首页

> 论文发表知识库

首页 论文发表知识库 问题

基于数据挖掘的营销策略研究论文

发布时间:

基于数据挖掘的营销策略研究论文

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

大数据技术在网络营销中的策略研究论文

从小学、初中、高中到大学乃至工作,说到论文,大家肯定都不陌生吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。那要怎么写好论文呢?以下是我帮大家整理的大数据技术在网络营销中的策略研究论文,欢迎阅读与收藏。

摘要:

当今,随着信息技术的飞速发展,互联网用户的数量日益增加,进一步促进了电子商务的快速发展,并使企业能够更准确地获取消费者数据,大数据技术应运而生。该技术已被一些企业用于网络营销,并取得了显着的营销效果。本文基于大数据的网络营销进行分析,分析传统营销存在的问题和挑战,并对大数据技术在网络营销中的作用进行研究,最后针对性地提出一些基于大数据的网络营销策略,以促进相关企业在大数据时代加强网络营销,并取得良好的营销效果。

关键词:

大数据;网络营销;应用策略;营销效果;

一、前言

现代社会已经完全进入了信息时代,在移动互联网和移动智能设备飞速发展与普及之下,消费者的消费数据都不断被收集、汇总并处理,这促进了大数据技术的发展。大数据技术可以精准的分析消费者的习惯,借助大数据技术,商家可以针对顾客进行个性化营销,极大地提高了精准营销的效果,传统的营销方式难以做到这一点。因此,现代企业越来越重视发展网络营销,并期望通过大数据网络营销以增加企业利润。

二、基于大数据的网络营销概述

网络营销是互联网出现之后的概念,初期只是信息爆炸式的轰炸性营销。后来随着移动智能设备的普及、移动互联网的发展以及网络数据信息的海量增长,大数据技术应运而生。大数据技术是基于海量的数据分析,得出的科学性的结果,出现伊始就被首先应用于网络营销之中。基于大数据的网络营销非常精准,是基于海量数据分析基础上的定向营销方式,因此也叫着数据驱动营销。其主要是针对性对顾客进行高效的定向营销,最为常见的就是网络购物App中,每个人得到的物品推荐都有所区别;我们浏览网络时,会不断出现感兴趣的内容,这些都是大数据营销的结果。

应用大数据营销,企业可以精准定位客户,并根据客户的喜好与类型对产品与服务进行优化[1],然后向目标客户精准推送。具体来说,基于大数据技术的精准网络营销过程涉及三个步骤:首先是数据收集阶段。企业需要通过微博、微信、QQ、企业论坛和网站等网络工具积极收集消费者数据;其次,数据分析阶段,这个阶段企业要将收集到的数据汇总,并进行处理形成大数据模型,并通过数据挖掘技术等高效的网络技术对数据进行处理分析,以得出有用的结论,比如客户的消费习惯、消费能力以及消费喜好等;最后,是营销实施阶段,根据数据分析的结果,企业要针对性地制定个性化的营销策略,并将其积极应用于网络营销以吸引客户进行消费。基于大数据的网络营销其基本的目的就是吸引客户主动参与到营销活动之中,从而提升营销效果和经济收益。

三、传统网络营销存在的一些问题

(一)传统网络营销计划主要由策划人主观决定,科学性不足

信息技术的迅速发展,使得很多企业难以跟上时代的步伐,部分企业思想守旧,没有跟上时代潮流并开展网络营销活动,而是仍然继续使用传统的网络营销模型和方式。即主要由策划人根据自己过去的经验来制定企业的营销策略,存在一定的盲目性和主观性,缺乏良好的信息支持[2]。结果,网络营销计划不现实,难以获得有效的应用,导致网络营销的效果不好。

(二)传统网络营销的互动性不足,无法进行准确的产品营销

传统的网络营销互动性较差,主要是以即时通信软件、邮箱、社交网站以及弹窗等推送营销信息,客户只能被动的接受信息,无法与企业进行良性互动和沟通,无法有效的表达自己的诉求,这导致了企业与客户之间的割裂,极大的影响了网络营销的效果。此外,即使一些企业获得了相关数据,也没有进行科学有效的分析,但却没有得到数据分析的结果,也没有根据客户的需求进行有效的调整,从而降低了营销活动的有效性。

