秦岭及邻区区域大地构造背景和区域地质概况我想这篇一定会跟您思路的。真正的论文还得自己写,网上也不会有免费现成的,但是我们可以去其糟粕留其精华~希望可以帮助到您。
该文包括引言、第1-4章共五个部分.引言部分阐述了网络医学信息检索策略的研究背景和理由,提出从用户角度研究网络医学信息检索策略的必要性 和重要性.第1章围绕网络医学信息检索策略这一核心问题,从医学搜索引擎检索语言、医学搜索引擎分类、医学搜索引擎检索规则、医学搜索引擎性能比 较与评价、网络医学信息检索策略构建等五个方面对目前网络医学信息检索所取得的理论与实践研究成果进行综述,从静态角度对网络医学信息检索策略 问题进行探讨.第2章依托网络医学信息检索理论,从影响网络医学信息检索效率的人文因素研究这一薄弱环节入手,以医学用户为调查对象,以检索策略的 制定与检索结果的反馈调节为研究内容,自行设计"网络医学信息资源检索策略用户调查表",在四个单位10个场所共分发调查表183份,回收调查表180份 ,其中有效问卷145份.采用定性和定量相结合的方法,对145名临床医务工作者、医学生、医学科研人员关于网络医学信息资源检索策略问题16个方面的征 询结果进行统计与分析,对医学用户网络信息检索特征及规律、校园网用户和非校园用户检索行为差异有了一系列的研究发现.第3部分在问卷调查的基础 上针对临床医生检索策略构建能力进一步展开实证分析.研究分两个阶段进行:鉴于网络医学用户年轻化特征突出,第一阶段以临床住院医生为实验对象 ,设计具体的检索测试问题和实证访问卷,收集与检索策略构建能力有关的5个方面的资料,通过考察、分析实验对象构建检索策略的思维活动,了解他们对 信息检索方法的实际掌握程度,并对其全面获取证据的能力进行初步评估.第二阶段开展对比研究,比较实验对象之间、实验对象与医学信息检索专家之间 在制定检索方案时的思维活动差异,对造成检索结果差异的原因进行了剖析.研究表明不同的信息认知能力将导致不同的信息检索行为,从而产生不同的信 息利用结果.作者就如何全面获取证据提出了参考建议,同时结合检索经验,初步摸索出一套针对性的医学专业搜索引擎选择策略及其查询模式.第4章对第 2章与第3章的研究结果进行回顾,发现实证分析进一步验证与澄清了第2章中的相关调查结果.作者认为用户信息认知行为的研究应该受到关注,技术因素 与人文因素相结合,既是全面解决医学信息资源管理与利用问题的指导思想,也是未来的研究趋势.针对调查方法、分析手段的不足和局限,作者指出网络 医学信息检索策略研究的结果只是初步、探索性的,鉴于网络医学信息检索策略目前尚缺乏系统的理论指导框架,提出引进循证医学的相关思想与方法,进 一步完善、优化网络医学信息检索策略构建指南. 4.期刊论文 潘萍.PAN Ping 基于网络环境的信息检索策略 -现代电子技术2007,30(4) 网络信息资源的检索和利用已经成为人们获取信息的主要方式,但要迅速、准确地获取所需要的信息,必须掌握一定的网络检索技术和检索策略.主要 阐述了网络环境下影响信息检索的两个主要因素和采取相应的检索方法和策略以更快、更准确地检索需要的信息. 5.期刊论文 KANG Yan-xing 引文检索策略的探讨 -情报科学2005,23(8) 引文检索是一种比较复杂的信息检索,在具体的引文检索中,如何制定优良的检索策略是一个关系到能否获得满意检索结果的核心问题.本文就引文检 索的实际工作中所触及到的一些常见的典型问题提出了若干探讨性的意见. 6.期刊论文 刘肖静 网络信息资源的收集与利用--检索策略和技巧 -现代情报2004,24(11) 文中针对当前网上信息检索的困难,通过介绍网络检索工具的性能,提出合理的检索策略,并列举了一些设置关键词的技巧. 7.期刊论文 张冬梅 浅议网络环境下的信息检索 -网络财富2009,""(22) 本文论述了信息检索的含义、特点和策略.阐明了如何利用网络快速而准确地获得有效信息资源. 8.期刊论文 燕慧泉 手工检索与计算机信息检索在检索策略之拟定和优化方面的分析比较 -现代情报2003,23(12) 本文通过手工检索和计算机检索在检索策略的制定及执行方面进行比较,指出了两者在策略的拟定和优化方面的区别. 9.期刊论文 王征清.成全.Wang Quan 信息检索策略研究 -情报探索2007,""(4) 分析影响信息检索效率的要素,并从各个要素层面提出了相应的信息检索策略,以期指导用户的信息检索行为. 10.学位论文 吴清锋 基于内容的中草药植物图像检索关键技术研究 2007 论文工作针对基于内容的中草药植物图像检索问题,在系统分析已有关键技术及发展趋势基础上,对中草药植物叶子图像的领域特征提取、层次化 检索策略、基于显著轮廓曲线的图像检索、基于视觉注意的花卉图像检索等问题进行了系统、深入和较为全面的研究。这些研究内容不但是基于内容的 中草药植物图像检索亟待解决的关键问题,也是图像处理和信息检索领域的研究重点,具有重要的理论意义和实际应用价值。论文的主要工作和贡献如 下: (1)对基于内容图像检索领域的一些关键技术作了深入的研究分析,包括:颜色、形状、纹理等常用的图像底层视觉特征和高层语义特征的描述,图 像相似性度量准则,图像数据库特征索引,检索系统性能评价,相关反馈等;并对基于内容图像检索领域的主要研究方向进行了阐述;最后还给出了部 分原型系统的比较分析结果。 (2)叶子作为植物的重要器官,它的识别与分类在整株植物的识别与分类过程中占有重要的地位。使用颜色、纹理、形状等通用的视觉特征并不能取 得很好的检索效果,因此论文从植物形态学角度,分析并提取了中草药植物叶片的叶形、叶脉、叶齿等领域视觉特征,并且将所提取的特征归类为全局 特征和局部特征,在此基础上,构建了一个层次化检索策略,并进行了实验分析。实验表明:应用领域特征的检索较传统的检索更有效,并且,层次化 检索策略在提高系统检索速度的同时,又保证具有较高的检索精度。 (3)非标准环境下采集到的中草药植物叶子图像,一般具有复杂的背景,遮挡现象普遍存在,这都极大地影响着检索的效果。受到神经心理学中形状 感知研究的启发,我们将非经典感受野抑制机制引入到图像边缘检测中,保留图像中叶子的轮廓,同时抑制复杂背景中的短小边缘,并且使用获取的轮 廓曲线的特征来代表图像的形状特征。然后采用“综合多对多”的匹配策略来度量图像间的相似性,取得了良好的匹配效果。 (4)一般情况下,非标准环境下采集到的中草药植物花卉图像,花卉区域具有比背景更加突出的特征属性。利用人类视觉选择性注意机制研究的成果 ,首先对图像进行分析,综合视觉注意模型和传统的区域生长法,来定义和获取用户感兴趣的区域,然后采用一种新的“一对一”的匹配策略来度量图 像间的相似性,解决了图像的注意性匹配问题。实验证明:上述方法简单有效,降低了信息处理的计算量,提高了系统的效率。 总之,我们在基于内容的中草药植物图像检索方面,首次运用比较先进的图像匹配与检索方法与技术,对中草药图谱检索问题做了有开拓性意义的 研究工作,特别是提出的“植物叶子图像的领域特征提取与层次化检索"、“图像显著轮廓提取与综合轮廓匹配”、“基于视觉注意的感兴趣区域提取与 花卉图像检索”等具体方法,对于推动中草药植物图像自动检索研究领域的技术发展,有着重要的学术价值和具体的应用意义。 引证文献(2条) 1.田质兵.谈春梅 科技电子资源检索的探讨[期刊论文]-大学图书情报学刊 2003(2) 2.董建成 网上医学信息检索策略初探[期刊论文]-中华医学图书情报杂志
Canny边缘检测是一种使用多种边缘检测算法检测边缘的方法。由John 于1986年提出,并在论文中有详尽的描述。 1)去噪。噪声会影响边缘检测的准确度。通常采用高斯滤波去除图像中的噪声。滤波器的核越大,边缘信息对噪声的敏感度就越低。不过,核越大,边缘检测的定位错误也会随之增加。通常一个5 X 5的核能满足大多数情况。 2)计算梯度的幅度与方向。梯度的方向与边缘的方向是垂直的,通常就取近似值为·水平、垂直、对角线等八个不同的方向。 3)非极大值抑制,即适当地让边缘变瘦。在获得了梯度的幅度和方向后,遍历图像中的像素点,去除所有非边缘的点。具体实现上,判断当前像素点是否是周围像素点中具有相同梯度方向的最大值,如果是,则保留该点;如果不是则抑制(归零)。 4)确定边缘。用双阈值算法确定最终的边缘信息。完成之前三步骤后,图像的强边缘已经在当前获取的边缘图像内。但一些虚边缘可能也在边缘图像内,这些虚边缘可能是真实的图像产生的,也可能是由于噪声产生的(必须将其剔除)。 设置两个阈值,其中一个为高阈值maxVal,另一个为低阈值minVal。根据当前边缘像素的梯度值与这两个阈值之间的关系,判断边缘的属性。如果当前边缘像素的梯度值不小于maxVal,则将当前边缘像素标记为强边缘;如果介于maxVal与minVal之间,则标记为弱边缘(先保留);如果小于minVal,则抑制当前边缘像素。之后再判断虚边缘是否与强边缘有连接,有连接,则处理为边缘;无连接则抑制。 OpenCV提供了()来实现边缘检测:dst : 为计算得到的边缘图像 image: 为8位输入图像 threshold1: 表示处理过程中的的第一个阈值 threshold2: 表示处理过程中的的第二个阈值 apertureSize: 表示Sobel算子的孔径大小。 L2gradient: 为计算图像梯度幅度的标识。其默认值是False。如果为True,则使用更精确的L2范数进行计算,否则使用L1范数。 例如:
目标检测(object detection)是计算机视觉中非常重要的一个领域。在卷积神经网络出现之前,都利用一些传统方法手动提取图像特征进行目标检测及定位,这些方法不仅耗时而且性能较低。而在卷积神经网络出现之后,目标检测领域发生了翻天覆地的变化。最著名的目标检测系统有RCNN系列、YOLO和SSD,本文将介绍RCNN系列的开篇作RCNN。 RCNN系列的技术演进过程可参见 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN 。 目标检测分为两步:第一步是对图像进行分类,即图像中的内容是什么;第二步则是对图像进行定位,找出图像中物体的具体位置。简单来说就是图像里面有什么,位置在哪。 然而,由于不同图片中物体出现的大小可能不同(多尺度),位置也可能不同,而且摆放角度,姿态等都可以不同,同时一张图片中还可以出现多个类别。这使得目标检测任务异常艰难。上面任务用专业的说法就是:图像识别+定位两个不同的分支分别完成不同的功能,分类和定位。回归(regression)分支与分类分支(classification)共享网络卷积部分的参数值。 还是刚才的分类识别+回归定位思路。只是现在我们提前先取好不同位置的框,然后将这个框输入到网络中而不是像思路一将原始图像直接输入到网络中。然后计算出这个框的得分,取得分最高的框。 如上,对于同一个图像中猫的识别定位。分别取了四个角四个框进行分类和回归。其得分分别为,因此右下角得分最高,选择右下角的黑框作为目标位置的预测(这里即完成了定位任务)。 这里还有一个问题——检测位置时的框要怎么取,取多大?在上面我们是在257x257的图像中取了221x221的4个角。以不同大小的窗口从左上角到右下角依次扫描的话,数据量会非常大。而且,如果考虑多尺度问题的话,还需要在将图像放缩到不同水平的大小来进行计算,这样又大大增加了计算量。如何取框这个问题可以说是目标检测的核心问题之一了,RCNN,fast RCNN以及faster RCNN对于这个问题的解决办法不断地进行优化,这个到了后面再讲。 总结一下思路: 对于一张图片,用各种大小的框将图片截取出来,输入到CNN,然后CNN会输出这个框的类别以及其位置得分。 对于检测框的选取,一般是采用某种方法先找出可能含有物体的框(也就是候选框,比如1000个候选框),这些框是可以互相重叠互相包含的,这样我们就可以避免暴力枚举所有框了。讲完了思路,我们下面具体仔细来看看RCNN系列的实现,本篇先介绍RCNN的方法。 R-CNN相比于之前的各种目标检测算法,不仅在准确率上有了很大的提升,在运行效率上同样提升很大。R-CNN的过程分为4个阶段: 在前面我们已经简单介绍了selective search方法,通过这个方法我们筛选出了2k左右的候选框。然而搜索出的矩形框大小是不同的。而在AlexNet中由于最后全连接层的存在,对于图像尺寸有固定的要求,因此在将候选框输入之前,作者对这些候选框的大小进行了统一处理——放缩到了统一大小。文章中作者使用的处理方法有两种: (1)各向异性缩放因为图片扭曲可能会对后续CNN模型训练产生影响,于是作者也测试了各向同性缩放的方法。有两种方法: 此外,作者对于bounding box还尝试了padding处理,上面的示意图中第1、3行就是结合了padding=0,第2、4行结果采用padding=16的结果。经过最后的试验,作者发现采用各向异性缩放、padding=16的精度最高。 卷积神经网络训练分为两步:(1)预训练;(2)fine-tune。 先在一个大的数据集上面训练模型(R-CNN中的卷机模型使用的是AlexNet),然后利用这个训练好的模型进行fine-tune(或称为迁移学习),即使用这个预训练好的模型参数初始化模型参数,然后在目标数据集上面进行训练。 此外,在训练时,作者还尝试采用不同层数的全连接层,发现一个全连接层比两个全连接层效果要好,这可能是因为使用两个全连接层后过拟合导致的。 另一个比较有意思的地方是:对于CNN模型,卷积层学到的特征其实就是基础的共享特征提取层,类似于传统的图像特征提取算法。