首页

> 论文发表知识库

首页 论文发表知识库 问题

反比例函数论文2000字

发布时间:

反比例函数论文2000字

初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,代数略大于几何(我不知道你是哪里的人,反正在我们山东省济南市的中考中是这样的)。 代数主要有以下几点:1,有理数的运算,主要讲有理数的三级运算(加减乘除和乘方开方)在这里要注意数字和字母的符号意识,就是,不要受小学数字的影响,一看见字母就不会做题了。2,整式的三级运算,注意符号意识的培养,还有就是因式分解,这和整式的乘法是互换的,注意像平方差公式和完全平方公式的正用、逆用和变形用。3,方程,会一元一次、二元一次、三元一次、一元二次四种方程的解法和应用,记住,方程是一种方法,是一种解题的手段。4,函数,会识别一次函数、二次函数、反比例函数的图像,记住他们的特征,要会根据条件来应用。尤其要注意二次函数,这是中考的重点和难点。应用题里会拿它来出一道难题的 几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助。4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到。5,圆,我这里没有细学,因为这里不是我们中考的重点,但是圆的难度会很大,它的知识点很多、很碎,圆的难题就是由许许多多细小的点构成的。 以上就是我对初中数学知识的总结

数学论文反比例函数基础知识的应用2009-09-16 17:26:25 来源:网络 一、反比例函数的基础知识1.一般地,形如y=(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,k是比例系数.2.函数的解析式的特征:①等号左边是函数y,等号右边是一个分式,分子是常数k,分母中含有自变量x,且x的指数是1.②自变量x的取值范围是x≠0的一切实数.③比例系数“k≠0”是反比例函数定义的一个重要组成部分.④函数y的取值范围也是一切非0的实数.3.反比例函数的几种等价形式:y=;y=kx-1;xy=k.(k≠0)4.用待定系数法,求反比例函数的解析式:反比例函数 (且k为常数)中,只有一个待定系数,因此只需一对对应值就可求出k的值,从而确定其解析式.5.反比例函数y=( k为常数,k≠0)图象是双曲线.(既是轴对称图形,又是中心对称图形)6.反比例函数图象的性质:当k>0时,双曲线位于第一,三象限,在每个象限内,曲线从左向右下降,因而y随x的增大而减小;当k<0时,双曲线位于第二,四象限,在每个象限内,曲线从左向右上升,因而y随x的增大而增大.双曲线与x轴,y轴都没有交点,而是越来越接近x轴,y轴.7.比例系数k的几何意义:反比例函数中比例系数k的几何意义,如果过双曲线上任意一点引x轴,y轴垂线,与两坐标轴围成的矩形面积为|k|.二、反比例函数基础知识的应用例1. 已知 是反比例函数(1) 求它的解析式.(2) 求自变量 的取值范围,在每个象限内, 随 的增大而怎样变化?(3) 它的图象位于哪个象限?分析: (k≠0)叫反比例函数,也可以写成 ,因此,它的特点是(1)k≠0,(2)x的指数为-1.解:(1)由题意得 , ,解析式为(2)自变量 的取值范围是 .(3)由于 ,它的图象位于二、四象限;在每个象限内, 随 的增大而增大.OAOOBOOCOODO例2、在同一坐标系中,函数 和 的图像大致是 ( )分析:本题是考查含有字母系数的几个函数在同一坐标系中的图象,分 和 两种情况进行讨论,选A.例3、如右图,在 的图象上有两点A、C,过这两点分别向x轴引垂线,交x轴于B、D两点,连结OA、OC,记△ABO、△CDO的面积为 ,则 与 的大小关系是( )A. B. C. D.不确定分析:由基础知识7知 ,故选C.例4.已知反比例函数 的图像上有两点A( , ),B( , ), 且 ,则 的值是( )A、正数 B、负数 C、非正数 D、不能确定分析:由 可分为 ,易得 ,故选D.特别要注意反比例函数的增减性是对每一支曲线而言.例5.如图是三个反比例函数 , , 在x轴上方的图象,由此观察得到 、 、 的大小关系为( )A、 B、C、 D、分析:根据图象所在的象限,知 ,取 得 ,即 ,故选B.例6.在矩形ABCD中AB=3,BC=4,P是BC边上与B点不重合的任意点,PA=x,D点到PA的距离为y,求y与x之间的函数关系式,并画出函数的图像以及自变量x的取值范围.DBAECP解:如图,由题意(1)∠DEA=∠ABP,∠1=∠2,∴⊿DEA∽⊿ABP,∴即(2) ∵P在BC上,与B不重合,可以与C重合, .(3)由于函数自变量的取值范围是30),当 x>a 或 x ,由于反比例函数 y= 当 k>0 时,y 随 x 的增大而减小. a b x 2 例如:函数 y= ,当 x>-1 时,y 的取值范围就是 y<-2;当 x<2 时 y 的取值范围就是 y> x 1,反比例函数 y= 1. k ( k<0),当 x>a 或 x 或 y< ,由于反比例函数 y= 当 k<0 时,y 随 x 的减小而增大.例如: a b x 2 函数 y= ,当 x>-1 时,y 的取值范围就是 y>2;当 x<2 时 y 的取值范围就是 y<-1. x k 3,反比例函数 y= (k ≠ 0) ,当 a ,则 y 的取值范围就是 . a b a b 2 ,当-21. 已知反比例函数图像上的若干个点,知道横坐标的大小关系, 二,已知反比例函数图像上的若干个点,知道横坐标的大小关系,让我们来判断纵坐标的 大小关系; 大小关系; 对于这种问题, 如果能正确的画出反比例函数的图像, 并会熟练的分析反比例函数的图 像,那么这类问题也很容易解决,但面对一些实际情况,我们只能寻找一些学生更容易例接 受的方式,下面我就对这些问题稍作分析: 1,反比例函数 y= k ( k>0),点 A1(X1,Y1),A2(X2,Y2)……An(Xn,Yn)都在反比例函数的图 x 像上,已知 X10 时,y 随着 x 的增大而减小) ,很容易得 到 Y1>Y2>Y3>……>Yn.例如:已知函数 y= 像上,求 Y1,Y2,Y3 的大小关系.由于 2,反比例函数 y= 2 1 ,点 A(1,Y1),B( ,Y2),C(2, Y3)在函数的图 x 2 1 <1<2,按照上面方法很容易得到 Y2>Y1>Y3. 2 k ( k<0),点 A1(X1,Y1),A2(X2,Y2)……An(Xn,Yn)都在反比例函数的图 x 像上,已知 X10),点 A1(X1,Y1),A2(X2,Y2)……An(Xn,Yn)都在反比例函数的图 x 像上,已知 X10 时,它的图像在一, x 三象限,并且在函数图象的每一支上,y 随着 x 的增大而减小.但不论怎样,第一象限内图 像的每一个点对应的 y 值都比第三象限内图像的每一点对应的 y 值要大.因此我们恒有 Ak+1……An 这些点所对应的 y 值要比 A1……Ak 点对应的 y 值要大.Y1,Y2……Yk 的大小顺寻很 容易判断是:Y1>Y2>……>Yk;Yk+1, Yk+2 ……Yn 的大小顺序是:Yk+1> Yk+2 >……>Yn.综 上我们得到 Y1,Y2,Y3……Yn 的大小关系是:Yk+1> Yk+2 >……>Yn>Y1>Y2>……>Yk;如果 不考虑这么多,用一句简单化来概括的话就是:反比例函数 y= 反比例函数 k ,k>0 时,图像上任意 x 2 ,点 x 的点, 值要大, 的点,横坐标为正的点对应的 y 值比横坐标为负的点对应的 y 值要大,若横坐标的符号相 同 时 我 们 就 按 照 反 比 例 函 数 的 性 质 进 行 比 较 即 可 . 例 如 : 已 知 函 数 y= A(-1,Y1),B(- 1 ,Y2),C(2, Y3),D()在函数的图像上,求 Y1,Y2,Y3,Y4 的大小关系. 2 解析:k=2 是大于零的,A,B,C,D 四点的横坐标有正有负,横坐标为正的点对应的 y 值比横 坐标为负的点对应的 y 值要大,因此肯定有 Y3,Y4 要大于 Y1,Y2,当 k>0 时在反比例函数 图像的每一支上,y 随着 x 的增大而减小,因此有 Y4 0 x 时,它的图像在二,四象限,并且在函数图象的每一支上,y 随着 x 的增大而增大.但不论 怎样, 第二象限内图像的每一个点对应的 y 值都比第四象限内图像的每一点对应的 y 值要大. 因此我们恒有 A1……Ak 这些点所对应的 y 值要比 Ak+1……An 点对应的 y 值要大.Y1,Y2……Yk 的大小顺寻很容易判断是:Y1

[摘要]:在数学的学习中,数学概念的学习毫无疑问是重中之重。概念不清,一切无从谈起。概念的深层理解和精确把握,对数学问题的解决具有非常重要的作用。然而数学概念数量众多并且非常抽象,如何才能达到一个真正理解且深层记忆的效果呢?下面简述几种方法。[关键词]: 举例 温故 索因 联系 比喻 类比1、举例法:举例通常分成两种情况即举正面例子和举反面例子。举正面例子可以变抽象为形象,变一般为具体使概念生动化、直观化,达到较易理解的目的。例如在讲解向量空间的时候就列举了大量的实例。在解析几何里,平面或空间中从一定点引出的一切向量对于向量的加法和实数与向量的乘法来说都作成实数域上的向量空间;复数域可以看成实数域上的向量空间;数域F上一切m*n矩阵所成的集合对于矩阵的加法和数与矩阵的乘法来说作成F上一个向量空间,等等。举反面例子则可以体会概念反映的范围,加深对概念本质的把握。例如在讲解反比例函数概念的时候就可以举这样的一个例子。试判断下列关系式中的y是x的反比例函数吗? , , 。这就需要我们对反比例函数有本质的把握。什么是反比例函数呢?一切形如 的函数,本质是两个量乘积是一定值时,这两个量成反比例关系。 (1)中y和x-1成反比例关系,(2)中y+3和x成反比例关系。定义中要求k为常数当然可以是-1,所以(1),(2)不是,(3)是。2、温故法:不论是皮亚杰还是奥苏伯尔在概念学习的理论方面都认为概念教学的起步是在已有的认知的结构的基础上进行的。因此在教授新概念之前,如果能先对学生认知结构中原有的概念作一些适当的结构上的变化,再引入新概念,则有利于促进新概念的形成。例如:在高中阶段讲解角的概念的时候最好重新温故一下在初中阶段角的定义,然后从角的范围进行推广到正角、负角和零;从角的表示方法进行推广到弧度制,这样有利于学生思维的自然过渡较易接受。又如在讲解线性映射的时候最好首先温故一下映射的概念,在讲解欧氏空间的时候同样最好温故一下向量空间的概念。3、索因法:每一个概念的产生都具有丰富的背景和真实的原因,当你把这些原因找到的时候,那些鲜活的内容,使你不想记住这些概念都难。例如三角形的四个心:内心、外心、旁心和重心,很多同学总是记混这些概念。内心是三角形三个内角平分线的交点,因为是三角形内切圆的圆心而得名内心;外心是三角形三条边垂直平分线的交点,因为是三角形外接圆的圆心因而的名外心;旁心是三角形一个内角平分线和两个不相邻的外角平分线的交点,因为是三角形旁切圆的圆心而得名旁心;重心是三角形三条中线的交点,因为是三角形的重力平衡点而得名重心。当你了解了上述内容,你有怎么可能记混这些概念呢?又例如:点到直线的距离是这样定义的,过点做直线的垂线,则垂线段的长度,便是点到直线的距离。那么为什么不定义为点和直线上任意点连线的线段的长度呢?因为只有垂线段是最短的,具有确定性和唯一性。再如:我们之所以把n元有序数组也称为向量,一方面固然是由于它包括通常的向量,作为特殊的情形;另一方面也是由于它与通常的向量一样可以定义运算,并且有许多运算性质是共同的。像这样的例子还有很多,不再一一列举。4、联系法:数学概念之间具有联系性,任意数学概念都是由若干个数学概念联系而成,只有建立数学概念之间的联系,才能彻底理解数学概念。例如在学习数列的时候,我们不妨作如下分析:数列是按一定次序排列的一列数,是有规律的。那规律是什么呢?项与项数之间的规律、项与项之间的规律、数列整体趋势的规律。项与项数之间的规律就是我们说的通项公式,项与项之间的规律就是我们所说的递推公式,数列整体趋势的规律就是我们所说的极限问题。当项与项之间满足差数相等的关系时,数列被称为等差数列;当项与项之间满足倍数相等的关系时,数列就被称为等比数列。这样我们对数列这一章的概念便都了然于胸了。5、比喻法:很多同学概念不清的原因是觉得概念单调乏味、没有兴趣,从而不去重视它、深究它,所以我们在讲解概念的时候,不妨和生活相联系作些形象地比喻,以达到吸引学生提高学习兴趣的效果。例如:在讲解映射的时候,不妨把映射的法则比喻成男女恋爱的法则。两个人可以同时喜欢上一个人,但一个人不可以同时爱上两个人。这不正是映射的法则:集合A中的每一个元素在集合B中都唯一的像与之对应吗?又如函数可以理解为一个黑匣子或交换器,投入的是数产出的也是数;投入一个数只能产出一个数;但是当投入不同数的时候可以产出同一个数。再如:满足和的像等于像的和、数乘的像等于像的数乘的映射称之为线性映射。这不正像一个人怎么舞动他的影子就怎么舞动吗?所以有的时候把线性映射理解为“人影共舞”的映射。 6、类比法:在学习向量空间的时候,很多同学疑问重重。向量不就是那些既有大小又有方向的量吗?怎么连矩阵、连续函数、甚至线性变换也可以理解为向量呢?这一切是不是太不可思议了!但是当你作如下思考的时候,一切便顺理成章了。让小学生算一道5-7的题,他会说你这道题出错了,但是让一个初中生去算的话,他就会告诉你等于-2;当你让一个初中生对负数进行开平方运算,他会说不能对负数进行开平方。然而高中生却能够进行运算。这就说明了一个问题,随着年龄的增长和认识层次的提高,人们对于同一概念的理解和认识也在逐步的深入和扩大。正如数的概念由小学生的整数、分数和小数扩大为初中生的实数最后扩大为高中生的复数。同样对于向量的理解也就不能只限于既有大小又有方向的量,应该把这一观念转变过来。像这样的方法还有很多,不再一一列举。总之一句话:数学概念是重要的,分析概念是有趣的,在乐趣和玩赏中去理解概念是容易做到的.

