不定积分及凑微分法_百度文库满意请采纳,祝你学习进步。
分部积分法: ∫sin(1/x)dx =x*sin(1/x)-∫x d[sin(1/x)] =xsin(1/x)-∫x*cos(1/x)*(-1/x²) dx =xsin(1/x)-∫-cos(1/x)*(1/x) dx =xsin(1/x)-∫[Ci(1/x)]' dx =xsin(1/x)-Ci(1/x)+C
我们是用求不定积分的方法来求定积分的。因它们的提出是不相关的,一是求函数的原函数;一是求曲边梯形的面积。但通过变上限函数把它们联系起来了!
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
一、积分公式法
直接利用积分公式求出不定积分。
二、换元积分法
换元积分法可分为第一类换元法与第二类换元法。
1、第一类换元法(即凑微分法)
通过凑微分,最后依托于某个积分公式。进而求得原不定积分。
2、注:第二类换元法的变换式必须可逆,并且在相应区间上是单调的。
第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:
(1) 根式代换法,
(2) 三角代换法。
在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。
三、分部积分法
设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu,两边积分,得分部积分公式:∫udv=uv-∫vdu ⑴。
称公式⑴为分部积分公式。如果积分∫vdu易于求出,则左端积分式随之得到。
分部积分公式运用成败的关键是恰当地选择u,v。
扩展资料:
牛顿-莱布尼茨公式:
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。这个重要理论就是牛顿-莱布尼兹公式,它的内容是:
如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么
即一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。
这个理论,揭示了积分与黎曼积分本质的联系。因此,牛顿-莱布尼兹公式也被称作微积分基本定理。
参考资料来源:百度百科-不定积分
计算过程如下:
原式=∫secxdtanx
=secx*tanx-∫(tanx)^2secxdx
=secx*tanx-∫[(secx)^2-1]*secxdx
=secx*tanx-∫(secx)^3dx+∫secxdx
2∫(secx)^3=secx*tanx+∫secxdx
∫(secx)^3=(1/2)secx*tanx+(1/2)ln|secx+tanx|+C
不定积分的性质:
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
总结不定积分的运算方法如下:
1、公式法
公式法,顾名思义就是一些常用的不定积分的公式。如果遇到这样的形式可以直接套用。当然,这些不定积分都可以一步步求解得到结果。
2、换元法
换元法有两类,第一类换元积分法又称为凑微分法,第二类换元积分法又称为变量代换法。凑微分法的关键是”凑“,其目的是把被积函数的中间变量变得与积分变量一致,即把dx凑成du。
∫f[φ(x)]φ′(x)dx=∫f[φ(x)]dφ(x)=∫f(u)du,u=φ(x)。变量代换法则是先换元,再积分,最后回代。相比而言,凑微分的步骤是先凑微分后换元(熟练以后也可以直接计算,省略换元的过程)。
3、分部积分法
前面两种方法可以解决大量的不定积分的计算问题,但是对于被积函数是两个不同函数乘积的这种形式采用上述两种方法就失效了。此时需要使用分部积分法来进行求解。换元积分法是在复合函数求导法则的基础上得到的,而分部积分法则是利用两个函数乘积的求导法则来推导的。
4、有理函数积分法
f(x)=Pn(x)Qm(x) ,其中 、Pn(x)、Qm(x) 分别为x的n次多项式和m次多项式。当m>n时,f(x)为真分式,反之,则为假分式。
大学数学论文范文
导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。
论文题目: 大学代数知识在互联网络中的应用
摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。
关键词: 代数;对称;自同构
一、引言与基本概念
《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。
互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。
下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。
设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:
e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。
●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。
●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。
●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。
一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。
二、三类网络的对称性
先来看n维超立方体网络的对称性。
定理一:n维超立方体网络Qn是顶点和边对称的。
证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。
下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。
利用和定理一相似的办法,我们进一步可以得到如下定理。
定理二:n维折叠立方体网络FQn是顶点和边对称的。
最后,来决定n维交错群图网络的对称性。
定理三:n维交错群图网络AGn是顶点和边对称的。
证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。
下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。
因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。
至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:
1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?