而最后的全连接层学到的则是针对特定任务的特征。譬如对于人脸性别识别来说,一个CNN模型前面的卷积层所学习到的特征就类似于学习人脸共性特征,然后全连接层所学习的特征就是针对性别分类的特征了。 最后,利用训练好的模型对候选框提取特征。 关于正负样本的问题:由于选取的bounding box不可能与人工label的完全相同,因此在CNN训练阶段需要设置IOU阈值来为bounding box打标签。在文章中作者将阈值设置为,即如果候选框bounding box与人工label的区域重叠面积大于,则将其标注为物体类别(正样本),否则我们就把他当做背景类别(负样本)。 作者针对每一个类别都训练了一个二分类的SVM。这里定义正负样本的方法与上面卷积网络训练的定义方法又不相同。作者在文章中尝试了多种IoU阈值()。最后通过训练发现,IoU阈值为的时候效果最好(选择为0精度下降了4个百分点,选择精度下降了5个百分点)。即当IoU小于的时候我们将其视为负样本,否则为正样本。 目标检测问题的衡量标准是重叠面积:许多看似准确的检测结果,往往因为候选框不够准确,重叠面积很小。故需要一个位置精修步骤。在实现边界回归的过程中发现了两个微妙的问题。第一是正则化是重要的:我们基于验证集,设置λ=1000。第二个问题是,选择使用哪些训练对(P,G)时必须小心。直观地说,如果P远离所有的检测框真值,那么将P转换为检测框真值G的任务就没有意义。使用像P这样的例子会导致一个无望的学习问题。因此,只有当提案P至少在一个检测框真值附近时,我们才执行学习任务。“附近”即,将P分配给具有最大IoU的检测框真值G(在重叠多于一个的情况下),并且仅当重叠大于阈值(基于验证集,我们使用的阈值为)。所有未分配的提案都被丢弃。我们为每个目标类别执行一次,以便学习一组特定于类别的检测框回归器。 在测试时,我们对每个提案进行评分,并预测其新的检测框一次。原则上,我们可以迭代这个过程(即重新评估新预测的检测框,然后从它预测一个新的检测框,等等)。但是,我们发现迭代不会改进结果。 使用selective search的方法在测试图片上提取2000个region propasals ,将每个region proposals归一化到227x227,然后再CNN中正向传播,将最后一层得到的特征提取出来。然后对于每一个类别,使用为这一类训练的SVM分类器对提取的特征向量进行打分,得到测试图片中对于所有region proposals的对于这一类的分数,再使用贪心的非极大值抑制(NMS)去除相交的多余的框。再对这些框进行canny边缘检测,就可以得到bounding-box(then B-BoxRegression)。 参考: Rich feature hierarchies for accurate object detection and semantic segmentation. RCNN-将CNN引入目标检测的开山之作-晓雷的文章 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN R-CNN 论文翻译
边缘检测是图像处理的重要基础算法。它是许多高阶的图像算法(例如轮廓检测,目标检测)的基础。Canny边缘检测算法是OpenCV中使用的边缘检测算法,由John F. Canny在1986年提出。由于它出色的检测和容错能力,至今一直被广泛使用。Canny边缘检测具有以下特点: 那么Canny边缘检测为什么会有出色的性能?这和它的实现有着很大关系,Canny边缘检测主要分为以下几个步骤: 因为边缘检测容易受到图像中的噪点影响,所以在边缘检测之前通常需要对图像进行降噪处理。这里我们使用高斯滤波进行降噪。关于高斯滤波可以参考 这里 。 如何确定图像的边缘?图像的边缘像素的灰度值通常会有剧烈变化。而梯度可以用来衡量灰度值变化的大小和方向。图像在x, y方向的梯度值可以通过点乘下面的Sobel算子得到: 在得到x, y方向的梯度值以后,通过以下公式计算出方向梯度值: 高斯滤波在降噪的同时,边缘也有可能被放大。引入非最大值抑制就是为了解决这个问题,使得检测出的边缘更细(窄)。 即:如果一个像素点属于边缘,那么这个像素点在梯度方向上的梯度值是必须是最大的。 如下图所示,A是在图像的边缘上的点,计算出的梯度方向垂直于边缘。B和C在梯度方向上,这时我们比较A和B,C的灰度值,如果A比B和C都大,则选取A作为结果。如果A比B或者C小,则将A的值设为0。 为了确定最终的边缘,我们需要设定一个阈值来挑选出足够“像”边缘的点,即它的梯度值要足够大。但如果设定单一阈值,最终的检测精度就非常依赖于阈值设定,过大或者过小的阈值都会让结果偏离预期。而Canny边缘检测算法设置两个阀值,分别为maxVal和minVal。其中大于maxVal的都被检测为边缘,而低于minval的都被检测为非边缘。对于中间的像素点,如果与确定为边缘的像素点邻接,则判定为边缘;否则为非边缘。这样有效地提高了检测精度。 OpenCV中提供了Canny边缘检测的实现。我们直接调用 Canny() 函数即可
Canny边缘检测教程 Author: Bill Green (2002) 作者:比尔绿色( 2002 ) HOME EMAIL 主页 电子邮件 This tutorial assumes the reader: 本教程假定读者: (1) Knows how to develop source code to read raster data ( 1 )知道如何发展的源代码阅读栅格数据 (2) Has already read my Sobel edge detection tutorial ( 2 )已经阅读我Sobel边缘检测教程 This tutorial will teach you how to:本教程将教你如何: (1) Implement the Canny edge detection algorithm. ( 1 )实施Canny边缘检测算法。 INTRODUCTION 导言 Edges characterize boundaries and are therefore a problem of fundamental importance in image processing.边的特点,因此,边界问题,根本的重要性在图像处理中。 Edges in images are areas with strong intensity contrasts – a jump in intensity from one pixel to the next.在图像的边缘地区,强度强的反差-一个跳转的强度从一个像素的下一个。 Edge detecting an image significantly reduces the amount of data and filters out useless information, while preserving the important structural properties in an image. This was also stated in my Sobel and Laplace edge detection tutorial, but I just wanted reemphasize the point of why you would want to detect edges.边缘检测的图像大大减少了大量的数据,并过滤掉无用的信息,同时保持重要的结构性能的形象。这也是我在索贝尔和拉普拉斯边缘检测教程,但我只是想再次强调这一点的,为什么你会要检测的边缘。 The Canny edge detection algorithm is known to many as the optimal edge detector. Canny's intentions were to enhance the many edge detectors already out at the time he started his work.的Canny边缘检测算法是众所周知的许多人视为最佳边缘检测。坎尼的意图是要加强许多先进的探测器已经在的时候,他开始他的工作。 He was very successful in achieving his goal and his ideas and methods can be found in his paper, " A Computational Approach to Edge Detection ".他很成功地实现他的目标和他的思想和方法中可以找到他的论文“ 计算方法的边缘检测 ” 。 In his paper, he followed a list of criteria to improve current methods of edge detection.在他的文件中,他遵循的标准清单,以改善目前的边缘检测方法。 The first and most obvious is low error rate.第一个也是最明显的错误率低。 It is important that edges occuring in images should not be missed and that there be NO responses to non-edges.重要的是,发生在图像边缘不应错过的,没有任何反应,非边缘。 The second criterion is that the edge points be well localized. In other words, the distance between the edge pixels as found by the detector and the actual edge is to be at a minimum.第二个标准是,边缘点很好地本地化。换言之,之间的距离边缘像素作为探测器发现和实际边缘要在最低限度。 A third criterion is to have only one response to a single edge.第三个标准是,只有一个回应单一优势。 This was implemented because the first 2 were not substantial enough to completely eliminate the possibility of multiple responses to an edge.这是第一次实施,因为并没有实质性的2足以完全消除的可能性,多反应的优势。 Based on these criteria, the canny edge detector first smoothes the image to eliminate and noise.根据这些标准, Canny边缘检测器的第一个平滑的图像,以消除和噪音。 It then finds the image gradient to highlight regions with high spatial derivatives.然后认定的形象,以突出地区梯度高空间衍生物。 The algorithm then tracks along these regions and suppresses any pixel that is not at the maximum (nonmaximum suppression).该算法然后轨道沿着这些地区和抑制任何像素这不是在最高( nonmaximum制止) 。 The gradient array is now further reduced by hysteresis.梯度阵列现在进一步减少滞后。 Hysteresis is used to track along the remaining pixels that have not been suppressed.磁滞用来追踪沿其余像素,但没有压制。 Hysteresis uses two thresholds and if the magnitude is below the first threshold, it is set to zero (made a nonedge).磁滞使用两个阈值,如果规模低于第一道门槛,这是设置为零(发了nonedge ) 。 If the magnitude is above the high threshold, it is made an edge.如果是规模以上的高门槛,这是一个优势。 And if the magnitude is between the 2 thresholds, then it is set to zero unless there is a path from this pixel to a pixel with a gradient above T2.如果震级之间的2阈值,那么它设置为零,除非有一条从这个像素一个像素的梯度上述时刻。 Step 1 第1步 In order to implement the canny edge detector algorithm, a series of steps must be followed.为了落实Canny边缘检测算法,一系列步骤必须遵循。 The first step is to filter out any noise in the original image before trying to locate and detect any edges.