的实证研究》在相关文献研究和时事动态分析的基础上,研究了网站体验的组成要素,以及网站体验对消费者网络购买意愿的影响,其选题具有一定的理论价值和现实意义。

论文发现论网站的易用性体验、网站的有用性体验、网站的视觉体验、价格体验、商品体验、服务体验、信誉体验等七个方面的体验可以很好地解释网站体验的内涵,利用SOR模型分析得知网站体验对购买意愿有显着正向影响,情绪和感知风险是网站体验和购买意愿之间的部分中介变量。论文采用规范分析和实证分析等方法来论证自己的观点,研究方法较为科学。论文在以下几个方面有所创新:一是构建了网站体验研究的新模型,二是比较系统地运用实证分析方法从多角度分析影响网络购买意愿的因素。论文有相当的理论深度。论文观点鲜明,论证清晰有力,论据充分可靠,数据准确,资料详实,文献综述丰富而规范,其中论文关于网站体验对购买意愿的影响的观点具有一定的新的见解。不足之处在于网站体验的维度还不够全面,尤其是网站技术因素部分,未来还可以考虑研究网速等网站技术因素对网站体验的解释力度。

论文结构严谨,层次分明,采用了递进式的'分析结构,逻辑性强,文笔流畅,表达清晰,重点突出。文章格式符合学术规范。反映作者具有较强的独立科研能力。论文表明作者掌握了企业管理学专业的基本理论和分析方法,论文达到了硕士学位论文水平,同意其参加论文答辩,并建议授予硕士学位。

3、该课题选题新颖,紧密结合临床,设计合理,属于本学科研究热点,研究工作具有一定的理论意义与实际价值。论文的内容与题目基本相符,结构完整,格式规范,层次清楚,条理分明,语言通顺流畅,内容丰富。文献材料收集丰富详实,基本涵盖了本学科相关的主要文献,并对本学科发展趋势有一定的归纳作用。数据资料充分,论述过程严谨,思路清晰,综合运用了所学知识解决问题,分析方法选用得当,结果可信。论文撰写严肃认真,推理符合逻辑,结论和建议具有现实意义,是一篇有较高学术价值的硕士生论文。

该论文反映出了作者在本门学科方面坚实的理论基础、系统的专业知识以及良好的科研能力。达到了硕士学位论文的要求,建议安排答辩。

4、xxx同学的学位论文《基于数据挖掘的高校本科专业设置预测系统数据模型的分析和研究》选题于教育部委托中山大学开展的高校本科专业设置预测系统项目。该论文研究成果对于构建高校本科专业设置预测系统具有一定的先导性意义。

本文主要围绕着高校本科专业设置预测系统的数据模型这个问题展开分析和研究。论文首先对已有的专业设置数据模型进行综述,分析其在功能性、预测性、分析性以及挖掘性方面的不足之处,然后结合高校本科专业设置的实际需求,引入数据挖掘技术、数据仓库和OLAP,构建基于数据挖掘的高校本科专业设置预测系统的数据模型。总的来说,论文框架清晰,逻辑严谨,行文体现了自己的学术思考及思辨结论,有自己的创见。

本文的写作符合硕士研究生毕业论文规范,学术水准较好,体现了两年学习的成果,可进入答辩程序。

论文长于思辨和综合,而短于对实际需求和现实情况的考量,比如各用户对于专业设置的需求以及数据挖掘中数据的可采集性及可用性等。建议今后在相关研究中采取更广泛视角。

5、xxx同学的硕士毕业论文《电信融合计费系统设计与应用》在相关文献研究和时事动态分析的基础上,探讨了既可以维持运营商利益同时也使消费者利益最大化的融合计费方式,并结合现实运营商的计费系统,设计了几个场景,进行了模拟分析验证,论证了该系统功能够满足了融合计费的实际工作需要,达到了设计目标。

该论文选题具有一定的理论价值和现实意义。论文以3G计费的基本流程为依据,采用全集中处理模式,搭建了集数据采集功能,预处理功能,计费功能,利用数据挖掘技术进行融合结算分析等功能的融合计费账务系统平台。该平台旨在实现客户的融合,即客户品牌与付费方式的融合;业务的融合,即实现跨业务、跨产品、跨客户的产品捆绑、交叉优惠,实现业务经营与计费策略的完整衔接;计费方式的融合,即在线计费与离线计费的融合;付费方式的融合,即预付费和后付费的融合。充分体现了3G网络下满足现有用户全部需求,发挥运营商服务到极致的工作目标,对目前电信融合方式具有一定的现实意义。

论文采用规范分析和实证分析等方法来论证自己的观点,研究方法较为科学。论文在以下几个方面有所创新:一是构建了融合结算分析的新模型,二是比较系统地运用实证分析方法从多角度分析影响融合结算的因素。三是平台设计理念新颖,投资低,可操作性强。论文有相当的理论深度。论文观点鲜明,论证清晰有力,论据充分可靠,数据准确,资料详实,文献综述丰富而规范。不足之处在于电信融合计费的实验论证还不够全面,有效工作量不够。

论文结构严谨,层次分明,采用了递进式的分析结构,逻辑性强,文笔流畅,表达清晰,重点突出。文章格式符合学术规范。反映作者具有较强的独立科研能力。论文表明作者掌握了企业管理学专业的基本理论和分析方法,

论文达到了硕士学位论文水平,同意其参加论文答辩,并建议授予硕士学位。

6、该论文选题合理,为xxxx提供理论支持,研究意义重大。

该论文引用文献具有代表性和科学性,对有关的中外文献材料进行综合分析和归纳整理,掌握了xxxx的研究背景、研究现状和发展前景等内容,文献综述丰富而规范。

论文借助统计分析软件对xxxx进行了因素分析,论文内容丰富、条理清晰、结构完整,资料收集详实,数据准确,论证清晰有力,论据充分可靠,结论可靠。

该论文研究结果表明,xxxx,研究具有很强的实践价值和操作性,充分反映了作者对于xxxx知识掌握的全面性,对于xxxx实践有经验,有分析,有思考,有建议。

论文格式正确,结构严谨,层次分明,书写规范,逻辑严密,语言流畅,重点突出,反映了作者具有较强的独立科研能力。论文总体优秀,同意提交答辩,建议授予农学硕士学位。

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

相关百科

热门百科

首页
发表服务