第一题 讨论a的情况(小于-1、等于-1、大于-1小于0、等于0、大于0小于1、等于1、大于1)然后使f(x)与x的关系。第二题 讨论a、b、x的情况 比如a>b>x还有a1 f(x)<-1 -1

数学反比例函数论文范文

初中数学教学论文范文

在社会的各个领域,大家或多或少都会接触过论文吧,论文可以推广经验,交流认识。那么一般论文是怎么写的呢?以下是我帮大家整理的初中数学教学论文范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

论文摘要: 数学这门学科是一门比较重要的基础学科,较强的逻辑性和抽象性是数学知识的重要特点,因此对于数学的教学能够提高学生的综合能力和素质。初中数学的学习是学生学习比较重要的时期,因此这个时期对于数学的教学方法对学生的数学学习有着关键的作用,所以必须要重视这个阶段数学的教学方法。本文通过对初中数学教学存在的问题进行分析,从而提出了一系列改进初中数学教学的对策。

论文关键词: 初中数学;教学;问题;对策

一、学习数学的重要性

1.对于数学的学习可以满足人们的一种需要,例如日常生活、工作中的计数、计算以及推理。在我们的日常生活和工作中,对于事物的计数、数量之间各种运算以及比较,这些都是离不开数学的,需要数学知识和思想方法的支持。也许是因为在日常生活中所应用的数学知识都是比较简单的,所以感觉不到对它的应用。

2.对于数学的学习可以使人的思维品质和思维水平得到锻炼,比如人的计算能力、空间想象能力以及逻辑思维能力等。数学科学具有严谨、缜密的特点,所以在学习这门科学的时候除了能够掌握一定的知识外,自然也能锻炼严谨、缜密的思维。也就是说通过对数学的学习,可以让人在做事情的时候产生比较清晰的思路,运用比较科学的方法,从而能够根据已知和未知事物之间的某种联系将事物可能发展的趋势和结果进行一个大体的推断,所以说对于数学的学习可以使人的大脑和身体得到很好的锻炼。

3.数学已经深入到自然科学、社会科学的各个领域。数学掌握着这个信息化社会,把握住数学,能够在这个社会上具有一定的领导能力。由此可以看出,具有数学读写能力的人和不具有这种能力的人之间的差距越来越大,而且其程度也是非常惊人的。数学知识支持多产的、技术强大的精英阶层。曾经得到过诺贝尔奖的杨振宁说过:数学在他的科学生涯中起着不可忽视的作用,因此有些学者将信息时代也称之为数学时代,由此可以看出对于数学知识的学习可以帮助我们进入到其他学科的学习中。

4.通过对数学的学习,可以让我们体会到数学工作者身上的那种科学、严谨的科学态度和作风,从而激励自己提高自身的科学素养。纵眼望去,我们可以发现历史上无数的数学家都有着兢兢业业、刻苦勤奋、勇于创新的精神,通过学习他们的这种精神,让自己能够得到熏陶和震撼。

二、初中数学教学存在的问题

1.教师角度。

(1)教学情境的设置过于牵强,过度地重视教学中的趣味性,而忽视了数学的味道,甚至有些情境的设置离题目太远,根本就不切实际,显得非常生硬,而又刻意。对于一些知识来说,找不到合适的情境来解释也是很正常的,并不是说每个知识点都必须要设置一定的情境,有些问题可能就是来自数学本身,所以对于情境的设定一定要尊重学生的知识背景和认知结构。

(2)没有明确的教学目标,而且没有透彻的理解课标含义。

新课标提出了三位目标,分别是学科知识、数学技能以及情感态度价值观。但是很多教师对此的理解存在着误差;或者是理解了,但是执行起来却存在着偏差。只侧重于对基础知识和基本技能的教授,并以此为教学的主体,从而导致了课标的失衡,使数学的教学过于简单和过于程序化。也就是说,在教学中,只重视了训练,而忽视了培养。

(3)教学方法过于单调,没有灵活性。

很多教师对于数学的教学还停留在以往单一的方法上,所有的教学只是为了应付集体备课,并没有对其进行深层次地挖掘和研究,不能形成自己的教学风格,缺乏与学生的互动环节。另外,对于所有的学生都采取一样的教学方式,根本就没有任何的变动,缺乏必要的灵活性,很难做到对数学教学的因材施教。

(4)评价方式存在漏洞。

在调查中发现有一些教师在课堂上根本就无法展现一名教师的修养和内功,因为他们不能够对学生做出非常合理的课堂评价。这些教师一般存在的问题就是缺乏评价语言或者是评价比较肤浅、过度、琐碎,不存在一定的启发性和激励性,根本达不到课堂评价应有的效果。还有一些教师在评价的时候语言过激,让学生感觉到其语言上的讽刺性,从而伤害了学生的自尊心。课堂评价如果不能很好地促进学生的情感发展,引发灵感的碰撞;或者是不能够发挥其指导、激励的功能,那只能说明其已经失去了存在的意义。(5)在教学过程中,教师缺乏和学生的互动。在课堂上,一些教师对于数学的教授就是照本宣科,整个教授过程都是在以教师为主导,这样就出现了本末倒置的现象。因为在教学的过程中,学生是主体,教师所要做的就是引导学生进入到学习的氛围中,进行有效的活动,并不断地积累经验,将其归纳总结成数学问题。

2.学生角度。

(1)作业完成不到位。

对于初中生来说,他们自制力比较差,并没有明确的学习目标,在学习上往往缺乏一定的主动性。在初中阶段,对于数学的学习来说,作业完成的不认真或者是完不成作业一直是比较难解决的问题。由于作业是在家中完成,很多家长对学生学习的监督很少,再加上学生自身较差的自制力,这就导致了很多学生完不成作业,甚至出现了抄作业的现象。很多学生在做作业的时候,书写不认真、审题不认真、检查也不认真,在作业中稍微遇到点困难就会选择放弃。这样做的后果就是教师花费了过多的时间去处理作业,而造成了课堂教学的简单化,同时也妨碍了一些成绩好的同学的进步,从而形成了较差的教学效果。

(2)不喜欢学习数学,缺乏学习的兴趣。

由于数学学科复杂多变的特点,很多学生对于它的学习提不起任何的兴趣,所以在上课的时候经常会表现的非常冷漠,给人筋疲力尽的感觉,更有甚者直接以睡觉的方式进行默默的抗拒。

(3)缺乏正确的学习方法。

很多学生对于数学的学习根本就没有正确的方法,所能做的就是对一些公式进行死记硬背,不懂得去推理和计算,在他们的心里只要记住就可以了,殊不知数学是千变万化的,如果只是单纯的靠记忆,注定是学不会数学的。

(4)频繁的考试对学生数学学习的负影响。

现在很多学校都有着各种形式的考试,例如周考、月考等,这种频繁的考试不仅让学生精力上感觉到疲惫,更重要的是当学生成绩较差的时候,往往会挫伤其自尊心,影响他们学习数学的积极性,更严重的现象可能是学生出现厌学情绪,久而久之就放弃了对数学的学习。

三、改进初中数学教学的对策

1.让学生能够对数学采取乐意学习的态度。

数学是一门比较抽象的学科,所以对于这样一门难以理解的学科要想让学生拥有持久的学习积极性,就要采取有效的教学方式,从而让学生能够从“厌学”转变成“乐学”。小学数学的重点是培养学生的运算能力,虽然计算量大,但一般都是比较具体的数字,而初中数学则出现了用字母代替数字,从而提高了数学的抽象性。这表明初中数学又是学习数学的一个新的征程。那么要想让学生做到“乐学”,就需要教师采取新颖的教学方式,根据教学目标,创建符合条件的情境,从而使学生能够看到一些比较直观的案例。同时还需要兼并运用一些具有启发式的教学,增加教学的趣味性,从而使学生能够将注意力完全的放到教学中,展现出最积极的思维能力,诱导他们的学习动机,借此来增加学生学习的乐趣。在教导的过程中,教师要尽可能的符合教学内容的需求,创设出表面比较浅显,但是需要认真思考的一些问题,让每个学生都能够参与到教学活动中,使学生有自己的观察、分析、思考、判断的能力。将这种方式教授于学生让他们能够从中体会到学习数学的乐趣。

2.多对学生进行表扬。

每个人都渴望得到别人的赞赏,尤其是学生,更加希望得到教师的表扬,所以要用多表扬、少批评的手段来激励学生。如果教师不注意自己的教学方式,在课堂上对学生进行批评,结果只能是让学生产生逆反心理,从而做出一些放弃学习的行为。所以在课堂上,教师应该努力的创造一种比较和谐的教学氛围,做到对学生的理解和尊重,再加上适当的激励手段,这样就可以使各种程度上的学生都能够体会到成功的喜悦,进而得到精神上的满足。在课堂的提问中,要将各个学生群的水平都兼顾到,让每个水平的学生都有能够答对问题的机会,然后给予回答问题的每一个同学一定的鼓励和肯定,以温和、热情、多赞扬的方法对待自己的学生,一定要少批评、少指责、少否定,让每个学生都能够有所收获,都能获得成功,享受到成功的喜悦。对于考试来说,由于学生的层次不一样,教师可以针对每个层次的学生进行出题,这样可以让他们在考试中看到自己的进步,从而体会到成功的喜悦,促进学生进入一个学习的良性循环中。我相信这样的方式肯定能够增强学生学习的欲望,培养他们学习的兴趣,从而提高学习数学的积极性。

3.教师需要提高自身的业务能力。

需要教师能够对教材达到灵活运用的效果,这就要求教师要有较强的开发能力,深刻体会出新教材的意图,全面熟悉新旧教材的变动情况;需要教师具有创造性的指导能力,即能够对学生的各个方面进行综合科学的分析,并对学生的创造性给予一定的指导;需要教师具有体察教学行为的反思能力,即对自己教学活动和教学行为进行有意识地分析和总结,并从中认知到自己教学的不足。

学生的成长并不是在一堂课上实现的,这是一个循序渐进的过程。对于数学的学习可以满足人们的一种需要,可以使人的思维品质和思维水平得到锻炼,可以让我们体会到数学工作者身上的那种科学、严谨的科学态度和作风,从而激励自己提高自身的科学素养。数学已经深入到自然科学到社会科学的各个领域,所以在对数学的教学过程中,教师需要在提高自身业务能力的基础上,努力做到让学生能够对数学采取乐意学习的态度,并对学生进行不断地激励,让其能够成为数学王者。总之,身为教育工作者,要做到一切为了学生。

参考文献:

[1]白东明,金磊。浅谈初中生数学学习兴趣的.培养[J].才智,2012,(1):062.