(三)无法有效分析客户需求,导致客户服务质量差

当企业进行网络营销时,缺乏对相关技术的关注以及对客户需求的分析的缺乏会导致企业营销策略无法获得预期的结果。因此,企业只能指望出于营销目的向客户发布大量营销内容。这种营销效果非常糟糕。客户不仅将无法获得有价值的信息,而且此类信息的“轰炸”也会使他们感到烦躁和不耐烦,这将适得其反,并降低客户体验[3]。

四、将基于大数据的网络营销如何促进传统的网络营销

(一)使网络营销决策更科学,更明智

在传统的网络营销中,经理通常根据过去的经验来制定企业的营销策略,盲目性和主观性很多,缺乏可靠的数据。基于大数据的网络营销使用可以有效地收集有关市场交易和客户消费的数据,并利用数据挖掘技术等网络技术对收集到的数据进行全面科学的分析与处理,从中提取有用的相关信息,比如客户的消费习惯、喜好、消费水平以及行为特征等,从而制定针对客户的个性化营销策略,此外,企业还可以通过数据分析获得市场发展变化的趋势以及客户消费行为的趋势,从而对未来的市场形势作出较为客观的判断,进而帮助企业针对未来一段时间内的行为制定科学合理的'网络营销策略,提升企业的效益[4]。

(二)大大提高了网络营销的准确性

如今,大数据驱动的精准网络营销已成为网络营销的新方向。为了有效地实现这一目标,企业需要在启动网络营销之前依靠大数据技术来准确分析大量的客户数据,以便有效地捕获客户的消费需求,并结合起来制定准确的网络营销策略[5]。此外,在实施网络营销策略后,积极收集客户反馈结果并重新分析客户评论,使企业对客户的实际需求有更深刻的了解,然后制定有效的营销策略。如果某些企业无法有效收集客户反馈信息,则可以收集客户消费信息和历史消费信息,然后对这些数据进行准确的分析,从而改善企业的原始网络营销策略并进行促销以获取准确的信息,进而制定有效的网络营销策略。

(三)显着提高对客户网络营销服务水平

通过利用大数据进行准确的网络营销,企业可以大大改善客户服务水平。这主要体现在两个方面:一方面可以使用大数据准确地分析客户的实际需求,以便企业可以进行有针对性的的营销策略,可以大大提高客户服务质量。另一方面,使企业可以有效地吸收各种信息,例如客户兴趣、爱好和行为特征,以便向每个客户发布感兴趣的推送内容,以便客户可以接收他们真正需要的信息,提高客户满意度。

五、基于大数据的网络营销优势

(一)提高网络营销广告的准确性

在传统的网络营销中,企业倾向于使用大量无法为企业带来相应经济利益的网络广告进行密集推送,效率低下。因此,必须充分利用大数据技术来提高网络营销广告的准确性。首先,根据客户的情况制定策略并推送合适的广告,消费场景在很大程度上影响了消费者的购买情绪,并可以直接确定消费者的购买行为。如果客户在家中购买私人物品,则他们第二天在公司工作时,却同送前一天相关私人物品的各种相关的广告。前一天的搜索行为引起的问题可能会使消费者处于非常尴尬的境地,并影响他们的购买情绪。这表明企业需要有效地识别客户消费场景并根据这些场景发布更准确的广告[6]。一方面,通过IP地址来确定客户端在网络上的位置。客户在公共场所时,广告内容应简洁明了。另一方面,可以通过指定时间段来确定推送通知的内容。在正确的时间宣传正确的内容。其次,提高客户选择广告的自主权。在传统的网络营销中,企业通常采用弹出式广告,插页式广告和浮动广告的形式来强力吸引客户的注意力,从而引起强烈的客户不满。一些客户甚至会毫不犹豫地购买广告拦截软件,以防止企业广告。在这方面,大数据技术可用于改善网络广告的形式和内容并提高其准确性。

(二)提高网络营销市场的定位精度

在诸如电子邮件营销和微信营销之类的网络营销方法中,一个普遍现象是企业拥有大量的粉丝,并向这些粉丝发送了大量的营销信息,但是却没有得到较好的反馈,营销效果较差。造成这种现象的主要原因是企业产品的市场定位不正确。可以通过以下几个方面来提高网络营销市场中的定位精度:

1、分析客户数据并确定产品在市场上的定位:

首先,收集大量基本数据并创建客户数据库。在此过程中,应格外小心,以确保收集到的有关客户的信息是全面的。因此,可以使用各种方法和渠道来收集客户数据。例如,可以通过论坛、企业官方网站、即时通信软件以及购物网站等全面的收集客户的各种信息。收集完成后利用高效的数据分析处理技术对信息进行处理,并得出结果,包括客户的年龄、收入、习惯以及消费行为等结果,然后根据结果对企业的产品进行定位,并与客户的需求相匹配,进而明确市场[7]。