第一步是筛选出任何噪音的原始图像在寻找和发现任何边缘。 And because the Gaussian filter can be computed using a simple mask, it is used exclusively in the Canny algorithm.而且因为高斯滤波器可以用一个简单的计算面具,它是专门用于在Canny算法。 Once a suitable mask has been calculated, the Gaussian smoothing can be performed using standard convolution methods.一旦合适的面罩已计算,高斯平滑可以用标准的卷积方法。 A convolution mask is usually much smaller than the actual image.阿卷积掩模通常远远小于实际的形象。 As a result, the mask is slid over the image, manipulating a square of pixels at a time. The larger the width of the Gaussian mask, the lower is the detector's sensitivity to noise .因此,该面具是下跌的形象,操纵一个正方形的像素上。 较大的宽度高斯面具,较低的是探测器的敏感性噪音 。 The localization error in the detected edges also increases slightly as the Gaussian width is increased.定位误差检测边缘也略有增加的高斯宽度增加。 The Gaussian mask used in my implementation is shown below.高斯遮罩使用我在执行下面显示。 Step 2 第2步 After smoothing the image and eliminating the noise, the next step is to find the edge strength by taking the gradient of the image.经过平滑的形象,消除噪音,下一步就是要找到优势兵力,采取梯度的形象。 The Sobel operator performs a 2-D spatial gradient measurement on an image.的Sobel算子进行二维空间梯度测量的形象。 Then, the approximate absolute gradient magnitude (edge strength) at each point can be found.然后,大约绝对梯度幅度(边缘强度)各点可以找到。 The Sobel operator uses a pair of 3x3 convolution masks, one estimating the gradient in the x-direction (columns) and the other estimating the gradient in the y-direction (rows). Sobel算子的使用对3x3卷积口罩,一个梯度估计在X方向(栏)和其他的梯度估计的Y方向(行) 。 They are shown below:它们如下所示: The magnitude, or EDGE STRENGTH, of the gradient is then approximated using the formula:的规模,或EDGE强度,梯度近似然后使用公式: |G| = |Gx| + |Gy| | G | = | GX的| + |戈瑞| Step 3 第3步 Finding the edge direction is trivial once the gradient in the x and y directions are known.寻找边缘方向是小事,一旦梯度在X和Y方向是众所周知的。 However, you will generate an error whenever sumX is equal to zero.然而,你会产生错误时sumX等于零。 So in the code there has to be a restriction set whenever this takes place.因此,在代码中必须有一个限制规定只要发生。 Whenever the gradient in the x direction is equal to zero, the edge direction has to be equal to 90 degrees or 0 degrees, depending on what the value of the gradient in the y-direction is equal to.每当梯度在x方向等于零,边缘的方向,必须等于90度或0度,取决于什么的价值梯度的Y方向等于。 If GY has a value of zero, the edge direction will equal 0 degrees.如果青的值为零,边缘方向将等于0度。 Otherwise the edge direction will equal 90 degrees.否则边缘方向将等于90度。 The formula for finding the edge direction is just:公式为寻找边缘方向是: theta = invtan (Gy / Gx)论旨= invtan (戈瑞/ GX的) Step 4 第4步 Once the edge direction is known, the next step is to relate the edge direction to a direction that can be traced in an image.一旦边缘方向众所周知,下一步是与边缘方向为方向,可以追溯到在一个图像。 So if the pixels of a 5x5 image are aligned as follows:因此,如果一个5x5像素图像对齐如下: x x x x x x x x x x x x x x x x x x x x x x a x x x x 1 x x x x x x x x x x x x x x x x x x x x x x Then, it can be seen by looking at pixel " a ", there are only four possible directions when describing the surrounding pixels - 0 degrees (in the horizontal direction), 45 degrees (along the positive diagonal), 90 degrees (in the vertical direction), or 135 degrees (along the negative diagonal).然后,可以看到看像素的“ A ” ,只有4个可能的方向时,描述了周围的像素- 0度 (水平方向) , 45度 (沿积极对角线) , 90度 (垂直方向) ,或135度 (沿负对角线) 。 So now the edge orientation has to be resolved into one of these four directions depending on which direction it is closest to (eg if the orientation angle is found to be 3 degrees, make it zero degrees).所以,现在的边缘方向已经得到解决纳入其中四个方向取决于哪个方向,它是最接近于(如角被发现有3度,使零摄氏度) 。 Think of this as taking a semicircle and dividing it into 5 regions.认为这是采取了半圆形和分裂成5个地区。 Therefore, any edge direction falling within the yellow range (0 to & to 180 degrees) is set to 0 degrees.因此,任何先进的方向范围内的黄色范围 ( 0至5月22日& 至180度)设置为0度。 Any edge direction falling in the green range ( to degrees) is set to 45 degrees. Any edge direction falling in the blue range ( to degrees) is set to 90 degrees.任何先进的方向下滑的绿色范围 ( 至度)设置为45度。任何优势的方向下滑的蓝色范围 ( 至度)设置为90度。 And finally, any edge direction falling within the red range ( to degrees) is set to 135 degrees.最后,任何先进的方向范围内的红色范围 ( 到度)设置为135度。 Step 5 第5步 After the edge directions are known, nonmaximum suppression now has to be applied. Nonmaximum suppression is used to trace along the edge in the edge direction and suppress any pixel value (sets it equal to 0) that is not considered to be an edge. This will give a thin line in the output image.在被称为边缘方向, nonmaximum抑制现在必须适用。 Nonmaximum抑制是用来追踪沿边缘方向和制止任何像素值(套等于0 )这是不被认为是优势。这将给细线的输出图像。 Step 6 第6步 Finally, hysteresis is used as a means of eliminating streaking.最后,滞后是用来作为一种手段,消除条纹。 Streaking is the breaking up of an edge contour caused by the operator output fluctuating above and below the threshold.裸奔是打破的边缘轮廓线的经营者造成的产量波动上面和下面的门槛。 If a single threshold, T1 is applied to an image, and an edge has an average strength equal to T1, then due to noise, there will be instances where the edge dips below the threshold.如果一个门槛, T1讯号适用于图像,并具有优势的平均强度相等的T1 ,然后由于噪声,将有情况下,边逢低低于阈值。 Equally it will also extend above the threshold making an edge look like a dashed line.同样它也将延长超过阈值决策的优势看起来像一个虚线。 To avoid this, hysteresis uses 2 thresholds, a high and a low.为了避免这种情况,滞后使用2的门槛,高和低。 Any pixel in the image that has a value greater than T1 is presumed to be an edge pixel, and is marked as such immediately.任何像素的图像,其值大于表# t1推定为边缘像素,并标示为这种立即。 Then, any pixels that are connected to this edge pixel and that have a value greater than T2 are also selected as edge pixels.然后,任何像素连接到这个边缘像素,并有一个值大于时刻还选定为边缘像素。 If you think of following an edge, you need a gradient of T2 to start but you don't stop till you hit a gradient below T1.如果您认为以下的优势,您需要一个梯度的时刻开始,但你不停止直到触及梯度低于表# t1 。 You are visitor number: 你是第位访客人数:
测绘工程论文题目
测绘工程在整个工程建设过程中所起的作用很大,测绘工程论文题目大家想好了吗?下面是我整理的测绘工程论文题目,欢迎阅读参考!