[2]吴越明。初中数学教学存在的问题及对策[J].中学教学参考,2014,(27):41.

摘要:目前在中考升学率的压力下,初中数学课堂教学往往是“满堂灌”,课后的课业负担较重,严重影响了学生的全面发展和身心健康。根据20多年来亲身的教学经历,从五个方面就如何减轻学业负担,规范教学和管理,提高课堂45分钟的效率谈了心得体会。

关键词:初中数学;教学特点;教学效率

当前初中数学的课堂教学“满堂灌”、课后的课业负担重、教学质量偏低已成为教育界有关人士关注的焦点。传统的教学方式严重影响了学生学习数学的积极性,影响了学生的全面发展和身心健康。要使学生轻松地学习数学,教师应当采取措施,精心备课,注重教学方法,优化课堂教学。教学过程中以学生为主体,激发学生学习数学的兴趣,引导学生积极主动思考,使学生成为学习的主人,从而切实减轻学生过重的学业负担。

我们还应当认识到“减负”不单纯指减少课时、课本内容、作业量,它不仅是形式上的减少,更是一场关于全面提高教学质量,规范教学和管理的改革。

笔者在使用浙教版新教材的过程中,结合实际教学经验,从五方面就如何减轻学业负担,提高数学课堂效率总结体会如下。

一、初中数学教学的特点

义务教育阶段的数学课程具有基础性、普及性和发展性。所以在教学过程中对教师提出了较高的要求,教师在教学过程中应当尊重个体差异、面向全体学生,在基础知识与创新能力、传统与现代等各方面找到一个平衡点。

初中生正处青春期,自我表现欲突出,心理呈现出矛盾性和不稳定性。反映到数学课堂上,常出现注意力不集中、不愿意主动学习等现象。因此,营造良好的课堂氛围至关重要。这就要求教师努力优化课堂结构,激发学生学习的兴趣和主动性,全面提高教学质量。

二、具体措施

1.精心备好每一节课

减轻学业负担的重点就在于教师如何有效地利用课堂45分钟,提高教学质量。因此,教师在“减负”这场改革中起着举足轻重的作用。

课堂的45分钟教学时间应当合理地利用,任何人都不能浪费,所以教师必须下工夫、花气力去认真钻研《义务教育数学课程标准》,吃透教材,全面把握初中数学教学的重难点,找准每节课的关键,然后突出重点,分散难点,因材施教,合理安排好课堂进程的快慢以及课堂教学的时间。

教师备好课,不仅要备教材,把握每节课的重难点,还要备好学生,了解学生的基本情况,其中包括学生的认知能力、基础知识情况、接受能力等。只有这样,才能真正地做到因人施教,在课堂上有的放矢地把握学生。课堂知识有利于学生的接受和吸收,从而才可以减轻学生的学业负担,提高学习的质量。

2.激发学生学习的兴趣

兴趣是动力的先导,也是成功的关键。如果教师可以激发学生学习的兴趣,将枯燥的数学公式和定理以生动巧妙的方式向学生讲解,把轻松和乐趣带进数学课堂,课堂的效率也会大大提高。

在初中数学课堂的实际教学中,应当注意以下几点:

(1)可在讲课前设置问题,引起学生注意和思考,从而使学生产生学习的愿望和浓厚的兴趣。比如,教学“概率”时,教师可以设置“摸奖游戏”:箱子里有10个白球,10个红球,每个学生可以摸5次,连续摸到4个红球就算中奖。通过对中奖概率的分析,学生更加明白“摸奖”的小概率和现实意义,同时也被概率的现实作用深深地吸引住了。

(2)教师可以进行情境创设,联系生活实例,或者利用情感式教学,激发学生的兴趣。

(3)教师应当尊重学生的表现欲,适当设置问题进行课堂讨论,鼓励学生积极参与、有不同的想法,并引导学生得出正确的结论。比如,教学“三角形面积的计算”时,教师可以让学生动手将两个完全一样的三角形拼成学过的图形,学生参与的积极性很高,拼成了平行四边形、长方形、正方形,然后教师再引导学生思考拼成的图形与原来三角形的底、高、面积的关系,从而得出三角形面积的计算公式。

(4)教师可以利用多种教学方式和手段,采用多媒体辅助教学,为教学内容增添直观性和形象生动性。

总之,教师应当在充分了解学生的同时,构建和谐的师生关系,注重激发学生对数学的兴趣,诱发学生的探究欲望,最大限度地挖掘学生的潜能。

3.以学生为本,引导学生积极思考

传统的课堂上,课堂的内容、模式、形式都由教师决定,学生参与的积极性不高,课堂效率低。学生往往不会主动思考、不会分析、不能用所学的知识解决实际问题。这样极大程度地扼杀了学生学习数学的热情和兴趣。由于忽略了学生的主观能动性,没有启发学生积极主动思考,虽然学生在课堂上“听明白了”教师所传授的知识,却没有把课堂知识转化为自己的知识,遇到问题时还是一知半解。

素质教育的核心就是目前大力提倡的创新能力,而创新能力是以探究心理为基础的,所以学生探索精神的培养就至关重要。在教学过程中,教师不要直接给出数学公式或定理,而要引导学生积极思考,主动发现和总结出规律。再比如,遇到难题时,教师不要直接帮学生解出来,而要适当地引导学生,让学生以独立思考或小组合作的方式想出解决方法,并引导学生分析方法的可行性。

只有让学生积极地思考,才可以将课堂知识转化为学生自己的知识,从而做学习的主人。

4.尊重个体差异,面向全体学生

新课标倡导的目标是:“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。”这就要求教师了解和尊重学生的个体差异。教学时既要因材施教,又要面向全体学生。

在授课中,教师可以针对知识点设计不同难度的台阶,使不同层次的学生有同等的参与机会,使基础好的学生和学习有困难的学生都可以在原有基础上得到提高,并获得同样的成就感。例如,在“完全平方公式的因式分解”教学中,我设置了5个台阶:

①(x+3)2=x2+()x+()

②z2-10xz+25x2=()

③(x-y)2-8(x-y)+16=()

④x2y+6xy2+9y3=()

⑤若9x2+mx+16是一个完全平方式,则m=()

在教学过程中,要尽可能地使所有学生都能主动参与教学过程,鼓励学生用多样化的方法解决问题,提出各自解决问题的方法,积极与他人交流,吸取他人的经验,从而提高学生的思维水平。

5.重视知识的联系与整合,提高学生解决问题的能力

通过联想,可让学生将所学知识整合起来,做到举一反三,形成自己的能力。比如,九年级数学中反比例函数,教师可将其与前面学到的一次函数y=kx+b(k≠0)联系起来,讨论当k分别为正值和负值时两函数图像的关系,在学习新知识的同时,深化对旧知识的理解。

知识的整合不仅指的是课本知识间的相互整合,更重要的是课本知识与实际生活、其他学科的相整合。教学过程中所选的题材应尽量来源于实际生活,重视知识之间的联系,从而激发学生的兴趣,使学生可以应用所学知识解决实际问题。比如,教学“勾股定理”这一内容时,教师可以从其发现历史来讲解,并从生活中找出这一定理的运用。教师也可以将勾股定理与其他领域的内容联系起来,在解决其他相关问题时使用到勾股定理。这样通过知识的联系与整合,可以使一点一线的知识形成面,提高学生综合运用所学知识解决实际问题的能力。

总之,要使学生真正轻松地学习数学,教师应精心备课,把握好课堂45分钟,激发学生学习数学的兴趣和探索精神,使学生真正成为学习的主人,真正要让学生在课堂上“会学”而不仅仅是“学会”,从而切实减轻学生过重的学业负担。

呵呵 不要说我教坏你给你两篇我用了N次的范文哈《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

作为教师,做好教学工作计划是很有必要的,那么应该怎么做好工作计划呢?下面是我为大家整理的关于初中数学教学计划范文,希望对您有所帮助!

初中数学教学计划范文篇1

一、本学期教材分析,学生现状分析

本学期教学内容是人教版九年级上教材,内容与现实生活联系非常密切,知识的综合性也较强,教材为学生动手操作,归纳猜想提供了可能。观察、思考、实验、想一想、试一试、做一做等,给学生留有思考的空间,让学生能更好地自主学习。因此对每一章的教学都要体现师生交往、互动、共同发展的过程。要求老师成为学生数学学习的组织者和引导者,从学生的生活经验和已有的知识背景出发,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本数学知识、技能、思想、方法,提高解决问题的能力。在扎实基础上提高他们解题的基本技能和技巧。

二.确立本学期的教学目标及实施目标的具体做法。

本学期的教学目标是九年级(上)共五章内容,力求学生掌握基础的同时提高他们的动手操的能力,概括的能力,类比猜想的能力和自主学习的能力。就学生目前的状态,究其原因主要有三点:一是学习态度不够端正;二是智能上存在差异;三是学习方法不科学。两极分化严重。所以我准备具体从以下几方面入手:

(一)掌握学生心理特征,激发他们学习数学的积极性。

这些学生由于基础非常差,导致他们惰学、厌学,鉴于这些心理特征,教师必须十分重视激发学生的求知欲,有目的地时时地向学生介绍数学在日常生活中的应用,还要想办法让学生亲身体验生活离开数学知识将无法进行。从而激发他们学习数学知识的直接兴趣,数学第一章内容的正确把握能较好地做到这些。同时在言行上,教师要切忌伤害学生的自尊心。

(二)努力提高课堂40分钟效率

(1)在教师这方面,首先做到要通读教材,驾奴教材,认真备课,认真备学生,认真备教法,对所讲知识的每一环节的过渡都要精心设计。给学生出示的问题也要有层次,有梯度,哪些是独立完成的,哪些是小组合作完成的,知识的达标程度教师更要掌握。同时作业也要分层次进行,使优生吃饱,差生吃好。

(2)重视学生能力的培养。九年级的数学是培养学生运算能力,发展思维能力和综合运用知识解决实际问题的能力,从而培养学生的创新意识。根据当前素质教育和新课改的的精神,在教学中我着重对学生进行上述几方面能力的培养。充分发挥学生的主体作用,尽可能地把学生的潜能全部挖掘出来。

(三)加强对学生学法指导

进入中学,有些学生纵然很努力,成绩依旧上不去,这说明中学阶段学习方法问题已成为突出问题,这就要求学生必须掌握知识的内存规律,不仅要知其然,还要知其所以然,以逐步提高分析、判断、综合、归纳的解题能力,我要求学生养成先复习,后做作业的好习惯。课后注意及时复习巩固以及经常复习巩固,能使学过的知识达到永久记忆,遗忘缓慢。

三、教学研究计划

课堂教学与数学改革是相铺相成的,做好教学研究能更好地为课堂教学服务。本学期将积极参加学校和备课组的各项教研活动,撰写教学随笔和教学反思。本人决定与学校同组的老师共同探讨教学。

四、继续教育计划

继续教育是提高教师基本技能的重要途径。本学期我积极参与校内外组织的各项继续教育,努力提升教育教学水平。

1、通过网络继续教育培训,学习新教育理念,不断完善教育教学方式。

2、阅读有关新课程的书籍,做好读书笔记;

总之,本学期的教学工作任务还有很多,需要在今后的实际工作中进一步补充和完善。

初中数学教学计划范文篇2

一、基本情况分析

通过上学期的努力,我班多数同学学习数学的兴趣渐浓,学习的自觉性明显提高,学习成绩在不断进步,但是由于我班一些学生数学基础太差,学生数学成绩两极分化的现象没有显着改观,给教学带来很大难度。设法关注每一个学生,重视学生的全面协调发展是教学的首要任务。本学期是初中学习的关键时期,教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学目标,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。

二、教学目标和要求

1、知识与能力目标知识技能目标

理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,掌握锐角三角函数有关的计算方法。理解投影与视图在生活中的应用。

2、过程与方法目标

通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

3、情感、态度与价值观目标

(1)进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教。

(2)通过体验探索的成功与失败,培养学生克服困难的勇气。

(3)通过小组交流、讨论有关的数学知识,培养学生的合作意识和交流能力。

(4)通过对实际问题的分析和解决,让学生体会数学的价值,培养学生的应用意识和对数学的兴趣。

三、提高教学质量的主要措施

1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试卷,也让学生学会认真学习。

2、兴趣是的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流的氛围,分享快乐的学习课堂,让学生体会学习的快乐,享受学习。