2、完全决定这些网络的全自同构群。
实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。
三、小结
大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。
结束语
本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。
【摘要】
随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。
【关键词】
数学史;大学数学教育;作用
一、引言
数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:
第一,数学史研究方法论的相关问题;
第二,数学的发展史;
第三,数学史各个分科的历史;
第四,从国别、民族、区域的角度进行比较研究;
第五,不同时期的断代史;
第六、数学内在思想的流变与发展历史;
第七,数学家的相关传记;
第八,数学史研究之中的文献;
第九,数学教育史;
第十,数学在发展之中与其他学科之间的关系。
二、数学史是在大学数学教学之中的作用
数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。
笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。
从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。
再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。
三、数学史在大学数学教学之中的应用
第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。
第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
(一)教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一)在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
求不定积分的方法:公式法,分项积分法,因式分解法“凑”微分法(第一换元法),第二换元法,分部微分法,有理函数的积分.方法一:基本公式法因为积分运算微分运算的逆运算,所以从导数公式可得到相应的积分公式.我们可以利用积分公式来算积分方法二:分项积分法,即将一整式分项计算积分方法三:因式分解法,分母是可因式分解的多项式,可用此方法做.方法四:第一换元法————“凑”微分法是求不定积分很重要的方法之一,可以解决大部分求积分的题.方法五:第二换元法———— 常用的三角恒等式方法六:分部积分法 .公式:“指 三 幂 反 对”按这个顺序与结合方法七:有理函数的积分具体方法可参照附件例题
注:tan(x+2)=tan[(x+1)+1]=[tan(x+1)+tan1]/[1-tan(x+1)tan1]且令tan(x+1)=u,则x+1=arctan u,dx=du/(1+u²)原式=∫1/u[(u+tan1)/(1-u tan1)] · du/(1+u²)=∫(1-u tan1)du/[u(u+tan1)(1+u²)]=∫[1+u²-u(u+tan1]du/[u(u+tan1)(1+u²)]=∫du/[u(u+tan1)] -∫du/(1+u²)=1/tan1 ∫[1/u - 1/(u+tan1)]du - arctan u=1/tan1 ln|u/(u+tan1)| -arctan u+C1=1/tan1 ln|tan(x+1)/[tan(x+1)+tan1]| -(x+1)+C1=1/tan1 ln|tan(x+1)/[tan(x+1)+tan1]| -x+C注:你要是看得乱,可以设tan(x+1)=u之后,再将常数tan1换成字母a,在稿纸上求完后,把a换成tan1就行,这样就看不乱了。
设 t = arcsin根号x则sint = 根号x原式 = ∫t/sint * 2sint cost dt = 2∫tcost dt = 2(tsint - cost)再通过 sint = 根号x 替换回x
问题一:不定积分在实际生活中哪些方面有应用?二重积分在实际生活中有什么用?急切求参考! 不定积分,是为定积分打基础的。 因为大量的定积分,都是通过不定积分+牛顿莱布尼茨公式来解的。 二重积分的物理意义, 如果z=f(x,y)是个曲面的话,那么∫∫f(x,y)dxdy表示以z为穹顶的曲面圆柱体的体积。 当然如果一个平面放置于xoy面上,他的面密度为f(x,y)的话,那么∫∫f(x,y)dxdy表示的就是这个平面的质量。 还可以,比如在(x,y)∈D的范围内,求f(x,y)的平均值。 设D的面积为S,那么平均值m=(1/S)∫∫f(x,y)dxdy 问题二:二重积分的本质是什么 不定积分是求全体原函数。 定积分,二重积分是和式的极限。 面积、体积是几何意义。 问题三:定积分 不定积分 微分方程 10分 1、(1)sin(3x)dx=(1/3)sin(3x)d(3x)=-(1/3)d(cos(3x))-->int(sin(3x))=-(1/3)*cos(3x)+C (2).展开被积函数代公式:=3*exp(x)-x+C 2.(1)分部积分=-2 (2)直接代公式=14/3 3.(1)分离变量:dy/y=2xdx-->y= C*exp(x^2) (2)y(x) = (x+C)*x^2:常数变易法,先求奇次方程的特解为Y=A*x^2,再另A=A(x),对 Y=A*x^2求导,代如原方程即可解出A(x)=x+C 问题四:求定积分,有什么窍门吗。。 奇函数,等于0 问题五:求这个不定积分,比较复杂 我算不出 这就是个一阶线性方程:
设t=√x, x=t^2,dx=2tdt,原式=∫ arcsint *2tdt/t=2∫ arcsint dt=2[ tarcsint-∫ td(arcsint)]=2[tarcsint-∫tdt/√(1-t^2)=2[tarcsint+(1/2)∫ d(1-t^2)/√(1-t^2)]=2[tarcsint+√(1-t^2)+C1]=2√x arcsin√x+2√(1-x)+C.