1、改善GIS数字底图的质量
2、教学实习在土地资源管理专业中的应用
3、数字化土地利用现状调查的数据采编
4、数字化地形测量的几个问题探讨
5、数字化地籍测量在城镇地籍调查中的应用探讨
6、数字化成图几种作业模式的分析比较
7、数字化测图与地籍信息系统研究
8、数字化测图在地籍补测中的两种应用技巧
9、数字化测图技术在郑州高新区房地产测量中的应用
10、数字化测图教学方法探讨
11、数字化测绘技术在地籍图测绘中的应用与建议
12、数字化测绘技术在地籍测量中的应用与实施
13、数字化测绘技术在地籍测量中的应用初探
14、数字化测绘技术在城镇地籍测量中的应用
15、数字化测绘技术在源影寺古砖塔测绘中的应用
16、数字图像边缘检测方法的探讨
17、数字土地利用现状图的制图概括
18、数字土地利用现状图的制图综合
19、数字地图系统设计
20、数字地形图测绘中的几个问题探析
21、数字地籍测绘实施中的技术问题
22、数字地籍测量中GPS控制网的建立
23、数字地籍测量主要误差来源探讨
24、数字地籍测量作业探讨
25、数字地籍测量应用分析
26、数字地籍测量控制网的建立及精度分析
27、数字地籍测量有关作业流程及精度控制的探讨
28、数字地籍测量精度的讨论及控制方法
29、数字平顶山空间数据基础设施建设的初步研究
30、数字摄影测量生产的质量控制
31、数字水准仪SPRINTERM的试验与评述
32、数字水准仪及其在机场跑道板块高程测量中的应用
33、数字水准仪及水准尺的检定与精度分析
34、数字水准仪的测量算法概述
35、数字水准仪自动读数方法研究
36、数字水准仪观测模式及其应用实践
37、数字水准测量外业数据格式的转换与统一的实践
38、数字水果湖水下地形和淤泥厚度测量
39、数字测图中的坐标变换方法
40、数字测图中设站错误的内业改正
41、数字测图技术在罗营口水电站坝址地形测量中的应用
42、数字测绘产品的质量检查与质量控
43、数字综合法用于平坦地区地形图修测
44、数字高程模型与等高线质量相关性研究
45、数字高程模型及其数据结构
46、数字高程模型在农地整理排水渠道规划设计中的应用
47、数字高程模型地形描述精度的研究
48、数字高程模型的生产及更新
49、数字高程模型的裁剪与拼接技术
50、数学形态学在遥感图像处理中的应用
51、数据化测量在河道治理工程中的应用
52、数码相机可量测化的研制
53、斜拉桥变形观测方法及精度分析
54、斜距法在工程中的应用
55、断面测量内外业一体化系统研究
56、断高法在高等级公路测设中的应用
57、新州公路平面控制测量问题研究与施测
58、方位交会法在城区测量中的'应用
59、方向交会法坐标计算之初探——待定点坐标的计算
60、方向后交最佳点位分析
61、施工测量中快速设站方法
62、无像控基础地理空间数据更新方法
63、无反射棱镜全站仪测距性能测试
64、无反射镜测距的目标特性研究
65、无定向导线环在城市地籍测量中的应用
66、无控制DEM表面差异探测研究
67、既有铁路航测数字化测图的特点与质量控制
68、时态地籍数据库设计与宗地历史查询的实现方法
69、明暗等高线自动绘制方法
70、智能全站仪ATR实测三维精度分析
71、智能全站仪快速测量处理系统
72、曲线拟合高程在公路测量中的应用研究
73、曲线放样中的坐标转换及转换精度分析
74、曲线矢量数据压缩算法实现及评析
75、最小二乘平差理论在制图自动综合中的应用
76、最小二乘法在土地复垦场平整中的应用
77、最小二乘法对多周期函数的周期筛选优化
78、有关地籍调查的几个问题探讨
79、有限条件下坐标转换矩阵的确定与精化
80、有非对称缓和曲线的曲线主点测设方法
81、服务城市化的测绘工程专业培养计划探讨
82、村庄地籍测量之初探
83、条码信号复原技术在数字水准仪中的应用
84、条码因瓦水准标尺校准方法的探讨
85、极坐标法测设平面位置的精度分析
86、构建城镇地籍管理系统的研究
87、栅格数据矢量化及其存在问题的解决
88、标准化大比例尺数字测图的实践与体会
89、树状河系自动绘制的结构化实现
90、根据三斜距确定点的三维坐标及精度
91、桥梁墩_台的沉降观测和沉降值的预测
92、模拟GPS控制网精度估算方法研究
93、模糊数学在土地利用更新调查质量评定中的应用探讨
94、模糊综合评判及其在测绘中的应用
95、气象因素对全站仪测量的影响
96、水下地形分析中空间数据存储与管理方法的研究
97、水下地形测量误差分析及对策
98、水下地形测量误差来源及处理方法探讨
99、水下地形测量高程异常点剔除方法研究
100、水位改正中虚拟验潮站的快速内插
视觉传达毕业论文题目
视觉传达毕业论文题目具体有哪些呢,大家有了解过吗?下面是我为大家介绍的视觉传达毕业论文题目,欢迎参考和阅读,希望能帮到大家!