4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

6、加强学生解题速度和准确度的培养训练,在新授课时,凡是能当堂完成的作业,要求学生比速度和准确度,谁先完成谁就先交给老师批改,凡是做的全对要给予奖励。

7、加强个别辅导,加强面批、面改,加强定时作业的训练。并进行作业展览,对作业书写的好又全部正确的贴在学习园地中。

8、积极主动的与其他教师协同配合,认真钻研教材,搞好集体备课,不断学习他人之长处。

初中数学教学计划范文篇3

一、基本情况

本学期我担任九年级__班的数学教学工作,共有学生__人。上学期期末参加县局统考及格率为,平均分。考试成绩不理想,落后面比较大,学习风气还欠浓厚。

二、指导思想

以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施,使每个学生都能够在数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产实践和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

三、教学内容

本学期教学内容包括:第一章一元二次方程,第二章命题定理与证明,第三章图形的相似,第四章锐角三角函数,第五章概率的计算。

四、教学目的

教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

知识技能目标:掌握一元二次方程的有关概念;会解一元二次方程;能建立一元二次方程的模型解决实际问题;理解命题、定理、证明等概念;能正确写出证明;掌握锐角三角函数的性质;理解直角三角形的性质;能运用三角函数及勾股定理解直角三角形;掌握相似三角形的概念、性质及判定方法;掌握概率的计算方法;理解概率在生活中的应用。

过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。

态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

五、教学重点、难点

《一元二次方程》的重点是:掌握一元二次方程的'多种解法。列一元二次方程解应用题。

难点是:会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。

《命题定理与证明》的重点是:要求学生掌握证明的基本要求和方法,学会推理论证。探索证明的思路和方法,提倡证明的多样性。

难点是:引导学生探索、猜测、证明,体会证明的必要性、在教学中渗透如归纳、类比、转化等数学思想。

《图形的相似》的重点是相似三角形的性质与判定。难点是综合运用三角形、四边形等知识进行推理论证,正确写出证明。

《锐角三角函数》的重点是通过学习和实践活动探索锐角三角函数,在直角三角形中根据已知的边与角求出未知的边与角。难点是运用直角三角形的有关知识解决实际问题。

《概率的计算》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性,掌握概率的计算方法。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。

六、教学措施

1、认真研读新课程标准,钻研新教材,根据新课程标准及教材,适度安排教学内容,认真上课,批改作业,认真辅导,认真制作测试试卷。

2、激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造自主、探究、合作、交流、分享发现快乐的课堂。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质的能力。

5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

6、教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业。指导成立“课外兴趣小组”,开展丰富多彩的课外活动,带动班级学生学习数学,同时发展这一部分学生的特长。

7、开展分层教学,布置作业设置a、b、c三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好各个层次的学生,使他们都得到发展。

8、把辅优补潜工作落到实处,进行个别辅导。

初中数学教学计划范文篇4

一、教学思想:

引导学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

二、学生基本情况分析:

学生在初中已经开始出现了两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对差生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。

三、教学目标

1、知识与技能目标学生通过探究实际问题,认识全等三角形、轴对称、实数、一次函数、整式乘除和因式分解,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。

2、过程与方法目标掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;通过探究一次函数图象与性质之间的关系,初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

3、情感与态度目标通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

四、教学设想

1、作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好教案。

2、营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲 望,为学生掌握课堂知识打下坚实的基础。

3、搞好阅卷分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。

4、写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。

5、加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习欲 望,针对其基础和学习能力采取针对性的补救措施。

6、成立学习小组。根据班内实际情况进行优等生、中等生与后进生搭配,将全班学生分成多个学习小组,以优辅良,以优促后,实现共同提高的目标。

7、组织单元测试。根据教学进度对每单元教学内容进行测试,做好试卷分析,查找问题。大面积存在的问题在进行试卷讲解时要重点进行分析讲解,力求透彻。

初中数学教学计划范文篇5

一、指导思想

本学期初中数学教研组工作继续以学校远景规划为奋斗目标,以有效课堂教学实验为工作重点,在落实学校教学教研工作计划的同时,结合初中部的具体情况确定本学期工作重点:

1、加强对初三年级的常规教学工作的检查和指导;

2、加强对青年教师的培养,有针对性的进行检查、督促,通过汇报课、优质课活动给青年教师尽可能多的搭建献技、献艺的平台,使他们尽早胜任数学教学工作。

3、认真落实有效课堂教学实验工作。

4、以新课程标准为载体,强化教师理论学习。

二、教学管理工作

1、加强教师职业道德教育,牢记育人宗旨:一切为了学生,为了一切学生,为了学生一切。处处考虑学生的主体性、自主性、民主性。为人师表,注意实施教育时的方式方法。

2、开学二周内各备课组在认真研究教材的基础上,制定本学期工作计划和集体备课时间安排表。教师要认真作好备、上、批、辅、考各项教学工作,要在充分集体备课的基础上进行个人备课、编写教案。集体备课的要求:定时间、定地点、定内容、定中心发言人,一周内的课时安排、重点难点及难点的突破方法、学生主体作用如何体现等。

3、加强青年教师的培养工作,师徒结对活动要认真开展,徒弟每学期听师傅的课不得少于5节,师傅每学期听徒弟的课不得少于2节,师徒单独活动每学期不得少于5次,每次活动要有记载(听课评价表、徒弟的教案和教学反思、师徒结对活动小结)

4、组织安排好优生的培优工作,各备课组要作好培优工作的具体方案。培优工作要做到:定时间、定地点、定内容、定辅导教师,辅导的内容要以电子稿的形式交备课组长保存,教研组将组织编写《苏步青青学校培优辅导教材》.

5、组织安排好学困生的补差工作。各备课组必须要将补差工作落在实处,要制定补差方案与措施,谨防走过场,要保证每一个参加补差的学生都有所得与提高。

三、教研工作

1、集体备课:

本学期重点是继续加强集体备课,充分发挥集体备课的功能和作用,不流于形式,切实解决个人备课不能解决的问题,任何人不得以任何理由占用集体备课时间,在保证时间的前提下必须保证每次集体备课的质量,真正把集体备课落到实处。

2、以新课程标准及新课程标准解读本为载体,强化教师理论学习,促进教师角色的转变和教育观念的更新。

3、针对本学期各年级的教学任务的具体特点,备课组除搞好青年教师的汇报课和优质课的说课、评课外还要着力组织教师学习新课标的内容,要求有专题,本学期通过学习要求每个教师写一篇有价值的论文或案例

4、认真组织青年教师的汇报课和高级教师的示范课,青年教师(三年以内)每学期要上一节汇报课。教研组将组织集体评课并做好记载.

5、认真开展有效课堂教学实验工作。

6、本学期每位教师听课不低于10节,要求有听课记录。

初中数学教学计划范文篇6

一、指导思想:

本学期我们九年级数学备课工作将围绕我市和我校开展的教学活动,以提高初中数学教学优秀率、合格率为重点,认真搞好教学研究、扎实有效开展教研活动,促进教师、学生共同发展,总结经验,发挥优势,改进不足,聚集全组教师的工作力和创造力,努力使我们九年级数学备课组在有朝气、有创新精神、团结奋进的基础上焕发出新的生机与活力。

二、本学期主要工作:

(一)认真学习新课程标准,提高教师自身专业素质。

1、按教务处统一部署,组织本组教师认真学习数学的新课程标准。组织学科教师围绕新教材认真讨论,将学习所得用以指导教学工作。

2、在理论学习的同时,坚持业务学习,组织全组教师根据九年级教材特点,讨论教材教法,相互交流经验互相学习,互相取长补短,共同提高。

(二)加强备课组的常规管理。

一周开展一次备课组会议,了解、检查本组的教学工作情况。配合教务处一月一次对各教师的备课、批改作业的情况进行检查一次,以便及时发现问题、解决问题。

(三)提高教研质量,切实开展校本教研。

坚持集体备课,充分发挥教师的群体智慧,让每个教师的聪明才智融汇到教学案和教学中。在常规教学中使全组达到统一进度,集体备课,根据各班不同情况编写教学案,布置练习,统一考试。坚持每周一次的备课教研,重点研究教材,教法,备课,练习,考试和评点。按学校要求,每次教研会,须有主讲并做好会议记录,以存资料,以备检查。提倡相互听课,相互学习,相互帮助。达到以老带新,以能带新,共同提高的目的。听课节数按学校要求。

(四)加强资料建设

我备课组要编写或选用符合我校实际、课堂适应、学生欢迎的上课资料和训练检测资料。初步摸索出适应学生实际的小单元检测资料,电脑备份,以便选用,资源共享。各教师在教学过程中应该抽空将平时教学心得记录下来,形成文字材料,为自己和本组积累教学财富。

(五)开展课题研究

不断地对学生进行正确的学习态度和科学的学习方法的教育。学习态度的好坏,关系到学习是否主动,是否刻苦,要变“要我学”为“我要学”。而学习方法的好坏,关系到学习是否有成效,教师既要向学生教方法,又要指导学生自己总结积累方法。要把立足点放在让学生学会“独立思考”、学会“探究学习”中来。要注意学生数学素质的培养。在教改方向上,九年级主要从提高学生的数学素养和应试能力上进行教学研究和教学改革,重点是把学生尽快地引上正轨,同时进行培养学生自学能力的实验。以培养优生和缩小后进生作为教改的突破口,用鼓励去激发学生的学习热情,用赞赏点燃学生智慧的火花,鼓励各位教师根据所教学生的特点和教学实际,确立自己的教改课题。

初中数学教学计划范文篇7

一、指导思想:

根据学校工作计划和教导室工作计划,结合学校教科室的“双思、三环、六步”教学模式的推行,继续以新课程标准为依据,贯彻教育教学法规,落实素质教育和自成教育。通过数学的学习,发展学生的逻辑思维能力,培养学生的合情推理能力;让学生学到有用的数学,渗透终生数学教育思想;让数学教育面向全体学生,人人学到必要的数学知识,并通过数学课的情感渗透培养学生自强成才的精神。

二、学情分析:

本班以农村孩子居多的班级。他们虽然大多朴实善良,但因为从小家长管不上,没有养成好的学习习惯,绝大多数学生的成绩较差。通过一年半的努力,本班数学成绩有了长足的进步,学生无论从数学思维和数学能力上都得到了锻炼和培养,数学知识掌握得较牢固;学习习惯上,学生的课前预习、课堂上记笔记的习惯已初步形成。在学习方法上,一题多解,多题一解,从不同的角度看问题等数学思想方法已在一些学生的头脑中形成。但一些学生的举一反三的能力还有待加强,数学知识上一些拔高的内容还很模糊,课堂上参与度不高,有时还需要教师提醒。学生课外自主拓展知识的能力几乎没有,认真对待每次作业,及时纠正作业中的错误的同学人数还不理想。

三、教材简析:

本学期的教学内容共计五章:

第16章:分式;

第17章:反比例函数;

第18章:勾股定理;

第19章:四边形;

第20章:数据的分析。

其中前四章既是重点又是难点。

四、提高教学质量的举措:

1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真选择测试试卷,也让学生学会认真学习。

2、给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

5、培养学生良好的学习习惯,要求学生做到堂堂清、天天请、月月清。

6、开展分层教学,课堂上照顾好好、中、差这三类学生。

7、为不断提高教学质量认真写好教学反思和教案。

8、进行个别辅导,优生提升能力,扎实打牢基础知识;对差生,特别是姜盼丽同学,进行个别谈话,重点对一些基本知识和一些关键知识进行辅导过关,为其以后学习成绩的进一步提高铺平道路。并通过实例教育,让他们树立自强成才的信心。

五、全学期教学进度安排:

第1——4周第十六章分式

第5——6周第十七章反比例函数

第7——8周第十八章勾股定理

第9——12周第十九章四边形

第13——16周第二十章数据的分析

第17——18周复习检测

数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。 一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。