2、通过市场调查对产品市场定位进行验证:

在利用大数据及时对企业产品进行市场定位之后,有必要对进一步进行市场调查,以进一步清晰产品的市场定位,如果市场调查取得较为满意的效果,则表明网络营销策略较为成功,可以加大推广力度以促进产品的销售,如果效果不满意,则要积极分析问题,寻找原因并提出针对性的解决改进措施,以获得较为满意的结果[8]。

3、建立客户反馈机制:

客户反馈机制可以有效的帮助企业改进产品营销策略,主要体现有两个主要功能:一是营销产品在市场初步定为成功后可以通过客户反馈积极征询客户的意见,并进一步改进产品,确保产品更适应市场;二是如果营销产品市场定位不成功,取得的效果不佳,可以通过客户反馈概括定位失败的原因,这将有助于将来的产品准确定位。

(三)增强网络营销服务的个性化

为了增强网络营销服务的个性化,企业不仅必须能够使用大数据识别客户的身份,而且还必须能够智能地设计个性化服务。首先,通过大数据了解客户的身份。一方面,随着网络的日益普及,企业可以在网络上收集客户各个方面的信息。但是,众所周知,由于互联网管理的不规范与复杂性,大多数信息不是高度可靠的,甚至某些信息之间存在着极为明显的矛盾。因此,如果企业想要通过大数据来了解其客户的身份,则必须首先确保所收集的信息是可信且准确的。另一方面,企业必须能够从大量的客户信息中选择最能体现其个性的关键信息,并降低分析企业数据的成本[9]。二是合理设计个性化服务。个性化服务的合理设计要求企业在两个方面进行运营:一方面,由于现实环境的限制,企业无法一一满足所有客户的个性化需求。这就要求企业尽一切努力来满足一部分客户的个性化需求,并根据一般原则开发个性化服务。另一方面,如果完全根据客户的个人需求向他们提供服务,则企业的服务成本将不可避免地急剧上升。因此,企业应该对个性化客户服务进行详细分析,并尝试以适合其个人需求的方式为客户提供服务,而不会给企业造成太大的财务负担。

六、基于大数据网络营销策略

使用大数据的准确网络营销模型基本上包括以下步骤。首先,收集有关客户的大量信息;其次,通过数据分类和分析选择目标客户;第三,根据分析的信息制定准确的网络营销计划;第四,执行营销计划;第五,评估营销结果并计算营销成本;第六,在评估过程的基础上,进一步改善,然后更准确地筛选目标客户。在持续改进的过程中,上述过程可以改善网络营销。因此,在大数据时代,电子商务企业必须突破原始的广泛营销理念,并采用新的营销策略。

(一)客户档案策略

客户档案意味着在收集了有关每个人的基本信息之后,可以大致了解每个人的主要销售特征。客户档案是准确进行电子商务促销的重要基础,也是实现精确营销目标的极其重要的环节。电子商务企业利用客户档案策略可以获得巨大收益。首先,借助其专有的销售平台,电子商务企业可以轻松,及时且可靠地收集客户使用情况数据。其次,在传统模型中收集数据时,由于需要控制成本,因此经常使用抽样来评估数据的一般特征[10]。大数据时代的数据收集模型可以减少错误并提高数据准确性。当分析消费者行为时最好以目标消费者为目标。消费者行为分析是对客户的消费目的和消费能力的分析,可帮助电子商务企业更好地选择合适的目标客户。在操作中,电子商务企业需要在创建数据库后继续优化分析结果,以最大程度地分析消费者的偏好。

(二)满足需求策略

为了满足多数人的需求,传统的营销方法逐渐变得更加同质。结果,难以满足少数客户的特殊需求,并且导致利润损失。基于大数据客户档案技术的电子商务企业可以分析每个客户的需求,并采取差异化人群的不同需求最大化的策略,从而获取较大的利润。为了满足每个客户的需求,最重要的是实现差异化,而不仅仅是满足多数人的需求,因此必须准确地分析客户的需求,还必须根据客户的需求提供更多个性化的产品[11]。比如当前,定制行业非常流行,卖方可以根据买方提供的信息定制独特的产品,该产品的利润率远高于批量生产线。