视觉传达毕业论文题目
1.浅谈计算机图形图像设计与视觉传达设计
2.基于视觉传达设计中视觉思维模式创新的研究
3.新媒体艺术语言在视觉传达中的应用
4.基于视觉传达艺术发展的民族传统设计创新探讨
5.数字广告中数字媒体的视觉传达设计
6.视觉传达设计视角下的科技图像创作研究
7.动态构成在视觉传达设计中的运用与研究
8.跨界与融合--数字信息时代背景下视觉传达设计的新思考
9.色彩符号与企业形象的视觉传达
10.汉字象形造字法在视觉传达中的设计应用
11.中国传统元素在视觉传达设计中的应用研究
12.“视觉传达设计专业”在现实中的应用探究
13.新媒体语境下的视觉传达设计探讨
14.移动互联网背景下视觉传达设计专业人才培养模式研究
15.视觉传达设计中的图形创意表现研究
16.从空无、自然、融合三个角度谈视觉传达设计中的艺术美
17.“私人定制”视觉传达中的定制式设计理念
18.数码技术在视觉传达设计中的应用研究
19.基于视觉传达要素的制造装备人机优化设计方法研究
20.敦煌联珠纹的形态特征与其在视觉传达设计中的应用
21.基于可持续发展理论下的视觉传达设计
22.浅析视觉传达设计与品牌形象的有效整合
23.现代视觉传达的多维感官设计运用探析
24.探究UI设计的视觉传达艺术
25.旅游纪念品视觉传达设计与开发
26.色彩的视觉传达在广告设计中的运用
27.基于视觉传达设计领域的互补设计方法研究
28.信息时代的视觉传达设计特征与发展研究综述
29.动态视觉传达设计在数字媒体中的应用及发展方向
30.视觉传达的灵境语言
31.本土文化视域下的视觉传达设计及拓展重构
32.探讨视觉传达设计发展趋势的分析
33.独特的视觉传达系统研究
34.订制婚礼中视觉传达设计的应用研究
35.视觉传达设计中图形创意的应用与商业价值研究
36.基于观者位移产生的动态错觉在视觉传达设计中的应用
37.关于多媒体设计与视觉传达的完美结合研究
38.视觉传达设计中民族文化符号的应用
39.浅谈视觉传达设计中图形创意的表现
40.视觉传达设计专业学生的实践能力培养探析
41.视觉传达设计中的色彩应用分析
42.视觉传达设计在空间设计中的新发展
43.视觉传达设计中的视觉疲劳现象研究
44.基于信息设计的视觉传达领域新应用
45.文化产业背景下视觉传达设计的转型
46.江汉大学视觉传达设计专业创新型人才培养探析
47.视觉传达设计创新性思维模式初探
48.浅析视觉传达设计创新思维的内涵及原则
49.展示空间中的视觉传达设计元素分析
50.女性身体元素在竞技体育中的视觉传达
51.谈信息时代下视觉传达设计的发展
52.视觉传达设计中笔墨艺术元素的应用
数字化广告的视觉传达效应探析
54.论包装色彩视觉传达的话语意义
55.浅析现代婚庆视觉传达设计
56.数字时代的视觉传达专业的内涵与外延
57.视觉传达设计中抽象图形的针对性提炼与表现
58.探讨视觉传达艺术设计的创新设计理念
59.数字媒体对视觉传达设计的影响分析
60.浅谈视觉传达设计的多元化发展
61.对视觉传达设计中情感理念的表现研究
62.视觉传达设计中视觉思维模式的创新
63.网页设计之视觉传达研究
64.虚拟现实环境下计算机图形图像设计与视觉传达设计
65.数字媒体时代视觉传达专业图形创意课程改革研究
66.景颇族服饰视觉呈现中的社会情境表述
67.视觉传达技术在茶叶包装设计上的运用
68.从视觉心理角度解读自由版式中的视觉游戏
69.基于视觉信息传达的网页界面设计研究
70.“东方葵”的图像叙事与视觉传达
71.网络广告中的视觉传达设计艺术探究
72.浅析视觉营销在商品E化过程中的应用
73.广告视觉传达设计的研究与探讨
74.从标志设计的演变谈视觉简化心理
75.视觉传达设计中传统装饰艺术符号的融入
76.节约型包装视觉传达设计研究
77.数字时代视觉传达设计的新观念探索
78.图表设计与可视化分析
79.技术推动观念 VR技术引发的视觉传达新观念
80.视觉传达设计中的多媒体艺术的表现形式
81.基于数字媒体语境下的视觉传达设计
82.虚拟现实环境下计算机图形图像设计与视觉传达设计
83.视错觉表现在视觉传达设计中的应用
84.论互联网时代视觉传达设计的方法和表现特性
85.视觉传达设计中的多媒体艺术表现形式研究
86.考虑视觉传达效果的夜视环境视觉定位方法研究
87.当代中国设计活动中审美形态的来源--以视觉传达设计为例
88.中国传统文化元素在视觉传达设计中的应用
89.数字时代视觉传达设计的新观念
90.交通标示颜色的视觉传达作用仿真分析
91.视觉传达设计中的传统文化符号探究
92.中国传统家具元素在视觉传达设计中的应用探析
93.视觉传达设计对地方经济发展的实效性研究
94.当代视觉传达设计中的适老性问题研究
95.黑暗中颜色刺激作用的视觉传达分析研究
96.视觉传达设计的交互动画特效制作手法探析
97.学习类网页设计中视觉传达理论的应用研究
98.字体创意设计是加深视觉传达记忆的根蒂
99.对中国甲骨文文字符号视觉传达的属性研究
100.广告视觉传达设计艺术在信息网络时代的传播研究
101.中国禅道文化中的神、意、形、色在视觉传达设计中的应用研究
102.视觉传达设计中的多媒体艺术表现形式分析
103.公共艺术形态下的视觉传达设计研究
104.浅谈数字图像时代视觉传达设计的几个要素
105.浅析视觉传达设计的情感效应
106.如何做到视觉传达艺术设计的与时俱进
107.试论传播学在视觉传达设计中的应用
108.隐喻图形在视觉传达设计中的应用研究
109.视觉传达设计中视觉思维模式的创新
Graphic在视觉传达中的应用研究
111.数字媒体时代视觉传达设计的特征与发展
112.当代视觉传达下汉字图形化设汁的形、意研究
113.网络媒体的视觉艺术传达设计研究
114.数字时代视觉传达设计的新思维探讨
115.中国传统元素在视觉传达设计中的应用
116.浅析视觉传达在室内设计中的应用
117.“新古琴双行谱”中的视觉传达设计
118.视觉传达图形创意在服装设计中的应用
119.从视觉传达的角度对新媒体时代地产广告的探究
120.分析创新设计理念在视觉传达艺术设计中的具体实施
121.视觉传达设计专业的基础课程改革探索
拓展:测绘工程论文题目
1、改善GIS数字底图的质量
2、教学实习在土地资源管理专业中的应用
3、数字化土地利用现状调查的数据采编
4、数字化地形测量的几个问题探讨
5、数字化地籍测量在城镇地籍调查中的应用探讨
6、数字化成图几种作业模式的分析比较
7、数字化测图与地籍信息系统研究
8、数字化测图在地籍补测中的两种应用技巧
9、数字化测图技术在郑州高新区房地产测量中的应用
10、数字化测图教学方法探讨
11、数字化测绘技术在地籍图测绘中的应用与建议
12、数字化测绘技术在地籍测量中的应用与实施
13、数字化测绘技术在地籍测量中的应用初探
14、数字化测绘技术在城镇地籍测量中的应用
15、数字化测绘技术在源影寺古砖塔测绘中的应用
16、数字图像边缘检测方法的探讨
17、数字土地利用现状图的制图概括
18、数字土地利用现状图的制图综合
19、数字地图系统设计
20、数字地形图测绘中的几个问题探析
21、数字地籍测绘实施中的技术问题
22、数字地籍测量中GPS控制网的建立
23、数字地籍测量主要误差来源探讨
24、数字地籍测量作业探讨
25、数字地籍测量应用分析
26、数字地籍测量控制网的建立及精度分析
27、数字地籍测量有关作业流程及精度控制的探讨
28、数字地籍测量精度的讨论及控制方法
29、数字平顶山空间数据基础设施建设的初步研究
30、数字摄影测量生产的质量控制
31、数字水准仪SPRINTERM的试验与评述
32、数字水准仪及其在机场跑道板块高程测量中的应用
33、数字水准仪及水准尺的'检定与精度分析
34、数字水准仪的测量算法概述
35、数字水准仪自动读数方法研究
36、数字水准仪观测模式及其应用实践
37、数字水准测量外业数据格式的转换与统一的实践
38、数字水果湖水下地形和淤泥厚度测量
39、数字测图中的坐标变换方法
40、数字测图中设站错误的内业改正
41、数字测图技术在罗营口水电站坝址地形测量中的应用
42、数字测绘产品的质量检查与质量控
43、数字综合法用于平坦地区地形图修测
44、数字高程模型与等高线质量相关性研究
45、数字高程模型及其数据结构
46、数字高程模型在农地整理排水渠道规划设计中的应用
47、数字高程模型地形描述精度的研究
48、数字高程模型的生产及更新
49、数字高程模型的裁剪与拼接技术
50、数学形态学在遥感图像处理中的应用
51、数据化测量在河道治理工程中的应用
52、数码相机可量测化的研制
53、斜拉桥变形观测方法及精度分析
54、斜距法在工程中的应用
55、断面测量内外业一体化系统研究
56、断高法在高等级公路测设中的应用
57、新州公路平面控制测量问题研究与施测
58、方位交会法在城区测量中的应用
59、方向交会法坐标计算之初探——待定点坐标的计算
60、方向后交最佳点位分析
61、施工测量中快速设站方法
62、无像控基础地理空间数据更新方法
63、无反射棱镜全站仪测距性能测试
64、无反射镜测距的目标特性研究
65、无定向导线环在城市地籍测量中的应用
66、无控制DEM表面差异探测研究
67、既有铁路航测数字化测图的特点与质量控制
68、时态地籍数据库设计与宗地历史查询的实现方法
69、明暗等高线自动绘制方法
70、智能全站仪ATR实测三维精度分析
71、智能全站仪快速测量处理系统
72、曲线拟合高程在公路测量中的应用研究
73、曲线放样中的坐标转换及转换精度分析
74、曲线矢量数据压缩算法实现及评析
75、最小二乘平差理论在制图自动综合中的应用
76、最小二乘法在土地复垦场平整中的应用
77、最小二乘法对多周期函数的周期筛选优化
78、有关地籍调查的几个问题探讨
79、有限条件下坐标转换矩阵的确定与精化
80、有非对称缓和曲线的曲线主点测设方法
81、服务城市化的测绘工程专业培养计划探讨
82、村庄地籍测量之初探
83、条码信号复原技术在数字水准仪中的应用
84、条码因瓦水准标尺校准方法的探讨
85、极坐标法测设平面位置的精度分析
86、构建城镇地籍管理系统的研究
87、栅格数据矢量化及其存在问题的解决
88、标准化大比例尺数字测图的实践与体会
89、树状河系自动绘制的结构化实现
90、根据三斜距确定点的三维坐标及精度
91、桥梁墩_台的沉降观测和沉降值的预测
92、模拟GPS控制网精度估算方法研究
93、模糊数学在土地利用更新调查质量评定中的应用探讨
94、模糊综合评判及其在测绘中的应用
95、气象因素对全站仪测量的影响
96、水下地形分析中空间数据存储与管理方法的研究
97、水下地形测量误差分析及对策
98、水下地形测量误差来源及处理方法探讨
99、水下地形测量高程异常点剔除方法研究
100、水位改正中虚拟验潮站的快速内插
毕业论文还是自己写吧,锻炼一下。
Canny边缘检测教程 作者:比尔绿色( 2002 ) 主页电子邮件 本教程假定读者: ( 1 )知道如何发展的源代码阅读栅格数据 ( 2 )已经阅读我Sobel边缘检测教程 本教程将教你如何: ( 1 )实施Canny边缘检测算法。 导言 边的特点,因此,边界问题,根本的重要性在图像处理中。在图像的边缘地区,强度强的反差?猛增强度从一个像素的下一个。边缘检测的图像大大减少了大量的数据,并过滤掉无用的信息,同时保持重要的结构性能的形象。这也是我在索贝尔和拉普拉斯边缘检测教程,但我只是想再次强调这一点的,为什么您要检测的边缘。 的Canny边缘检测算法是众所周知的许多人视为最佳边缘检测。精明的意图是要加强许多边缘探测器已经在的时候,他开始了他的工作。他很成功地实现他的目标和他的思想和方法中可以找到他的论文“计算方法的边缘检测” 。在他的文件中,他遵循的标准清单,以改善目前的边缘检测方法。第一个也是最明显的错误率低。重要的是,发生在图像边缘不应错过的,没有任何反应,非边缘。第二个标准是,边缘点很好地本地化。换言之,之间的距离边缘像素作为探测器发现和实际边缘要在最低限度。第三个标准是,只有一个回应单一优势。这是第一次实施,因为并没有实质性的2足以完全消除的可能性,多反应的优势。 根据这些标准, Canny边缘检测器的第一个平滑的图像,以消除和噪音。然后认定的形象,以突出地区梯度高空间衍生物。该算法然后轨道沿着这些地区和抑制任何像素这不是在最高( nonmaximum制止) 。梯度阵列现在进一步减少滞后。磁滞用来追踪沿其余像素,但没有压制。磁滞使用两个阈值,如果规模低于第一道门槛,这是设置为零(发了nonedge ) 。如果是规模以上的高门槛,这是一个优势。如果震级之间的2阈值,那么它设置为零,除非有一条从这个像素一个像素的梯度上述时刻。 第1步 为了落实Canny边缘检测算法,一系列步骤必须遵循。第一步是筛选出任何噪音的原始图像在寻找和发现任何边缘。而且因为高斯滤波器可以用一个简单的计算面具,它是专门用于在Canny算法。一旦合适的面罩已计算,高斯平滑可以用标准的卷积方法。