数学函数论文2000字

数学思想是人脑对现 /a>思想是人脑对现实世界的空间形式和数量关系的本质的反映,是思维加工的产物。函数思想是数学思想的重要组成部分,在高中数学中起到横向联系和纽带连结的主干作用。用变量和函数来思考问题的方法就是函数思想。这是一种考虑运动变化、相依关系,以一种状态确定地刻划另一种状态过渡到研究变化过程的思想方法。函数思想是函数概念、性质等知识更高层次的提炼和概括,是在知识和方法反复学习运用中抽象出的带有观念性的指导方法。 所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。下面简单介绍一下运用函数思想来解决方程、不等式、数列、参数的取值范围等问题。一、运用函数思想求解方程问题 函数与方程既是两个不同的概念,又存在着密切的联系。一个函数若能用一个解析式表达,则这个表达式就可看成一个方程;一个二元方程的两个未知数间存在着对应关系,如果这个对应关系是单值的,那么这个方程也可以看成一个函数。一个方程的两端可以分别看成函数,方程的解就是这两个函数图象交点的横坐标。因此,许多有关方程的问题都可用函数思想来解决。例1 求证:不论 a取什么实数,方程x2 - ( a2 + a ) x + a - 2=0必有两个不相等的实根。分析:此题若用常规解法,求出判别式△是一个关于a的一元四次多项式,符号不易判断。若用函数思想去分析题意,设函数f(x)=x2-(a2+a)x+a-2,要证明命题成立,只需证明函数y=f(x)的图象与x轴有两个交点,由于它的开口向上,只要找到一个实数X0,使f(x0)<0即可。比如f(1)=1-(a2+a)+a-2= - a2-1<0。故函数y=f(x) 的图象与x轴有两个交点,因此命题成立。例2 已知关于x的实系数二次方程x2+ax+b=0 有两个实数根α,β,证明:(I)如果 |α|< 2,|β |< 2,那么2| a |< 4+b且| b | < 4;(II)如果2| a |< 4+b且 | b | < 4,那么|α|< 2,|β| < 2;分析:本题表面上看是方程问题,方程的根的分布与参数a,b之间满足的关系式,如果用纯方程理论处理则十分繁琐;如果用函数思想来分析,将方程根的分布问题转化为函数图像与x轴交点问题,则可抓往本质。解:本题(I)(II)的结果是2 | a | < 4+b{ <==> α,β ∈(-2,2)| b | < 4可设函数f(x)=x2+ax+b( I )由二次函数的图像知f(2)>0α,β∈(-2,2) ==>{ f(-2)>0|b|=|α�6�1β|< 44+2a+b>0 2a> - (4+b)==>{ ==> {4-2a+b>0 2a< 4+b==> 2|a| <4+b且|b| < 42 |a| <4+b 4+2a+b>0 f(2)>0(Ⅱ) 如果{ ==> { ==>{ 则| b | < 4 4-2a+b>0 f(-2)>0α,β在(-2,2)之内或在(-2,2)之外,若α,β在(-2,2)之外,则 |α�6�1β| = b > 4,这与| b | < 4相矛盾,故α,β∈(-2,2)。二 、运用函数思想证明不等式例3 设 a , b , c 均为正数,且a+b>c,a b c求证:----- + ------ > -------1+a 1+b 1+ca b c分析:不等式左右两边,结构相似: -----, ------, -------,因1+a 1+b 1+c此可以联想函数f(x)=x / (1+x) (x>0)的单调性。证明:先证函数f(x)=x / (1+x) (x>0)的单调性。任取x1>0 , x2>0,不妨设x1 0 , x2> 0 ∴ 1+ x1 >0 , 1+ x2 >0又∵x1< x2 ∴x1- x2< 0x1- x2 ∴------------------- < 0(1+ x1)(1+ x2)即f(x1)c>0 ∴f(a+b)>f(c)a+b c即--------- > ----1+a+b 1+ca b a b a+b∵------ + ------ > ------- + ------- = -------1+a 1+b 1+a+b 1+a+b 1+a+b a b c∴------ + ------ > -------1+a 1+b 1+c例4 已知a、b、x、y都是实数,且a2+b2=1,x2+y2=1,求证:ax+by≤1分析:已知条件中有平方和等于1,可联想正、余弦之间的平方关系,再利用函数的有界性进行证明。证明:∵a2 + b2 = 1 , x2 + y2 = 1∴可设a=sinα, b=cosα, x=sinβ, y=cosβ则有ax+by=sinαsinβ+cosαcosβ=cos(α-β)≤1∴ax+by≤1三、运用函数思想解数列问题数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2......n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。因此,有些数列的问题可用函数思想来解决。例5 在等差数列中,前n项为Sn,已知Sp = q , Sq =p( p、q∈ N*且p≠q),求Sp+q分析:本题的常规解法是用求和公式建立方程组,求出a1和 d,进而求出Sp+q,但计算十分繁琐。若考虑到等差数列的前n项和是关于n的二次函数,且无常数项。故可考虑建立目标函数Sn=an2+bn(a,b为待定系数),可优化解题过程。解:设Sn=an2 + bn (a,b为待定系数)则Sp=ap2+bp ∴ap2+bp=q (1)Sq=aq2+bq ∴aq2+bq=p (2)(1) - (2)整理得(p-q)[a (p+q) + b)]=-(p-q )∵p≠q ∴p-q≠0 ∴a(p+q)+b= -1又∵Sp+q=a ( p + q )2 + b ( p + q ) = ( p + q ) [ a ( p+q ) + b ]= - (p+q)∴Sp+q= - (p+q)四、运用函数思想求参数(或变量)的范围(一)构造一次函数求参数的范围例6 若不等式2x-1>m(x2-1)对 |m|≤2的所有m均成立,求x的取值范围。解:构造关于m的一次函数f(m)=(x2-1)m - 2x+1,则由f(m)<0对m∈[-2,2]恒成立,得f(-2)<0 2x2+2x-3>0 √7 - 1 √3 + 1{ => { => ------------ < x < ----------f(2)<0 2x2-2x-1<0 2 2√7 - 1 √3 + 1∴x的取值范围是(---------- ,----------- )2 2(二 )构造二次函数求变量的范围例7 已知实数a , b , c , d , 满足a+b+c+d=5,a2+b2+c2+d2=7,求a的取值范围。解:构造关于x的二次函数f(x)=(x - b)2+(x - c)2+(x - d)2=3 x2 - 2(b + c + d) x+(b2 + c2 + d2)∵f(x)≥0 ∴△≤0即4(b + c + d)2-12(b 2+ c2 + d2)≤0亦即 4( 5 - a)2 - 12(7 - a2)≤0∴2a2-5a+2≤0∴1/2≤a≤2∴a的取值范围为[1/2,2] 这个 开头的话 和中间一些还是不错的啦 具体自己组织下~ 1、坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式,因此判断平面直角坐标系中的一个点是否在函数图象上,只需把点的坐标代入函数解析式进行检验,能满足函数解析式的表明点在图象上,不满足函数解析式的则表明点不在图象上。2、求两个函数的交点坐标,即求这两个函数解析式组成的二元方程组的解。3、在解决有关函数的问题时,要注意利用平面直角坐标系中X轴与Y轴之间的夹角为直角、以及勾股定理等平面几何知识,要能很熟练地求出函数与坐标轴的交点坐标。5、根据函数的概念、性质以及它们的图象,进行形与数、形与方程、形与不等式之间的相互转换,是解决函数问题的重要方法。 函数概念在数学中占有重要的地位。它在整个中学函数教学的这条主线上,起到承前启后的关键作用。函数概念以及它的思想方法成为中学数学教学的主线之一,函数概念的学习,是学生对现实世界中具体的数量关系的认识向抽象的数量关系的认识的一个飞跃。然而由于函数概念的复杂性,使它成为初中教学的一个难点。本文在前人的研究基础上,从函数的概念出发,通过问卷调查和个案访谈,从函数概念的定义、表示方法和应用三个角度调查了本人所在的中学的初中学生对函数概念的理解,并将此结果加以对比分析,得出以下结论:1.初中学生对函数概念本质的理解不深刻,不能全面认识自变量x与因变量y之间的关系,这与在新课程标准要求下对学生进行训练的重点有关。2.学生对图形和图表表征的函数的识别发展显著落后于对解析式表征的函数的识别。3.初中学生对函数概念的应用能力较低。4.初中学生在函数的认知发展水平方面存在差异,但总体没有明显差异:(1)在运用解析式来描述函数概念方面的能力,初三学生强于初二学生;(2)对于图表和图像法的运用方面,初二学生强于初三学生。本文对研究结果进行深入分析,结合教学实际,对初中现阶段的函数概念教学提出以下改进措施:(1)加强对函数概念的本质认识;(2)加强函数表示形式间的转换;(3)关注日常生活中的函数模型。 这些也可以用下的~

在数学的发展史中,重要数学概念的形成离不开数学的发展,这些概念的形成对数学的发展有推动作用.函数概念是数学概念中的一个非常典型的数学概念.函数概念的形成,从最初的萌芽阶段到最终形成历经了一千多年.纵观数学的发展史,函数概念的每一次升华都是数学发展到一定阶段的产物,并对后面数学的发展作出推动作用.研究函数概念的发展。

最早给出函数概念的明确定义的是,1667年,他的函数定义为:“它是从一些其它的量经过一系列代数运算而得到的,或者是经过任何其它可以想象的运算而得到的。”这最后一句话的意思,据他解释是“除了五种代数运算外,必须加上第六种运算即趋于极限的运算。”

莱布尼茨首次用“ function ” 一词表示幂,即 。1673年,他用 “ function ” 一词表示任何一个随曲线上的点的变动而变动的量。

记号 是欧拉1743年引进的。当时,欧拉认为函数是一条可以随意描绘出的曲线。1748年欧拉把函数定义为由一个变量与一些常量通过任何方式形成的解析表达式。

上述种种函数定义,用现在的观点看,无非是函数表示法中的解析表示法和图象表示法。

1775年欧拉又给出一个新的函数定义:

如果一个变量依赖于另一个变量,使当后一个变量变化时,前一个量也随着变化,那么称第一个量是第二个量的函数。

虽然18世纪对函数概念有多种不同的抽象和理解,但占统治地位的函数概念是:函数是由一个解析表达式给出的。

这些函数概念是人们对各种具体的函数关系的不断和反复认识,经过抽象得出的,但都反映了一个量对另一量的依赖关系,都是“变化”和“运动”的辩证唯物主义观点的抽象。

1837年高斯和雅可比(1804-1851)的学生,黎曼的指导老师狄利克雷(1805-1859)给出了一个函数定。他说:“如果对于某区间上的每一个确定的x值,按照某一法则y都有一个或多个确定的值,那么y叫做x函数。”

狄利克雷的定义一方面继承了欧拉等人关于函数概念的精神,又打破了把“函数”和“解析式子”等同起来的局限性,抓住了两个变量对应关系的确定存在这一要害,而不管它是否可用数学运算来表达。从而使函数概念能更准确地描述各种互相依赖的变量之间的关系。但是随着科学技术及数学学科本身的发展,这个以变量概念作为函数概念的定义逐渐暴露出不足之处。20世纪初,又给出了下面的函数定义:“设x和y是两个非空集合,如果对于每个X中的元素x,依照某一法则,总有确定的一个Y中的y和它对应,这个对应法则就叫做函数”。这就是说,函数是非空集合X到非空集合Y的一个映射。

这个定义使我们可以将函数概念推广到以任何对象为元素的两个集合之间,这就极大地扩展了函数概念建立的基础,适应了现代数学对函数概念的需要。

函数概念从提出到完成,用了二百多年的时间。从函数概念建立的过程我们可以看出,人们对函数概念的认识是随着科学和数学学科本身的不断发展、不断深入而不断深化、不断完善的。

这篇作文可以这样写,例如数学函数形成要与历史相结合因为函数概念是数学概念中最重要的概念之一,在数学发展300年来函数概念,无数的数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。所以拟通过对函数概念的发展与比较的研究,对函数概念的教学进行一些探索。函数概念的纵向发展早期函数概念——几何观念下的函数十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的。1十八世纪函数概念——代数观念下的函数1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号。欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。以上就是函数形成与发展史,也是函数形成的重要原因。