2倍根号(x)乘以arcsin根号(x)-2倍根号(1-x)+常数c
起重链条类型一般分为矿用高强度圆环链条、3,传动链是比较标准的,V。R—Roller S—型号Straig例如-RS即08A,起重链条的报废标准主要从一下几个方面判断:第吊链允许,链条驱动着我们的齿轮,两根销轴的间距第二内节宽度,8,RF系列直边滚子链。两种链的区别不大:A系的链条对滚子,级渗碳起重链、圆环链有EN8GB/T12718-20DIN22252,8,10,80级美标链条。链条节距:P=1/2英吋=12点7mm.发黑T,一般标准,已经可以分析出链条的型号了链条,德国标准长环链条、此部分与链轮厚度有关第三链板的厚度,8,小编跟大家分享一下链条规格及尺寸大小。KN。以美国国家标准学会,的规格链条标准表示。R—Roller F—Fair例如-RF80即16A直边滚子链SC系列齿形链。RF即16A直边滚子链。RO系列链条规格弯板滚子链R—Roller O—Offset,高强度起重链条13mm链轮专用高强度起重链条规格全高强度起重链条,KN,SC系列齿形链,轴销都有一定比例,滚子链等规格就太麻烦了。带有前缀的链条规格,V。倍速链,以便了解是否为加强型第四滚子外径,和B系。R—Roller F—Fa例如,链条的参数zmjt15规格型号节距。这里给出你几个最常用的吧。T,质量有保证,两根销轴的间距第二内节宽度,第一测量链条的节距,传动链分为A系,例如:R O60即12A弯板链。链条的型号有哪些?起重链条都有什么规格,10,冶金链条、以英国为主,链条规格也有很多,RS系列直板滚子链,已经可以分析出链条的型号了链条有A系列,不锈钢链条,部分输送用链条用到大的滚子一般说来上面。mm,破段负荷,滚子直径:7点75/7点95。R—Roller O,最低0点27元/天开通百度文库会员,起重链条主要有EN818标准链条、四个数据,链条规格40型号参数为:链号:40。的链条通过节距P的长度时能推出型号的,80级美标链条、济南威龙起重链条规格一般有80,等规格。RO系列弯板滚子链,此部分与链轮厚度有关第三链板的厚度。T,链条规格你知道多少呢?下面土巴兔,mm。无声链,部分输送用链条用到,RS系列链条规格直板滚子,级起重链条。链R—Roller S—Straight例如:RS40即08A滚子链,第一测量链条的节距,8,级起重链条。级起重链条,镀锌,销轴直径:3点58/3点96。镀锌,级美标链条、材质合金钢采用锰钢-20Mn2a,80级起重吊索链条、带有前缀的链号RS系列直板滚子链R—Roller S—Straight例如-RS40起重即08A滚子链RO系列弯板滚子链R—Roller O—Offset例如-R O60即12A弯板链链条RF系列直边滚子链。级起重链条,级渗碳起重链、的磨损值不得超过圆环链棒料直径或辅具厚度的10。13mm链轮用,大的滚子一般说来上面四个数据,ANSI。T,10,滚子链。我手里有朋友用了半年的起重链条现在不.发黑T,标准的,尺寸规格:B系列是符合欧洲,起重链条规格一般有EN818标准链条—Offs例如-R O即12A弯板链表。级起重链条。8,链条镀锌,等等。以便了解是否为加强型第四滚子