阿卷积掩模通常远远小于实际的形象。因此,该面具是下跌的形象,操纵一个正方形像素的时间。较大的宽度高斯面具,较低的是探测器的敏感性噪音。定位误差检测边缘也略有增加的高斯宽度增加。高斯遮罩使用我在执行下面显示。 第2步 经过平滑的形象,消除噪音,下一步就是要找到优势兵力,采取梯度的形象。的Sobel算子进行二维空间梯度测量的形象。然后,大约绝对梯度幅度(边缘强度)各点可以找到。 Sobel算子的使用对3x3卷积口罩,一个梯度估计在X方向(栏)和其他的梯度估计的Y方向(行) 。它们如下所示: 的规模,或EDGE强度,梯度近似然后使用公式: | G | = | GX的| + |戈瑞| 第3步 寻找边缘方向是小事,一旦梯度在X和Y方向是众所周知的。然而,你会产生错误时sumX等于零。因此,在代码中必须有一个限制规定只要发生。每当梯度在x方向等于零,边缘的方向,必须等于90度或0度,取决于什么的价值梯度的Y方向等于。如果青的值为零,边缘方向将等于0度。否则边缘方向将等于90度。公式为寻找边缘方向是: 论旨= invtan (戈瑞/ GX的) 第4步 一旦边缘方向众所周知,下一步是与边缘方向为方向,可以追溯到在一个图像。因此,如果一个5x5像素图像对齐如下: x x x x x x x x x x x x 1 x x x x x x x x x x x x 然后,可以看到看像素的“ A ” ,只有4个可能的方向时,描述了周围的像素- 0度(水平方向) , 45度(沿积极对角线) , 90度(垂直方向) ,或135度(沿负对角线) 。所以,现在的边缘方向已经得到解决纳入其中四个方向取决于哪个方向,它是最接近于(如角被发现有3度,使零摄氏度) 。认为这是采取了半圆形和分裂成5个地区。 因此,任何先进的方向范围内的黄色范围( 0至5月22日& 至180度)设置为0度。任何先进的方向下滑的绿色范围( 至度)设置为45度。任何先进的方向下滑的蓝色范围( 至度)设置为90度。最后,任何先进的方向范围内的红色范围( 到度)设置为135度。 第5步 在被称为边缘方向, nonmaximum制止目前适用。 Nonmaximum抑制是用来追踪沿边缘方向和制止任何像素值(套等于0 )这是不被认为是优势。这将让细线在输出图像。 第6步 最后,滞后是用来作为一种手段,消除条纹。裸奔是打破的边缘轮廓线的经营者造成的产量波动上面和下面的门槛。如果一个门槛, T1讯号适用于图像,并具有优势的平均强度相等的T1 ,然后由于噪声,将先进的情况下,逢低低于阈值。同样它也将延长超过阈值决策的优势看起来像一个虚线。为了避免这种情况,滞后使用2的门槛,高和低。任何像素的图像,其值大于表# t1推定为边缘像素,并标示为这种立即。然后,任何像素连接到这个边缘像素,并有一个值大于时刻还选定为边缘像素。如果您认为以下的优势,您需要一个梯度的时刻开始,但你不停止直到触及梯度低于表# t1 。
Canny边缘检测教程 Author: Bill Green (2002) 作者:比尔绿色( 2002 ) HOME EMAIL 主页 电子邮件 This tutorial assumes the reader: 本教程假定读者: (1) Knows how to develop source code to read raster data ( 1 )知道如何发展的源代码阅读栅格数据 (2) Has already read my Sobel edge detection tutorial ( 2 )已经阅读我Sobel边缘检测教程 This tutorial will teach you how to:本教程将教你如何: (1) Implement the Canny edge detection algorithm. ( 1 )实施Canny边缘检测算法。 INTRODUCTION 导言 Edges characterize boundaries and are therefore a problem of fundamental importance in image processing.边的特点,因此,边界问题,根本的重要性在图像处理中。 Edges in images are areas with strong intensity contrasts – a jump in intensity from one pixel to the next.在图像的边缘地区,强度强的反差-一个跳转的强度从一个像素的下一个。 Edge detecting an image significantly reduces the amount of data and filters out useless information, while preserving the important structural properties in an image. This was also stated in my Sobel and Laplace edge detection tutorial, but I just wanted reemphasize the point of why you would want to detect edges.边缘检测的图像大大减少了大量的数据,并过滤掉无用的信息,同时保持重要的结构性能的形象。这也是我在索贝尔和拉普拉斯边缘检测教程,但我只是想再次强调这一点的,为什么你会要检测的边缘。 The Canny edge detection algorithm is known to many as the optimal edge detector. Canny's intentions were to enhance the many edge detectors already out at the time he started his work.的Canny边缘检测算法是众所周知的许多人视为最佳边缘检测。坎尼的意图是要加强许多先进的探测器已经在的时候,他开始他的工作。 He was very successful in achieving his goal and his ideas and methods can be found in his paper, " A Computational Approach to Edge Detection ".他很成功地实现他的目标和他的思想和方法中可以找到他的论文“ 计算方法的边缘检测 ” 。 In his paper, he followed a list of criteria to improve current methods of edge detection.在他的文件中,他遵循的标准清单,以改善目前的边缘检测方法。 The first and most obvious is low error rate.第一个也是最明显的错误率低。 It is important that edges occuring in images should not be missed and that there be NO responses to non-edges.重要的是,发生在图像边缘不应错过的,没有任何反应,非边缘。 The second criterion is that the edge points be well localized. In other words, the distance between the edge pixels as found by the detector and the actual edge is to be at a minimum.第二个标准是,边缘点很好地本地化。换言之,之间的距离边缘像素作为探测器发现和实际边缘要在最低限度。 A third criterion is to have only one response to a single edge.第三个标准是,只有一个回应单一优势。 This was implemented because the first 2 were not substantial enough to completely eliminate the possibility of multiple responses to an edge.这是第一次实施,因为并没有实质性的2足以完全消除的可能性,多反应的优势。 Based on these criteria, the canny edge detector first smoothes the image to eliminate and noise.根据这些标准, Canny边缘检测器的第一个平滑的图像,以消除和噪音。 It then finds the image gradient to highlight regions with high spatial derivatives.然后认定的形象,以突出地区梯度高空间衍生物。 The algorithm then tracks along these regions and suppresses any pixel that is not at the maximum (nonmaximum suppression).该算法然后轨道沿着这些地区和抑制任何像素这不是在最高( nonmaximum制止) 。 The gradient array is now further reduced by hysteresis.梯度阵列现在进一步减少滞后。 Hysteresis is used to track along the remaining pixels that have not been suppressed.磁滞用来追踪沿其余像素,但没有压制。 Hysteresis uses two thresholds and if the magnitude is below the first threshold, it is set to zero (made a nonedge).磁滞使用两个阈值,如果规模低于第一道门槛,这是设置为零(发了nonedge ) 。 If the magnitude is above the high threshold, it is made an edge.如果是规模以上的高门槛,这是一个优势。 And if the magnitude is between the 2 thresholds, then it is set to zero unless there is a path from this pixel to a pixel with a gradient above T2.如果震级之间的2阈值,那么它设置为零,除非有一条从这个像素一个像素的梯度上述时刻。 Step 1 第1步 In order to implement the canny edge detector algorithm, a series of steps must be followed.为了落实Canny边缘检测算法,一系列步骤必须遵循。 The first step is to filter out any noise in the original image before trying to locate and detect any edges.第一步是筛选出任何噪音的原始图像在寻找和发现任何边缘。 And because the Gaussian filter can be computed using a simple mask, it is used exclusively in the Canny algorithm.而且因为高斯滤波器可以用一个简单的计算面具,它是专门用于在Canny算法。 Once a suitable mask has been calculated, the Gaussian smoothing can be performed using standard convolution methods.一旦合适的面罩已计算,高斯平滑可以用标准的卷积方法。 A convolution mask is usually much smaller than the actual image.阿卷积掩模通常远远小于实际的形象。 As a result, the mask is slid over the image, manipulating a square of pixels at a time. The larger the width of the Gaussian mask, the lower is the detector's sensitivity to noise .因此,该面具是下跌的形象,操纵一个正方形的像素上。 较大的宽度高斯面具,较低的是探测器的敏感性噪音 。 The localization error in the detected edges also increases slightly as the Gaussian width is increased.