一、函数的起源(产生) 十六、十七世纪,欧洲资本主义国家先后兴起,为了争夺霸权,迫切需要发展航海和军火工业。为了发展航海事业,就需要确定船只在大海中的位置,在地球上的经纬度;要打仗,也需知道如何使炮弹打的准确无误等问题, 这就促使了人们对各种“运动”的研究,对各种运动中的数量关系进行研究,这就为函数概念的产生提供了客观实际需要的基础。 十七世纪中叶,笛卡儿(Descartes)引入变数(变量)的概念,制定了解析几何学,从而打破了局限于方程的未知数的理解;后来,牛顿( Newton)、莱布尼兹(Leibniz)分别独立的建立了微分学说。这期间,随着数学内容的丰富,各种具体的函数已大量出现,但函数还未被给出一个一般的定义。牛顿于 1665年开始研究微积分之后,一直用“流量”( fluent)一词来表示变量间的关系。 1673年,莱布尼兹在一篇手稿里第一次用“函数”( fluent)这一名词,他用函数表示任何一个随着曲线上的点的变动而变动的量。(定义1)这可以说是函数的第一个“定义”。例如,切线,弦,法线等长度和横、纵坐标,后来,又用这个名词表示幂,即表示 x , x2, x3,…。显然,“函数”这个词最初的含义是非常的模糊和不准确的。 人们是不会满足于这样不准确的概念,数学家们纷纷对函数进行进一步讨论。 二、函数概念的发展与完善⒈以“变量”为基础的函数概念 在 1718年,瑞士科学家,莱布尼兹的学生约翰·贝奴里(Bernoulli,Johann)给出了函数的明确定义:变量的函数是由这些变量与常量所组成的一个解析表达式。(定义2)并在此给出了函数的记号φx。这一定义使得函数第一次有了解析意义。 十八世纪中叶,著名的数学家达朗贝尔 (D’Alembert)和欧拉( Euler)在研究弦振动时,感到有必要给出函数的一般定义。达朗贝尔认为函数是指任意的解析式,在 1748年欧拉的定义是:函数是随意画出的一条曲线。(定义 3)在此之前的 1734年,欧拉也给出了一种函数的符号f(x),这个符号我们一直沿用至今。 实际上,这两种定义(定义 1和定义 2)就是现在通用的函数的两种表示方法:解析法和图像法。后来,由于富里埃级数的出现,沟通了解析式与曲线间的联系,但是用解析式来定义函数,显然是片面的,因为有很多函数是没有解析式的,如狄利克雷函数。 1775年,欧拉在《微分学原理》一书的前言中给出了更广泛的定义:如果某些变量,以这样一种方式依赖与另一些变量,即当后面这些变量变化时,前面这些变量也随之而变化,则将前面的变量称为后面变量的函数。(定义 4)这个定义朴素地反映了函数中的辨证因素,体现了“自变”到“因变”的生动过程 ,但未提到两个变量之间的对应关系,因此它并未反映出真正意义上的科学函数概念的特征,只是科学的定义函数概念的“雏形”。 函数是从研究物体运动而引出的一个概念,因此前几种函数概念的定义只是认识到了变量“变化”的关系,如自由落体运动下降的路程,单摆运动的幅角等都可以是看成时间的函数。很明显,只从运动中变量“变化”观点来理解函数,对函数概念的了解就有一定的局限性。如对常值函数 ,不解释 十九世纪初,拉克若斯( Lacroix)正式提出只要有一个变量依赖另一个变量,前者就是后者的函数。 1834年 ,俄国数学家罗巴契夫斯基(Лобачевский)进一步提出函数的定义: x的函数是这样的一个数,它对于每一个 x都有确定的值,并且随着 x一起变化,函数值可以由解析式给出,这个条件提供了一种寻求全部对应值的方法,函数的这种依赖关系可以存在,但仍然是未知的。(定义 5)这实际是“列表定义”,好像有一个“表格”,其中一栏是 x值,另一栏是与它相对应的 y值。这个定义指出了对应关系(条件)的必要性,把函数的“对应”思想表现出来,而“对应”概念正是函数概念的本质与核心。 十九世纪法国数学家柯西( Cauchy)更明确的给出定义:有两个互相联系的变量,一个变量的数值可以在某一范围内任意变化,这样的变量叫做自变量,另一个变量的数值随着自变量的数值而变化,这个变量称为因变量,并且称因变量为自变量的函数。(定义 6) 1829年 ,狄利克雷( Dirichlet)给出了所谓狄利克雷函数: y=1 当 x为有理数时; y=0 当 x为无理数时。这个函数并不复杂,但不能用解析式来表示,这一思想的提出,正是数学由过去的研究“算”到以后研究“概念、性质、结构”的转变的开端。 1837年他对函数下的定义是:在某个变化过程中,有两个变量 x和 y。如果对于 x在某一范围内的每一个确定的值,按照某个对应关系, y都有唯一确定值和它对应,则 y称为 x的函数; x称为自变量。(定义 7)这个定义的优点是直截了当地强调与突出了“对应”关系,抓住了概念的本质属性,只须有一个法则存在,使得这个函数定义域中的每一个值有一个确定的 y值和它对应就行了,不管这个法则是公式或图像或表格或其他形式;其缺点是把生动的函数变化思想省略和简化掉了。 ⒉以“集合”为基础的函数概念 函数的概念是随着数学的发展而发展的。函数的定义在数学的发展过程中,不断的改进,不断的抽象,不断的完善。十九世纪七十年代,德国数学家康托( )提出了集合论。进入二十世纪后,伴随着集合论的发展,函数的概念也取得了新的进展,它终于摆脱了数域的束缚向更广阔的研究领域扩大,使概念获得了现代化。 二十世纪初美国数学家维布伦( Weblan)给出了函数的如下定义:若在变量 y的集合与另一变量 x的集合之间,有这样的关系成立,即对 x的每一个值,有完全确定的 y值与之对应,则称 y是变量 x的函数。(定义 8)从这个定义开始,函数概念已把基础建立在集合上面,而前七个定义则是把基础建立在变量(数)上的。 随着时间的推移,函数便被明确的定义为集合之间的对应关系,其定义是: A和 B是两个集合,如果按照某种对应关系,使 A的任何一个元素在 B中都有唯一的元素和它对应,这样的对应关系成为从集合 A到集合 B的函数。(定义 9)此定义根据映射的概念,用“映射”观点建立函数概念,其又可叙述为:从集合 A到集合 B的映射 f: A→ B称为集合 A到集合 B的函数,简称函数 f 。(定义 10)以上三个定义,已打破数域的束缚,将集合中的元素改为抽象的,可以是数,也可以不是数,而是其它一切有形或无形的东西,如 X是所有三角形的集合, Y是所有圆的集合,则 f 可以是把每一个三角形映射成它的外接圆的映射。 对新函数定义可以这样理解:函数是一个对应(规则),对于某一范围(集合)的元素,按照这个对应(规则)确定另一个元素。这样函数概念从狭义的“变化”观点转化到较广义的“对应”观点,函数即是一个对应(规则)。 对函数概念用“对应”(“规则”)来理解比起最初阶段虽然揭示出了函数概念的实质,但它还不符合我们最低限度地使用未被定义的术语的意图。因为什么叫“对应”和怎样理解“规则”还需要定义,例如规则不同,那么是否函数也不同呢?如f(x)=x与f(x)=(1+x)-1当然是不同的规则但却定义了同一函数。 为了解决这一矛盾,二十世纪初,特别是在六十年代以后,广泛采用只涉及“集合”这一概念的函数定义,而集合作为原始概念是不予定义的,这样的定义是:设 A、 B是任意两个集合, f是笛卡儿集 A× B的一个子集,满足:①对任意的 a ∈ A,存在一个 b∈B,使得 (a,b)∈ f,②若 (a,b)∈ f, (a,c)∈ f则 b=c。则称 f为 A到 B的一个函数。记作 f:A→B。(定义11)这个定义利用“关系”这个概念,便给出了只涉及原始概念“集合”的函数的一般定义,即不需要用到“对应”,又避免了对“规则”的解释,只要集合理论适用一切数学领域,这样给出的函数定义总是适用的。它可称的上是最现代的定义了。 到此,“函数”最完善的定义(定义 11)已给出,作为数学中最基本的概念之一,已把基础直接建立在集合上面,即把函数看作是从一个集合到另一个集合的对应,它和“映射”实际上是一回事。 三、新旧两种定义的比较 比较新定义(把以集合为基础的函数定义称为新的定义方式,而以变量(数)为基础的定义称为旧的定义方式。)和旧定义,它们之间有两个重要的区别: ⑴旧定义是建立在“变量”这个基本概念上的,而新定义则建立在“集合”这个基本概念上。什么是变量呢?通常把它理解为在选定一个单位以后,可加以度量的东西,如长度、质量、时间之类,这种理解一方面太疏于笼统,只能通过举例来说明,而难于加以精确化;另一方面,由于涉及大小关系,嫌过于狭窄,无法体现应用上的普遍性。其次,即使什么是“量”的问题不存在,作为变量,它须在某一范围取值(不一定是数值),这一定范围实际上就是事先得假定的一个集合 A(它构成函数的定义域),所谓“变量取值 a”,实质上就是“ a属于 A”的一种变相迂回的说法。可见,在变量的概念中已蕴含集合的思想。 ⑵旧定义中以“因变量”为函数,而新定义中则以“对应关系”为函数。函数概念的实质,主要的并不是因变量要随自便量“变”,而是两集合之间存在某种确定的对应关系。显然,新定义更能直接地揭示出函数的实质。

论文各部分字数比例

般3-5万字间文般三万字理科相应点所硕士论文都要论文检测比百内所专业所论文每十相拟始算相拟能超百三十否则延迟毕业切记谨慎别自辛苦寒窗历玩笑 知中国系统计算标准详细说明: 1.看系统介绍疑问套系统于文字复制鉴别错于其面内容呢比数据图表能检检没用 术端各种行文字复制普遍严重目前本检测系统文字复制检测已经达相高水平于图表、公式、数据抄袭篡改等行检测目前研发且取比较进展欢迎各位继续关注本检测系统进展并提批评性及建设性意见建议 2.按照系统39%都显示黄色,否意味着容忍限度内呢?近看海某教师家社科基金课题撤消消息,原其发表两篇论文抄袭行,别占25%30%. 请明示超少算警戒线 百比描述检测文献重合文字所占比例程度并指该文献抄袭严重程度能说百比越重合字数越存抄袭能性越否属于抄袭及抄袭严重程度需由专家审查决定 3.何防止位论文术端行检测系统报复平台 我认真考虑事情目前套检测系统机构级用户使用我制定套严格管理流程同技术我采取种手段能防止恶意行包括系列严格身份认证志记录等 4.检测单位句每句改两字检测 我句相应处理句相似性算并句完全才判断相同句句级相似算段落段落级相似算计算篇文献段否与其文献文字相似基础综合 5.相关书籍摘原已经数据库相关文献抄进说前面文章相关书籍摘相同我论文标注段自相关书籍算算术抄袭 检测系统结论抄袭工审查关所您描述种情况专家相应判断我系统提供各种线索依据让能够快速掌握检测文献信息 6.知中国检测系统权威性 术端文献检测系统并结论即检测系统并检测文献定性检测文献与其已发表文献雷同部陈列列客观事实篇检测文献否属于术端需专家做审查确认 篇论文抄袭才检测知中国论文检测条件连续13字相似或抄袭都红字标注必须满足3面前提条件:即所引用或抄袭A文献文字总各检测段落要达5