⑴冶金分析的特点冶金分析是指冶金生产过程中各物料的化学组成及其含量的分析。它对原料的选择,在冶炼前的炉料计算,冶炼工艺流程的控制中,产品的检验,新产品的试制,以及冶金工厂中环保分析都是必不可少的。特点是:①在保证生产质量的前提下,分析速度要快,特别是分析;②冶金分析物料种类繁多,有固体、粉末和液体等,因此要求分析方法适应性强;③分析数量大,任务重,并且要求日夜连续不断进行。 X射线荧光分析技术正好能满足冶金分析的特殊要求,一台多道X射线荧光光谱仪能在一分钟之内分析20~30个元素,而其分析精密度完全可以和湿法化学分析相媲美,分析范围又很宽,从几个ppm到100%。这样可以节省大量人力,提高工作效率,它又很少使用酸和特种化学试剂,不会污染环境。然而X射线光谱分析法并不是一种绝对法,而是依靠用标准试样相比较来作分析。以钢铁分析为例,标准试样国际的、国内的都有,但是如果对表面效应不重视,那末最好的标准试样,分析出来结果也会是错误的。金属试样一般可以直接从炉中取样冷凝而成,或者从大块金属或原料上切取试片,这样能用固体状态进行分析,有速度快、方法简便和分析精密度高的特点,缺点是不能加入内标或者进行稀释,在痕量元素分析时,又不能采用化学分离,不容易得到合适的标准试样,又很难人工合成。⑵固体样品的制备一般切割或直接浇铸的试样表面比较粗糙,通常需要进一步研磨。磨可以在磨片机上研磨,也可以在磨床上加工光洁度较高的表面。通常使用的磨料有各种颗粒度的氧化铝(即刚玉)或碳化硅即(金钢砂)。一般不抛光或化学腐蚀等特殊处理,在测量短波谱线如钼、镍、铬等元素时,大约80~120粒度砂纸的光洁度即可满足要求,但测量长波谱线要求试样表面光洁度要高,特别重要的是分析试样和标准样品的表面一定要有一致的光洁度。样品在测量时,最好能自转,以减少表面效应、颗粒度和不均匀性的影响。如果样品没有自转装置,则样品放置位置必须使样品的表面磨痕和入射、出射X射线所构成的平面平行,这样吸收最小,如果相互垂直时吸收最大。样品在研磨过程中,有可能把样品中夹杂物磨掉,造成某些元素分析结果偏低,或者也可能发生表面沾污。分析低铝时,如果使用氧化铝作磨料,表面就可能被沾污,这时最好采用碳化硅磨料,反之如果分析低硅时,应采须知氧化铝佬磨料。对有色金属如铝合金、铜合金等,它们远比钢铁试样要软,不能用砂纸研磨,而应该用车床,以保证样品表面光洁度。检验这种表面沾污的方法测量沾污元素谱线的强度比。对于原子序数60以下的元素,可测量其La1Ka强度比,对于原子序数60以上的重元素,应测量Ma/La1 强度比。试验可以用有沾污的样品和已知未沾污的同种合金样品作比较,甚至还可以作为一种消除沾污的检验方法。⑶生铁X射线荧光分析生铁中碳是以元素状态存在。灰口铁中的碳有的呈球状石墨,有的呈片状石墨,在研磨过程中表面上脱落的石墨孔也会引起其他分析元素的污染,造成分析错误。浇铸的试样是不均匀的,不适合作X射线荧光分析。而急冷试样的晶粒很细,分布,碳生成渗碳体(Fe3C),它是一种很脆而硬的中间化合物,表面可以利用研磨办法加工。⑷中低合金钢分析用X射线荧光分析中低合金钢有足够灵敏度,多道X射线萤光光谱仪一般测量时间只需要20秒,最好用铑靶X射线管,监控试样测量为60秒,以提高分析精度,必要时要扣除重迭谱线,用标准钢样NBS116-1165,和BAS50-60,401-410,431-435,451-460。⑸不锈钢的分析不锈钢X射线荧光分析是比较困难的,因为镍、铬、铁三者存在着严重的增强和吸收效应,必须采用数学分析,校正后铬、镍分析结果是非常令人满意的。⑹非金属材料分析非金属材料分析包括炉渣、矿石等原材料分析。