定位误差检测边缘也略有增加的高斯宽度增加。 The Gaussian mask used in my implementation is shown below.高斯遮罩使用我在执行下面显示。 Step 2 第2步 After smoothing the image and eliminating the noise, the next step is to find the edge strength by taking the gradient of the image.经过平滑的形象,消除噪音,下一步就是要找到优势兵力,采取梯度的形象。 The Sobel operator performs a 2-D spatial gradient measurement on an image.的Sobel算子进行二维空间梯度测量的形象。 Then, the approximate absolute gradient magnitude (edge strength) at each point can be found.然后,大约绝对梯度幅度(边缘强度)各点可以找到。 The Sobel operator uses a pair of 3x3 convolution masks, one estimating the gradient in the x-direction (columns) and the other estimating the gradient in the y-direction (rows). Sobel算子的使用对3x3卷积口罩,一个梯度估计在X方向(栏)和其他的梯度估计的Y方向(行) 。 They are shown below:它们如下所示: The magnitude, or EDGE STRENGTH, of the gradient is then approximated using the formula:的规模,或EDGE强度,梯度近似然后使用公式: |G| = |Gx| + |Gy| | G | = | GX的| + |戈瑞| Step 3 第3步 Finding the edge direction is trivial once the gradient in the x and y directions are known.寻找边缘方向是小事,一旦梯度在X和Y方向是众所周知的。 However, you will generate an error whenever sumX is equal to zero.然而,你会产生错误时sumX等于零。 So in the code there has to be a restriction set whenever this takes place.因此,在代码中必须有一个限制规定只要发生。 Whenever the gradient in the x direction is equal to zero, the edge direction has to be equal to 90 degrees or 0 degrees, depending on what the value of the gradient in the y-direction is equal to.每当梯度在x方向等于零,边缘的方向,必须等于90度或0度,取决于什么的价值梯度的Y方向等于。 If GY has a value of zero, the edge direction will equal 0 degrees.如果青的值为零,边缘方向将等于0度。 Otherwise the edge direction will equal 90 degrees.否则边缘方向将等于90度。 The formula for finding the edge direction is just:公式为寻找边缘方向是: theta = invtan (Gy / Gx)论旨= invtan (戈瑞/ GX的) Step 4 第4步 Once the edge direction is known, the next step is to relate the edge direction to a direction that can be traced in an image.一旦边缘方向众所周知,下一步是与边缘方向为方向,可以追溯到在一个图像。 So if the pixels of a 5x5 image are aligned as follows:因此,如果一个5x5像素图像对齐如下: x x x x x x x x x x x x x x x x x x x x x x a x x x x 1 x x x x x x x x x x x x x x x x x x x x x x Then, it can be seen by looking at pixel " a ", there are only four possible directions when describing the surrounding pixels - 0 degrees (in the horizontal direction), 45 degrees (along the positive diagonal), 90 degrees (in the vertical direction), or 135 degrees (along the negative diagonal).然后,可以看到看像素的“ A ” ,只有4个可能的方向时,描述了周围的像素- 0度 (水平方向) , 45度 (沿积极对角线) , 90度 (垂直方向) ,或135度 (沿负对角线) 。 So now the edge orientation has to be resolved into one of these four directions depending on which direction it is closest to (eg if the orientation angle is found to be 3 degrees, make it zero degrees).所以,现在的边缘方向已经得到解决纳入其中四个方向取决于哪个方向,它是最接近于(如角被发现有3度,使零摄氏度) 。 Think of this as taking a semicircle and dividing it into 5 regions.认为这是采取了半圆形和分裂成5个地区。 Therefore, any edge direction falling within the yellow range (0 to & to 180 degrees) is set to 0 degrees.因此,任何先进的方向范围内的黄色范围 ( 0至5月22日& 至180度)设置为0度。 Any edge direction falling in the green range ( to degrees) is set to 45 degrees. Any edge direction falling in the blue range ( to degrees) is set to 90 degrees.任何先进的方向下滑的绿色范围 ( 至度)设置为45度。任何优势的方向下滑的蓝色范围 ( 至度)设置为90度。 And finally, any edge direction falling within the red range ( to degrees) is set to 135 degrees.最后,任何先进的方向范围内的红色范围 ( 到度)设置为135度。 Step 5 第5步 After the edge directions are known, nonmaximum suppression now has to be applied. Nonmaximum suppression is used to trace along the edge in the edge direction and suppress any pixel value (sets it equal to 0) that is not considered to be an edge. This will give a thin line in the output image.在被称为边缘方向, nonmaximum抑制现在必须适用。 Nonmaximum抑制是用来追踪沿边缘方向和制止任何像素值(套等于0 )这是不被认为是优势。这将给细线的输出图像。 Step 6 第6步 Finally, hysteresis is used as a means of eliminating streaking.最后,滞后是用来作为一种手段,消除条纹。 Streaking is the breaking up of an edge contour caused by the operator output fluctuating above and below the threshold.裸奔是打破的边缘轮廓线的经营者造成的产量波动上面和下面的门槛。 If a single threshold, T1 is applied to an image, and an edge has an average strength equal to T1, then due to noise, there will be instances where the edge dips below the threshold.如果一个门槛, T1讯号适用于图像,并具有优势的平均强度相等的T1 ,然后由于噪声,将有情况下,边逢低低于阈值。 Equally it will also extend above the threshold making an edge look like a dashed line.同样它也将延长超过阈值决策的优势看起来像一个虚线。 To avoid this, hysteresis uses 2 thresholds, a high and a low.为了避免这种情况,滞后使用2的门槛,高和低。 Any pixel in the image that has a value greater than T1 is presumed to be an edge pixel, and is marked as such immediately.任何像素的图像,其值大于表# t1推定为边缘像素,并标示为这种立即。 Then, any pixels that are connected to this edge pixel and that have a value greater than T2 are also selected as edge pixels.然后,任何像素连接到这个边缘像素,并有一个值大于时刻还选定为边缘像素。 If you think of following an edge, you need a gradient of T2 to start but you don't stop till you hit a gradient below T1.如果您认为以下的优势,您需要一个梯度的时刻开始,但你不停止直到触及梯度低于表# t1 。 You are visitor number: 你是第位访客人数:
Robert算子是第一个边缘检测算子,提出者Lawrence Roberts in 边缘算子,当年作者并没有公开发表过论文,仅仅是在一次博士生课题讨论会(1968)上提出("A 3x3 Isotropic Gradient Operator for Image Processing"),后在1973年出版的一本专著("Pattern Classification and Scene Analysis")的脚注里作为注释出现和公开的。Prewitt算子来自. Prewitt "Object Enhancement and Extraction" in "Picture processing and Psychopictorics", Academic Press,1970
论文简介: 利用图像传输理论测量海水的点扩散函数和调制传递函数并且使用维纳滤波器复原模糊的图像。退化方程H(u,v)在水槽中测量得到。在实验中利用狭缝图像和光源,第一步:一维光照射到水中从而得到不同距离下的狭缝图像数据,这样一维的海水点扩散函数就可以通过去卷积得到。又因为点扩散函数的对称性二维的函数模型也可以通过数学方法得到。利用相似的方法调制传递函数也可以得到。这样传输方程便可以得到:
图像可以由下式获得:
论文简介: 论文中提出自然光照下的水下图像退化效果与光偏振相关,而场景有效箱射则与光偏振无关。在相机镜头端安装可调偏振器,使用不同偏振角度对同一场景成两幅图像,所得到的图像中的背景光会有明显不同。通过对成像物理模型的分析,利用这两幅图像和估计出的偏振度,就能恢复出有效场景辐射。他还提出了一个计算机视觉方法水下视频中的退化效应。分析清晰度退化的物理原因发现主要与光的部分偏振有关。然后提出一个逆成像方法来复原能见度。该方法基于几张通过不同偏振方向的偏振片采集图像。
论文简介: 论文提出了一种自适应滤波的水下图像复原方法。通过最优化图像局部对比度质量判决函数,可以估计出滤波器中所使用的参数值。 论文提出一种基于简化的Jaffe-McGlamery水下成像模型的自调谐图像复原滤波器。滤波器的最优参数值是针对每幅图像通过优化一个基于全局对比度的质量准则自动估算的。(对一幅图像滤波器能根据全局对比度自动估计最优参数值),简化的模型理想地适合后向散射较少的漫射光成像.1.首先简化Jaffe-McGlamery水下成像模型:假设光照均匀(浅水区阳光直射),并且忽略后向散射部分.然后基于简化后的成像模型设计一个简单的反滤波器2.将滤波器设计成自适应滤波器。
论文简介: 论文对于调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。同时他还建立了一个框架来最大限度复原水下图像,在这个框架下传统的图像复原方法得到了拓展,水下光学参数被包含了进去,尤其时域的点扩散函数和频域的调制传递函数。设计了一个根据环境光学特性进行调整的客观图像质量度量标准来测量复原的有效性。
论文简介: 调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。(这一部分在王子韬的论文中有比较详细介绍)
论文简介: 在散射媒介中的正则化图像复原。论文在基于物理原因的复原方法难以去除噪声以及透射率低的基础上,提出一种自适应的过滤方法,即能明显的改善可见性,又能抑制噪声放大。本质上,恢复方法的正规化,是适合变化媒介的透射率,因此这个正则化不会模糊近距离的目标。
论文简介: 论文提出一种基于对边缘进行GSA(灰度规范角度)加权的测量图像清晰度的方法。图像首先被小波变换分解,去除部分随机噪声,增加真实边缘检测的可能性。每个边缘锐度由回归分析方法基于灰度的一个角的正切来确定边缘像素的灰度值之间的斜率和位置。整个图像的清晰度是平均每个测量的GSA的比例加权的第一级分解细节的量,作为图像的总功率,最后通过图像噪声方差自适应的边缘宽度。
论文简介: 论文提出了基于主动偏振的人工光照下水下图像处理技术。在宽场人工光照下的水下成像中,在光源端或相机端安装可调偏振器。通过调整光源或相机端的偏振器,同时拍摄两幅或多幅同一场景的图像,从两幅图像中可估计出背景光的偏振度。结合水下成像物理模型,就可以进行图像复原和场景3D信息估计。该方法操作简单,设备筒易,适用于水下画定目标的成像。 大范围人工照明条件下研究成像过程,基于该成像模型,提出一种恢复object signal的方法,同时能获得粗糙的3D scene structure.相机配备检偏振器,瞬间获取同一场景的两帧图片with different states of the analyzer or light-source polarizer,然后用算法处理获取的图片.它统一并推广了以前提出的基于偏振的方法.后向散射可以用偏振技术降低,作者在此基础上又用图像后处理去除剩余的后向散射,同时粗糙估测出3D场景结构.创新:之前的方法有的认为目标物反射光的偏振度可以忽略(即认为只有后向散射是偏振的);另外还有的认为后向散射的偏振度可以忽略(即认为只有目标物反射光是偏振的)。本文作者认为两者都是部分偏振光。
论文简介: 论文在没有应用任何标准模式、图像先验、多视点或主动照明的条件下同时估算了水面形状和恢复水下二维场景。重点是应用水面波动方程建立紧凑的空间扭曲模型,基于这个模型,提出一个新的跟踪技术,该技术主要是解决对象模型的缺失以及水的波动存在的复杂的外观变化。在模拟的和真实的场景中,文本和纹理信息得到了有效的复原。
论文简介: 论文提出暗通道先验算法复原有雾图像。暗通道先验是一系列户外无雾图像的数理统计,基于观察户外无雾图像的大部分补丁补丁中包含至少一个颜色通道中低强度的像素点。在有雾图像中应用这些先验,我们可以直接的估算雾的厚度,复原成高质量的无雾图像,同时还能获得高质量的深度图。
论文简介: 论文比较研究了盲反卷积算法中的:R-L算法(Richardson-Lucy)、最小二乘法以及乘法迭代法。并且应用了水下图像去噪和威尔斯小角度近似理论推导出点分布函数。通过执行威尔斯的小角度散射理论和模糊度量方法对三种盲反卷积算法进行比较,确定总迭代次数和最佳图像复原结果。通过比较得出:最小二乘算法的复原率最高,但是乘法迭代的速度最好。
论文简介: 论文提出点扩算函数(PSF)和调制解调函数(MFT)的方法用于水下图像复原,应用基于威尔斯小角度近似理论来进行图像增强。在本文中作者分析了水下图像退化的原因,在强化超快激光成像系统中采用了距离选通脉冲的方法,降低了反向散射中的加性噪声。本文对图像的基本噪声模式进行了分析,并使用算术平均滤波首先对图像进行去噪,然后,使用执行迭代盲反褶积方法的去噪图像的初始点扩散函数的理想值,来获得更好的恢复结果。本文通过比较得出,盲反褶积算法中,正确使用点扩散函数和调制解调函数对于水下图像复原的重要性。
论文简介: 本文提出一种图像复原的新方法,该方法不需要专门的硬件、水下条件或现在知识结构只是一个与小波变换的融合框架支持相邻帧之间的时间相干性进行一个有效的边缘保留噪声的方法。该图像增强的特点是降低噪声水平、更好的暴露黑暗区域、改善全局对比、增强细节和边缘显著性。此算法不使用补充信息,只处理未去噪的输入退化图像,三个输入主要来源于计算输入图像的白平衡和min-max增强版本。结论证明,融合和小波变换方法的复原结果优于直接对水下退化图像进行去雾得到的结果。
论文简介: 本文是一篇综述性质的论文。介绍了:1、水下光学成像系统 2、图像复原的方法(对各种图像复原方法的总结) 3、图像增强和颜色校正的方法总结 4、光学问题总结。
论文简介: 论文针对普通水下图像处理的方法不适用于水下非均匀光场中的问题,提出一种基于专业区域的水下非均匀光场图像复原方法,在该算法中,考虑去除噪声和颜色补偿,相对于普通的水下图像复原和增强算法,该方法获得的复原复原的清晰度和色彩保真度通过视觉评估,质量评估的分数也很高。
论文简介: 论文基于水下图像的衰减与光的波长的关系,提出一种R通道复原方法,复原与短波长的颜色,作为水下图像的预期,可以对低对比度进行复原。这个R通道复原的方法可以看做大气中有雾图像的暗通道先验方法的变体。实验表明,该方法在人工照明领域应用良好,颜色校正和可见性得到提高。
论文简介: 作者对各种水下图像增强和复原的算法做了调查和综述,然后对自己的提高水下质量的方法做了介绍。作者依次用到了过滤技术中的同态滤波、小波去噪、双边过滤和对比度均衡。相比于其他方法,该方法有效的提高了水下目标物的可见性。
论文简介: 论文应用湍流退化模型以质量标准为导向复原因水下湍流退化的图像。参考大气湍流图像复原的算法,省略了盐分的影响,只考虑水中波动引起的湍流对水下成像的影响,应用一种自适应的平均各向异性的度量标准进行水下图像复原。经过验证,使用STOIQ的方法优于双频谱的复原方法。
论文简介: 本文提出了一种新的方法来提高对比度和降低图像噪声,该方法将修改后的图像直方图合并入RGB和HSV颜色模型。在RGB通道中,占主导地位的直方图中的蓝色通道以95%的最大限度延伸向低水平通道,RGB通道中的低水平通道即红色通道以5%的最低限度向上层延伸且RGB颜色模型中的所有处理都满足瑞利分布。将RGB颜色模型转化为HSV颜色模型,S和V的参数以最大限度和最小限度的1%进行修改。这种方法降低了输出图像的欠拟合和过拟合,提高了水下图像的对比度。
论文简介: 论文根据简化的J-M模型提出一种水下图像复原的有效算法。在论文中定义了R通道,推导估算得到背景光和变换。场景可见度被深度补偿,背景与目标物之间的颜色得到恢复。通过分析PSF的物理特性,提出一种简单、有效的低通滤波器来去模糊。论文框架如下:1.重新定义暗通道先验,来估算背景光和变化,在RGB的每个通道中通过标准化变换来复原扭曲颜色。2.根据PSF的性能,选择没有被散射的光,用低通滤波器进行处理来提高图片的对比度和可见度。
论文简介: 论文中对当代水下图像处理的复原与增强做了综述,作者阐明了两种方法的模型的假设和分类,同时分析了优缺点以及适用的场景。
参考:
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!
图像分割技术研究
摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。
关键词:图像分割、阈值、边缘检测、区域分割
中图分类号: 文献标识码: A
1引言
随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。
2图像分割方法
图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。
基于灰度特征的阈值分割方法
阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。
这类方法主要包括以下几种:
(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。
(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。
(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。
边缘检测分割法
基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。
基于区域的分割方法
基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。
区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。
结合特定工具的图像分割技术
20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。
基于数学形态学的分割算法
分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。
基于模糊数学的分割算法
目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。
这类方法主要有广义模糊算子与模糊阈值法两种分割算法。
(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。
(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。
基于遗传算法的分割方法
此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。
基于神经网络分割算法
人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。
图像分割中的其他方法
前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。
(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。
(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的
(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。
(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。
3图像分割性能的评价
图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。
4图像分割技术的发展趋势
随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。
参考文献
[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003
[2] 章毓晋.图像分割[M].北京:科学出版社,2001.
[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.
[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.
点击下页还有更多>>>图像分割技术论文