论文字数要求包括了哪些内容啊? jiangming123(站内联系TA)包括所有内容,但注意是字数,不是字符数!有些文章就是这样的,版面有限,非让你压缩,结果搞成了四不像!leopro(站内联系TA)参考近几期的文章,把页面压缩到和它们差不多就行了123wgh4棱6(站内联系TA)有的杂志要求字数3500=5000seebrightplan(站内联系TA)要进行缩写,主要是针对正文的。若林源三(站内联系TA)Originally posted by jiangming123 at 2009-8-16 00 硕士学位论文规定字数是否包括中英文摘要和序言部分 5分 这些全包括,但是不包括目录和附注,希望可以帮到你。 1、论文题目:要求准确、简练、醒目、新颖。 2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。 4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。 5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。 6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献着录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。 一篇本科生毕业论文包括哪些部分?要怎样才能确定它合格了? 本科生毕业论文(设计)是本科学习期间独立分析问题、解决问题及初步进行科学研究能力的综合体现,也是创新意识、创新能力和获取新知识能力的综合检验,是学校授予学位的重要依据。为了规范毕业论文(设计)的书写格式,提高撰写质量,制定撰写要求及书写格式。 一、毕业论文(设计)内容 毕业论文(设计)包含下列内容,其序号也表示相关内容在论文中的编排顺序。 1、封面 (1)论文题目 应准确反映论文的核心内容,言简意赅,字数不能超过30个汉字,必要时可加副标题。毕业论文(设计)题目需翻译成外文,写在汉字题目之下。论文题目在封面的中间居中排列。 (2)学生姓名、班级与学号 学生姓名必须与本人有效身份证件一致,班级为自然班,用 *** 数字书写,学号用 *** 数字书写。 (3)学院与专业 学院与专业要写全称。 (4)指导教师 指导教师姓名后需附职称。 2、目录 目录由论文的章、节、参考文献、附录等序号、名称和页码组成,内容列出“章”、“节”二级标题即可,目录应单列页码,与正文页码分开。 3、论文摘要 摘要是论文的内容不加注释和评述的简短陈述,应以最简洁的语言介绍论文工作目的、研究方法、创新点和研究成果,以300—500字为宜。摘要需用中外两种文字书写,外文摘要是中文摘要的翻译,写在中文摘要的下面。 4、论文正文 一般包括绪论(或前言)、论文主体、结论、参考文献、附录(必要时)等组成,绪论阐述选题的理论、实际意义及研究背景、研究现状、研究思路及研究方法、论文的整体结构安排等;论文主体是论文的核心部分,要求论点论据条理分明、逻辑严谨、语言精练;结论是对论文的归纳与总结,语言应简洁、准确、完整;凡论文引用、参考、借用他人成果,均须在参考文献中详细列出;附录是论文主体的补充说明,包括必要的图表、工程设计图纸、辅助性工具等。 5、其它说明 (1)毕业论文(设计)撰写必须遵照国家标准或本学科通用标准。 (2)如果毕业论文(设计)中使用了大量的专业性符号、标志、缩略词、专门计量单位、自定义名词和术语等,应编写成注释说明汇集表予以列出。 二、毕业论文(设计)书写格式及装订 1、毕业论文(设计)装订为横开本,使用统一的封面,左侧装订。毕业论文(设计)封面的中文题目、英文题目及学生姓名、班级、学号、学院、专业与指导教师等栏目,要用楷书书写,端正、整洁,有条件的学生可以打印输出。 2、目录格式 (空2行)(3号黑体) 目 录 (3号黑体,居中) 引言(或绪论)(或作为正文第1章,4号宋体,行距18磅,下同)………1 第 1章……………………………………………………………Y 第 1节……………………………………………………………Y ………………………………………(略) X ×××××(正文第X章)……………………………………………………Y 结论 ………………………………………………………………………… Y 致谢 ……………………………………………………………………… Y 参考文献……………………………………………………………………………Y 附录A ××××(必要时) ……………………………………………………Y 图1 ×××××(必要时)………………………………………………………Y 3、摘要格式 中文摘要(4号黑体,居中) (空1行)(4号黑体) ××××××××××××××××(小4号宋体,倍行距)××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××......>> 论文字数包括最后参考文献吗 参考文献可以在百度学术中找到。 资料可以在万方、维普、CNKI找到。 你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!! 学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。 一篇文章的引用参考部分包括注释和参考文献两部分,注释是作者自己的解释(转引的参考文献也可以放在注释里),参考文献仅需列出参考书或论文的名称、作者、出版社或发表的期刊、著作时间或期刊期数等。注释用圆圈1 2标注,放脚注,参考文献用[1][2]标注,放尾注。 有的刊物要求注释和参考文献都要在内文标注,有的刊物对参考文献不要求内文标注,在尾注列出就行。按最新的CNKI规范的要求应是前者。为保险起见,你还是都标吧。注:参考文献如是著作要标页码,论文只要标出期刊是第几期。 例: 参考文献: [1]金福海.论建立我国的惩罚性赔偿制度[J].中国法学,1994,(3). [2]杨立新.“王海现象”的民法思考——论消费者权益保护中的惩罚性赔偿金[J].河北法学, 1997,(5). [3]金福海.消费者法论[M].北京:北京大学出版社,2005:251. [4]闫玮.完善我国 中的惩罚性赔偿制度[J].太原师范学院学报,2007,(1). [5]梁慧星. 第49条的解释适用[J].民商法论丛,2001,(3). [6]王堃.论我国 中的惩罚性赔偿[J].现代商业,194. [7]梁慧星.关于 第49条的解释适用[N].人民法院报,2001-3-29. [8]孔祥俊.公平交易执法前沿问题研究[M].北京:工商出版社,1998:219. 毕业论文分哪几部分 1、论文题目:要求准确、简练、醒目、新颖。 2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录) 3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。 4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。 主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。 5、论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容: a.提出-论点; b.分析问题-论据和论证; c.解决问题-论证与步骤; d.结论。 6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献着录规则》进行。 中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息 所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。 (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。 本科毕业论文字数包括标点符号吗? 只要占据字符的就包括,标点符号是占字符的所以论文字数包括标点符号 论文正文部分包括结束语吗 你埂的! 这个是可以肯定地说,包括的! 论文正文包括:摘要,绪论,各章节,结论,参考文献,致谢,附录! 只要是论文中你写的都是正文部分! 但是,论文字数的话,需要从绪论到结论为止! 望采纳! 硕士论文的字数要求?硕士毕业论文,多少字数为宜?抄的能通过吗? 一般3-5万字之间,文学一般是三万字,理科相以应的多点,所有硕士论文都是要过论文检测的,比对的是一百年内所有专业的所有论文,每十一个相拟就开始算相拟,不能超过百分之三十,否则延迟毕业,切记,谨慎,别来自己辛苦寒窗得来的学历开玩笑。 知网系统计算标准详细说明: 1.看了一下这个系统的介绍,有个疑问,这套系统对于文字复制鉴别还是不错的,但对于其他方面的内容呢,比如数据,图表,能检出来吗?检不出来的话不还是没什么用吗? 学术不端的各种行为中,文字复制是最为普遍和严重的,目前本检测系统对文字复制的检测已经达到相当高的水平,对于图表、公式、数据的抄袭和篡改等行为的检测,目前正在研发当中,且取得了比较大的进展,欢迎各位继续关注本检测系统的进展并多提批评性及建设性意见和建议。 2.按照这个系统39%以下的都是显示黄色,那么是否意味着在可容忍的限度内呢?最近看到对上海大学某教师的国家社科基金课题被撤消的消息,原因是其发表的两篇论文有抄袭行为,分别占到25%和30%. 请明示超过多少算是警戒线? 百分比只是描述检测文献中重合文字所占的比例大小程度,并不是指该文献的抄袭严重程度。只能这么说,百分比越大,重合字数越多,存在抄袭的可能性越大。是否属于抄袭及抄袭的严重程度需由专家审查后决定。 3.如何防止学位论文学术不端行为检测系统成为个人报复的平台? 这也是我们在认真考虑的事情,目前这套检测系统还只是在机构一级用户使用。我们制定了一套严格的管理流程。同时,在技术上,我们也采取了多种手段来最大可能的防止恶意行为,包括一系列严格的身份认证,日志记录等。 4.最小检测单位是句子,那么在每句话里改动一两个字就检测不出来了么? 我们对句子也有相应的处理,有一个句子相似性的算法。并不是句子完全一样才判断为相同。句子有句子级的相似算法,段落有段落级的相似算法,计算一篇文献,一段话是否与其他文献文字相似,是在此基础上综合得出的。 5.如果是从相关书籍上摘下来的原话,但是此话已经被数据库中的相关文献也抄了进去,也就是说前面的文章也从相关书籍上摘了相同的话,但是我的论文中标注的这段话来自相关的书籍,这个算不算学术抄袭? 检测系统不下结论,是不是抄袭最后还有人工审查这一关,所以,如果是您描述的这种情况,专家会有相应判断。我们的系统只是提供各种线索和依据,让人能够快速掌握检测文献的信息唬 6.知网检测系统的权威性? 学术不端文献检测系统并不下结论,即检测系统并不对检测文献定性,只是将检测文献中与其他已发表文献中的雷同部分陈列出来,列出客观事实,而这篇检测文献是否属于学术不端,需专家做最后的审查确认。 一篇论文的抄袭怎么才会被检测出来?知网论文检测的条件是连续13个字相似或抄袭都会被红字标注,但是必须满足3里面的前提条件:即你所引用或抄袭的A文献文字总和在你的各个检测段落中要达到5%。 毕业论文一般分哪几个部分? 论文基本结构 国家标准局1987年颁布《科学技术报告,学位论文和学术论文的编写格式》(GB7713-87)和《文后参考文献着录规则》(GB7714-87) 1,一般格式: ⑴ 题名.是以最恰当,最简明的语词反映论文中最重要的特定内容的逻辑组合,应避免使用的不常见的省略词,首字母缩写字,字符,代号和公式,字数一般不宜超过20个题名用语. ⑵ 作者姓名和单位,两人以上,一般按贡献大小排列名次. ① 文责自负;②记录成果;③便于检索 ⑶ 摘要:是论文的内容不加注释和评论的简短陈述,中文摘要一般不会超过300字,不阅读全文,即可从中获得重要信息.外文250实词. 包括:①本研究重要性;②主要研究内容,使用方法;③总研究成果,突出的新见解,阐明最终结论.重点是结果和结论. ⑷ 关键词.是从论文中选取出以表示全文主题内容信息款目的单词或术语,一般3-7个,有专用《主题词表》. ⑸ 引言. ⑹ 正文 ⑺ 结论:是指全文最终的,总体的结论,而不是正文中各段小结的简单重复.要求准确,完整,明晰,精练. ⑻ 致谢:是对论文写作有过帮助的人表示谢意,要求态度诚恳,文字简洁. ⑼ 参考文献表(注释 ⑽ 附录:在论文中注明附后的文字图表等. 二 正文的基本构成 1,学术论文的基本构成 前置部分:题名 ,论文作者,摘要,关键词 主体部分:绪论(引言,导论,序论,引论)正文,结论,注释,参考文献,后记(致谢) 2,正文的基本构成:绪论,本论(直线推论) 结论 (并列分论) ⑵ 提纲项目: 题目 基本论点 内容纲要 一,大项目(上位论点,大段段旨) 一,中项目(下位论点,段旨) ① 小项目(段中心,一个材料) 标题写法:简洁,扼要,别人不易误解 句子写法:具体,明确 3,论文提纲编写 ⑴ 论文写作设计图:(三级标目) 一, 二, 一 三, 二 1. 三 2. 3. 4,执笔顺序与起草方法 ⑴ 顺序 自然顺序:结论—本论—结论 颠倒顺序:本论—结论—结论 ⑵ 方法(初稿)一气呵成;分部写成. 5,学术论文的构段 ⑴ 统一,完整的规范段(另兼义段,不完整段) ⑵ 段首和段尾主句显示段旨.(也有段中或兼置首尾) ⑶ 容量运当,一般长段较多 6,表达: ⑴ 明确的观点; ⑵ 结构讲究方法; ⑶ 明快地叙述. 7,修改:整体着眼,大处入手.先整体,后局部;先观点,后材料;先编章,后语句 8,引文和加注 ⑴ 引文:尽量少引,不可断章取义,考虑读者是不理解,引文与解说要界限分明,核对无误,未正式公布材料一般不得引用.网上发布的材料不宜引用. ⑵ 加注:段中注(夹注)脚注,章,节附注 ,尾注 引文要加注码,一般用①②③,如注释很少也可加"*"(星号). ⑶ 注释体例 目的: 1,是为了满足读者查证,检索的实际需要 2,是规范的学术研究所必须的"附件",它显示著一个学术成果的视野,质量,水准,趣味等诸多方面 3,对待注释的态度也反映出作者的治学态度,诸如引用他人观点或语句不作注释或在注释中不客观,翔实地注明真实出处,将第二手材料说成第一手材料等等,均有违学术道德. 2,注释的格式 I.中文注释 A.引用专著 说明:(1)作者姓名后不加冒号或逗事情,直接跟加书名号的书名; (2)引用著作为译著的必须注出译者的名字,一般情况下在书名后和出版地点前; (3)如作者不限一人,作者姓名间以顿号分开;如作者为二人以上,可写出......>> 毕业论文大概需要多少字? 1.毕业论文是你大学的最后一门课程,十分重要。论文的方向是自己的专业方向,比较前瞻的观点加以论述,求证。相信你的论文观点已经确定,下一步就是蒐集相关资料,尽可能的丰富你的观点,一般文科类的毕业本科论文在1W字左右 理科的少一些 2. 毕业论文撰写的内容及要求: 题目 题目应简短、明确、有概括性,并能恰当、准确的反映本论文的研究内容。题目不超过25个字,除非确有必要,一般不设副标题。 摘要与关键词 摘要 摘要是论文内容的简要陈述,是一篇具有独立性和完整性的短文。摘要应包括论文的创新见解、主要论点及理论与实际意义。摘要中不宜使用公式、图表、不标注引用文献编号。避免将摘要写成目录式的内容介绍。 关键词 关键词是供检索用的主题词条,应采用能覆盖论文主要内容的通用词条。关键词一般列3—5个,按词条的外延层次排列(外延大的排在前面)。 正文 正文包括绪论、正文主体与结论等部分。 绪论 绪论一般作为第一章。绪论应包括:本设计(论文)的目的与实际意义;对所研究问题的认识及要达到的技术要求;本设计(论文)的主要研究内容;简述本课题在国内外文献综述;有时也简单介绍研究方法、材料的依据等。 论文主体 论文主体是论文的主要部分,应结构合理,层次清楚,重点突出,文字简练、通顺。论文主体的内容应包括以下各方面: 本研究内容的设计原理及总体方案设计与选择论证; 本研究内容的各部分的(包括硬件和软件)设计计算; 本研究内容试验方案设计的可行性、有效性以及试验数据处理及分析; 本研究内容的理论分析。对本研究内容及成果应进行较全面、客观的理论阐述,应指出本研究内容中的创新、改进与实际应用之处,阐述本课题研究中尚存在的问题及进一步开展研究的见解和建议。对于将其他领域的理论、结果引用到本研究领域者,应说明该理论的出处,并论述引用的可行性与有效性。 自然科学的论文应推理正确,结论清晰,无科学性错误。 管理和人文学科的论文应包括对研究问题的论述及系统分析,比较研究,模型或方案设计,案例论证或实证分析,模型运行结果分析或建议改进措施等。 结论 学位论文的结论单独作为一章排写,但不加章号。 结论是对整个论文主要的成果的总结。在结论中应明确指出本研究内容的成果,或新见解、新观点,对其应用前景和社会经济价值等加以预测和评价,并指出今后进一步在本研究方向进行研究工作的展望与设想。结论内容一般在2000字以内。 致谢 对指导教师或协助完成设计(论文)工作的组织和个人表示感谢。内容简洁明了、实事求是。 参考文献 参考文献是毕业设计(论文)不可缺少的组成部分,所引用的文献必须是本人真正阅读过的,近期发表的与设计(论文)工作直接有关的文献。所它反映毕业设计的取材来源、材料的广博程度和材料的可靠程度,列入主要的文献在10篇以上,其中外文文献在2篇以上。 附录 附录是对于一些不宜放在正文中,但又直接反映完成工作的成果内容。如图纸﹑实验数据﹑计算机程序等材料附于毕业设计之后,附录所包含的材料是毕业设计(论文)的重要组成部分。 3 书写规定 设计(论文)书写 设计(论文)必须由本人手抄或在计算机上输入,用A4纸编排。 论文摘要用中英文两种文字给出,编排上中文在前,英文摘要另起一页。 摘要 摘要的字数一般为500字左右。以能将规定的内容阐述清楚为原则,摘要页不需写出论文题目。 英文摘要与中文摘要的内容完全一致,在英文语法、用词上应正确无误。 目录 ......>>