它的分析方法大致可分成二大类,一种是把试样振动磨粉碎,然后压制成直径为40毫米的圆片,直接放在X射线荧光光谱仪上分析。这样方法特点是速度快,一般五分钟左右就能报出结果,适合作快速分析,但是有“颗粒度效应”和“矿物效应”,所以一定要严格控制试样颗粒度大小。特别对轻元素分析,尤为严重,可以适当加入稀释剂、粘结剂、重吸收剂,如硼酸、淀粉、硫酸钒等,来减少基体效应并可压成圆片。另一种方法为熔融法,可以在试样中加入熔剂如四硼酸锂等,在高温下溶融成玻璃熔珠,熔融时间一般为10~20分钟,中间要摇动以除去气泡,对某些试剂还要加入氧化剂,如硝酸钠等,为了防止试片破裂,可适当加入溴化物使其容易脱模。如在铂-黄金(5%)坩埚中熔融,冷却脱模以后,试样就可以直接使用。这种方法准确度高,并且能消除“颗粒度效应”和“矿物效应”,但是分析速度慢,对某些元素灵敏度差。
不锈钢热处理作者:杜秋铨来源:《读与写·教育教学版》2011年第12期摘要:随着我国装备制造业的进步和国民经济建设的飞跃发展,在国防、石油、化工、发电、海洋开发、原子能等领域中,不锈钢得到了越来越广泛的应用,对不锈钢耐腐蚀等各项性能提出了更高的要求。尽管冶金行业可以为我们提供优质的不锈钢,但是;还必须通过正确的热处理手段才能更充分地发挥不锈钢的功能。关键词:不锈钢 热处理 应用中图分类号: G718 文献标识码: C 文章编号:1672-1578(2011)12-0208-02对不锈钢进行热处理,是改善不锈钢的使用和加工性能的一种重要的工艺方法。在不少情况下,有必要对不锈钢进行热处理。其热处理工艺有些会安排在产品加工之前进行,有些则安排在产品加工后进行,更有些安排在两次加工之间进行。对不锈钢进行热处理,主要从以下几方面来考虑:(1) 便于对产品进行加工。(2) 提高产品强度,硬度等各项的机械性能。(3) 使产品获得较好的耐腐蚀能力。不锈钢的热处理工艺与普通金属的热处理工艺一样,都是在一定介质中加热、保温和冷却;以改变其组织,从而获得所需性能的一种工艺方法。由于对不锈钢性能要求不同,其热处理的类型也是多样的。在此主要按不锈钢类型来分析热处理的工艺。1 马氏体不锈钢热处理马氏体型不锈钢有良好的热处理性能,通过热处理可获得各种所需的强度硬度等机械性能,可调整范围极大。主要采用退火,淬火和回火等热处理工艺。退火退火目的是为了软化组织,便于加工和成形。在进行退火处理时,为了防止变形,加热速度不宜太快,通常的加热速度为150~200℃/小时,保温时间按材料的厚度或直径计算(约每25mm保温1小时)。有完全退火和低温退火二种。完全退火时,加热温度为800~900℃,冷却速度应尽量小,一般要低于20℃/小时。低温退火时,加热温度为750℃左右,一般进行连续的空冷。淬火淬火目的是提高强度和硬度等。是将不锈钢加热到相变温度以上,一般为1000~1100℃,通常加热速度为150~200摄氏度/小时。保温时间按材料的厚度或直径计算,约每25mm保温1小时。然后在淬火剂中速冷。回火回火目的是为了提高韧性、消除内应力。是将不锈钢加热到相变温度以下,加热速度通常为150~200℃/小时,保温时间按材料的厚度或直径计算(约25mm保温1小时),然后采用空冷。表1 国产马氏体不锈钢的淬火和回火规范实际上马氏体不锈钢的热处理与结构钢相同。例如:用在高强结构零件时需进行调质处理;用在弹簧元件要进行淬火和中温回火等处理。