不同的学校对于本科毕业论文字数要求不同,一般非211、985学校的本科毕业论文字数在6000-8000字左右,一些要求较高的专业或者重点院校则要求论文字数高达10000字左右或者以上。

由于学校不一样,那么对于本科毕业论文字数要求也会不一样,一般非211、985学校,它们的本科毕业论文字数是在6000-8000左右(像工程类需制图专业的还要更多字数),对于一些要求较高或者重点学校,要求论文的字数要在10000字左右或以上,总而言之,每个学校在论文字数上的规定都会有一点差异。

拓展资料:本科生毕业论文的主要内容

1、标题:字体为宋体,小二,文字居中。

2、中文摘要:字数至少达到200字以上;关键词3-5个,每个词间空一格;字体为宋体、小四号;字符间距为标准;行距为20磅。

3、英文摘要:关键词为四号宋体,加粗;目录需用二号黑体加粗居中;章节条目使用五号宋体;行距设置为单倍行距。

4、正文:字体为宋体、小四号;字符间距为标准;行距为20磅。

5、参考文献:毕业论文末尾要列出在论文中参考过的专著、论文及其他资料,所列参考文献应按文中参考或引证的先后顺序排列。

6、期刊内容:包括作者、题名、刊名、年、卷(期)起始页码-结束页码。著作内容:包括作者、编者、文献题名、出版社、出版年份、起止页码。

7、附件:开题报告和检查情况记录表。

字数要求

本科论文字数一般在5000字以上即可,一般6000-8000字比较合适,过长或者过短都是不合适的,本科论文一般不会有什么特别高的要求,发表普刊就可以,有些甚至不要求见刊,因此本科毕业论文的字数无需太多,只要做到结构完整,思路清晰,再加上一定程度的创新,一般都可以通过考核的。

拓展阅读:

查重

本科毕业论文查重率一共是分成四个等级。在其中A级的标淮是:毕业论文的重复率在10%之内。这种毕业论文是能够立即通过。而且还能够作为优秀论文的参考范围。B级的标淮是:重复率在10%至20%,这种毕业论文能够通过,与此同时也可以作为优秀论文选拔范围。

C级的标淮是:20%至50%之内,这种毕业论文是不予通过的,因为其重复率过高,存有大量抄袭的文字,大学生们必须要进行修改和再次检测。D级的标淮是:论文查重率在50%以上,这种毕业论文几乎就是抄袭的代名词。只有实现A,B两个等级的标淮才能够参加论文答辩。

反三角函数论文格式

反三角函数公式:arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x∈〔0,π〕,arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=xx〉0,arctanx=arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)

一.基础知识自测题:1.sin(arccosx)=; tg(arcsinx)=; sin(arctgx)=.2.sin(arcsin)=; arccos(cos)=; arcsin(cos)=.3.tg{arcsin[cos(arcctg(-))]}=.4.cos[arctg+arccos(-)]=.5.sin[arctg(-)]=; cos(2arcsin)+cos(2arccos)=.6.arcsin[sin(-5)]+arctg(tg10)= 5-π .7.sin(2arctg)+tg(arcsin)=.8.cos{arcsin(sinx)+arccos[cos(x-)]}= 0 .二.基本要求:1.对反三角函数施以三角运算,实质是求三角函数值,通常是利用反三角函数的意义,用辅助角表示反三角函数,同时给定角的范围,然后化成三角函数的运算。而对于反三角函数的多层运算,一般由内到外逐层化简;2.求反三角函数的值的实质是求角,应注意求角的三个步骤:①讨论角的范围,确定在这个范围内不同的角有不同的三角函数值;② 求这个角的一个三角函数值;③ 求出相应的角;3.反三角函数的等式证明,一般必须证明两点:①等式两端的角的同名三角函数值相等;② 等式两端的角在所取的三角函数的同一单调区间内;例一.已知函数f (x)=arcsin(sinx), g(x)=cos(2arccosx),求证:f (x)是奇函数,g(x)是偶函数。证明:函数f (x)的定义域是R,f (-x)=arcsin[sin(-x)]=arcsin(-sinx)=-f (x),∴f (x)是奇函数;函数g(x)的定义域是[-1, 1], g(-x)=cos[2arccos(-x)]=cos[2(π-arccosx)]=cos(2arccosx)=f (x).∴ g(x)是偶函数。例二.求函数y=arccos(x2-x)的单调递增区间。解:由-1≤x2-x≤1, 解得≤x≤,设u=x2-x=(x-)2-, 则当x∈[, ]时, u单调递减,且u∈[-1, 1]时,y=arccosu单调递减, ∴当x∈[, ]时, y=f (x)单调递增。例三.计算:(1) tg(arcsin+arccos); (2) sin(arcctg).解:(1) tg(arcsin+arccos)=tg(+)=.(2) sin(arcctg)=sin(·)==.例四.求值:(1) tg[2arcsin(-)-arccos]; (2) sin(2arctg)+cos(2arctg2).解:(1) arcsin(-)=-,设arccos=β,则cosβ=,β∈(0, ), sinβ=,tg=,∴原式=tg(--)=-tg(+)=-=-(8+5).(2) 设arctg=α,arctg2=β, α,β∈(0, ), 且tgα=, tgβ=2,因此sin(2arctg)=sin2α==, cos(2arctg2)=cos2β==-,∴原式=-=-.例五.求值:(1) arcsin[sin(-)]; (2)arccos(cos);(3) arcsin[cos(+α)]+arccos[sin(π+α)], 其中0<α<.解:(1) sin(-)=-sin=sin, ∴arcsin[sin(-)]=arcsin(sin)=.(2) arccos(cos)=arccos[cos(π+)]=arccoscos=.(3) ∵0<α<, ∴ cos(+α)=-sinα=sin(-α), sin(π+α)=cos(+α),∴原式=arcsin[sin(-α)]+arccos[cos(+α)]=-α++α=.例六.求证:sin{arccos[tg(arcsinx)]}=.证明:设arcsinx=α, α∈[-, ], sinα=x, cosα=, tgα=,∴ arccos[tg(arcsinx)]=arccos, 设arccos=β, β∈[0, π],cosβ=, sinβ==,∴ sin{arccos[tg(arcsinx)]}=.例七.求值:(1) tg[arcsin(-)]; (2) arcsin-arctg.解:(1)设arcsin(-)=α, α∈(-, 0), 且sinα=-, ∴ cosα=,tg[arcsin(-)]=tg==-.(2) 设arcsin=α,α∈(0, ),且sinα=, cosα=,arctg=β, β∈(0, ), 且tgβ=, sinβ=, cosβ=,又α-β∈(-, ), ∴ sin(α-β)=sinαcosβ-cosαsinβ=,∴α-β=, 即arcsin-arctg=.例八.已知arcsin0, x1x2= cos<0, 故正根的绝对值大于负根的绝对值,∴α+β∈(0, ), ∴α+β=.例十.若(x+1)(y+1)=2,求arctgx+arctgy的值。解:∵ (x+1)(y+1)=2, ∴xy+x+y+1=2, ∴ x+y=1-xy,设arctgx=α, arctgy=β, 则tgα=x, tgβ=y, ∴ tg(α+β)= ==1,又α,β∈(-, ), ∴ α+β∈(-π, π), α+β=或α+β=-.三.基本技能训练题:1.当 x>0 时, arctgx=arcctg, 当 x<0 时, arctgx= arcctg-π.2.比较大小:arccos(-) > arcctg(-).3.sin(arccos+arccos)=.4.已知cos2α=,α∈(0, ), sinβ=-,β∈(π, ), 则α+β=.四.试题精选:(一) 选择题:1.若arcsin(sinx)=x,则x的取值范围是(B)。(A)-1≤x≤1 (B)-≤x≤ (C)0≤x≤1 (D)0≤x≤2.2arcsin=(D)。(A)arcsin (B)arccos (C)-arccos (D)π-arctg3.若arctg(-3)+arcctgx=,则x的值是(B)。(A) (B)- (C)2 (D)-24.下列各式中,其值为正的是(B)。(A)aecsin(-)-arccos(-) (B)arccos(-)-arccos(-)(C)arctg-arctg (D)arctg(-3)-arctg(-)5.cos2(arcsin)的值是(A)。(A) (B) (C) (D)6.若arcsin(-)=-arccosx,则x等于(C)。(A) (B)- (C) (D)-7.若arctg(1-x)+arctg(1+x)=,则x等于(C)。(A) (B)- (C)± (D)±18.当x∈[-1, 0]时, 下列关系式中正确的是(C)。(A)π-arccos(-x)=arcsin (B)π-arcsin(-x)=arccos(C)π-arccosx=arcsin (D)π-arcsinx=arccos9.函数y=arccos(cosx) (x∈[-, ])的图象是(A)。(A) (B) (C) (D)10.若0<α<,则arcsin[cos(+α)]+arccos[sin(π+α)]等于(A)。(A) (B)- (C)-2α (D)--2α(二) 填空题:11.cos[arccos(-)+arccos]= -1 .12.arccos[sin(-)]=.13.arcsin+2arctg=.14.sin[2arccos(-)]=.15.arctg()=.(三) 解答题:16.求arcsin+arccos的值。解:设α=arcsin, α∈(0, ), sinα=, cosα=,β= arccos, β∈(0, ), cosβ=, sinβ=,∴ α+β∈(0, π), cos(α+β)=cosαcosβ-sinαsinβ=,∴ arcsin+arccos=.17.求tg(arcsin)的值。解:设arcsin=α, α∈(0, ), sinα=, cosα=,∴ tg==. tg(arcsin)=.18.求函数y=cos(2arcsinx)+2sin(arcsinx)的最值。解:设α=arcsinx,x∈[-1, 1], sinα=x, cos2α=1-2sin2α=1-2x2,∴ y=1-2x2+2x=-2(x-)2+,当x=时, y取得最大值为,当x=-1时, y取得最小值-.求证:sin[arcctg()-arctg()]=tg2.证明:设arctg()=θ,则arcctg()=-θ,且tgθ=,sin(-2θ)=cos2θ=== tg2.

一反三角函数的三角恒等式:1).sin(arcsinx)=x (|x|≤1)2).cos(arccosx)=x (|x|≤1)3).tan(arctanx)=x (-∞

反三角函数公式:arcsin(-x)=-arcsinxarccos(-x)=∏-arccosxarctan(-x)=-arctanxarccot(-x)=∏-arccotxarcsinx+arccosx=∏/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x当x∈〔0,∏〕,arccos(cosx)=xx∈(—∏/2,∏/2),arctan(tanx)=xx∈(0,∏),arccot(cotx)=xx〉0,arctanx=arctan1/x,arccotx类似若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)

相关百科

热门百科

首页
发表服务