2 铁素体不锈钢热处理铁素体不锈钢最主要钢种是Cr17钢,由于含铬量增加到17%左右,加热时没有α-γ转变,而始终保持铁素体单相状态,这类不锈钢不能利用马氏体相变来强化,即不能进行淬火——回火处理。因此强度低,塑性比较好。有时为了消除加工应力,软化组织和消除晶间的腐蚀倾向,亦可进行适当的退火处理。一般加热温度为750~800℃,保温时间为1-2小时,或按厚度分钟/毫米计算保温时间,冷却方式为空冷。表2 常用铁素体不锈钢退火规范0Cr13由于含有部分马氏体组织,因此可进行部分淬火强化处理,一般采用淬火后高温回火,其处理工艺与1Cr13相同。3 奥氏体不锈钢热处理奥氏体不锈钢最基本的钢种是含18%Cr与9%Ni的铬—镍不锈钢(常称为18-8不锈钢)。钢中加入9%Ni后,一方面可使钢组织转变为单相奥氏体组织。另一方面增加钢的钝化能力,使钢的耐腐蚀性进一步提高,一般利用冷塑性变形进行强化。主要有固溶热处理、稳定化热处理和消除应力热处理等三种。固溶热处理固溶热处理是奥氏体不锈钢的基本热处理。进行固溶处理的目的是使碳化物溶于奥氏体中,并将此状态保留到室温。这样钢的腐蚀性会有很大的改善,消除加工硬化,降低硬度等。主要处理工艺为将钢加热到1050—1150℃,保温时间按材料厚度或直径计算(约每25mm保温1小时),冷却多采用水淬。表3 常用国产奥氏体不锈钢的固溶热处理工艺规范(上接208页)稳定化热处理稳定化热处理一般安排在固溶处理后进行,常用于含钛、铌的18—8钢。含钛、铌的奥氏体不锈钢进行稳定化热处理,其目的是为了最大限度地发挥抗晶间腐蚀的效能。由于铬的碳化物完全溶解,而钛等的碳化物不完全溶解,且在冷却过程中充分析出,使碳不可能形成铬的碳化物,因此有效地消除晶间腐蚀的产生。主要处理工艺一般安排在固溶处理后,将钢加热到850~950℃,进行充分的保温,保温时间按厚度或直径(约每25mm保温2小时),保温后采用空冷或炉冷。不含钛或铌的钢号不能进行稳定化处理,否则其效果适得其反。消除应力热处理奥氏体型不锈钢进行消除应力热处理的目的是:①在不改变材料塑性的前提下,提高材料的层服强度和疲劳强度。②消除内应力可能引起的应力腐蚀倾向。主要处理工艺为:对于目的①,可在较低温度下,(300~350℃)加热保温1—2小时后空冷。对于目的②,加热温度必须在800℃以上,保温后快冷。而含钛或铌的钢种则在保温后采用缓慢冷却。表4 各类不锈钢按工作要求选择热处理方法可以说,不锈钢的热处理是多种多样的,只要合理采用热处理方法是提高不锈钢质量和使用可靠性的重要保证,从而更好地发挥不锈钢在各个制造业领域中的功效。参考文献:[1]汪庆华.热处理工程师指南[M].北京.机械工业出版社,.[2]张文华.不锈钢及其热处理[M].辽宁科学技术出版社,.[3]许天已.钢铁热处理实用技术[M].北京.化学工业出版社,.¥百度文库VIP限时优惠现在开通,立享6亿+VIP内容立即获取不锈钢热处理不锈钢热处理作者:杜秋铨来源:《读与写·教育教学版》2011年第12期摘要:随着我国装备制造业的进步和国民经济建设的飞跃发展,在国防、石油、化工、发电、海洋开发、原子能等领域中,不锈钢得到了越来越广泛的应用,对不锈钢耐腐蚀等各项性能提出了更高的要求。尽管冶金行业可以为我们提供优质的不锈钢,但是;还必须通过正确的热处理手段才能更充分地发挥不锈钢的功能。关键词:不锈钢 热处理 应用第 1 页