(三)客户服务策略

随着网络技术的逐步发展,电子商务企业和客户可以随时进行通信,这基本上消除了信息不对称的问题,使客户可以更好地了解他们想要购买的产品以及遇到问题时的情况。当出现问题时,可以第一时间解决,提高交易速度。因此,当电子商务企业制定用于客户服务的营销策略时,一切都以客户为中心。为了更好地实施此策略,必须首先改善数据库并加深对客户需求的了解[12]。二是提高售前、售后服务质量,开展集体客户服务培训,缩短客户咨询等待时间,改善客户服务。最后,我们必须高度重视消费者对产品和服务的评估,及时纠正不良评论,并鼓励消费者进行更多评估,良好的服务态度和高质量的产品可以大大提高目标客户对产品的忠诚度,并且可以吸引消费者进行第二次购买。

(四)多平台组合策略

在信息时代,人们可以在任何地方看到任何信息,这也将分散他们的注意力,并且重新定向他们的注意力已经成为一个大问题。如果希望得到更多关注,则可以组合跨多个平台的营销策略,并在网络平台和传统平台上混合营销。网络平台可以更好地定位自己并吸引更多关注,而传统平台则可以更好地激发人们的购买欲望。平台融合策略可以帮助电子商务企业扩大获取客户的渠道,不同渠道的用户购买趋势不同,可以改善数据库[13]。

七、结语

总体而言,大数据时代不仅给网络营销带来了挑战,而且还带来了新的机遇。大数据分析不仅可以提高准确营销的效果,更好地服务消费者,改变传统的被动营销形式,并提升网络营销效果。

参考文献

[1]刘俭云.大数据精准营销的网络营销策略分析[J].环球市场,2019(16):98.

[2]栗明,曾康有.大数据时代下营业网点的精准营销[J].金融科技时代,2019(05):14-19.

[3]刘莹.大数据背景下网络媒体广告精准营销的创新研究[J].中国商论,2018(19):58-59.

[4]李研,高书波,冯忠伟.基于运营商大数据技术的精准营销应用研究[J].信息技术,2017(05):178-180.

[5]袁征.基于大数据应用的营销策略创新研究[J].中国经贸导刊(理论版),2017(14):59-62.

[6]邱媛媛.基于大数据的020平台精准营销策略研究[J].齐齐哈尔大学学报(哲学社会科学版),2016(12):60-62.

[7]张龙辉.基于大数据的客户细分模型及精确营销策略研究[J].河北工程大学学报(社会科学版),2017,34(04):27-28.

[8]李巧丹.基于大数据的特色农产品精准营销创新研究——以广东省中市山为例[J].江苏农业科学,2017,45(06):318-321.

[9]孙洪池,林正杰.基于大数据的B2C网络精准营销应用研究——以中国零售商品型企业为例[J].全国流通经济,2016(12):3-6.

[10]赵玉欣,王艳萍,关蕾.大数据背景下电商企业精准营销模式研究[J].现代商业,2018(15):46-47.

[11]张冠凤.基于大数据时代下的网络营销模式分析[J].现代商业,2014(32):59-60.

[12]王克富.论大数据视角下零售业精准营销的应用实现[J].商业经济研究,2015(06):50-51.

[13]陈慧,王明宇.大数据:让网络营销更“精准”[J].电子商务,2014(07):32-33.

Web数据挖掘技术探析论文

在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

引言

当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

计算机web数据挖掘概述

1.计算机web数据挖掘的由来

计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

2.计算机Web数据挖掘含义及特征

(1)Web数据挖掘的含义

Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

(2)Web数据挖掘的特点

计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

(3)计算机web数据挖掘技术的类别

web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

计算机web数据挖掘技术与电子商务的关系

借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

计算机web数据挖掘在电子商务中的具体应用

(1)电子商务中的web数据挖掘的过程

在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

(2)Web数据挖掘技术在电子商务中的应用

目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

结语

本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

关键词: 电子商务;数据挖掘;应用

1概述

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

2数据挖掘技术概述

数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

3Web数据挖掘特点

Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

4电子商务中Web挖掘中技术的应用分析

1)电子商务中序列模式分析的应用

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

2)电子商务中关联规则的应用

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

3)电子商务中路径分析技术的应用

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

4)电子商务中分类分析的应用

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

参考文献:

[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):

[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

数据挖掘论文数据

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

Web数据挖掘技术探析论文

在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

引言

当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

计算机web数据挖掘概述

1.计算机web数据挖掘的由来

计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

2.计算机Web数据挖掘含义及特征

(1)Web数据挖掘的含义

Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

(2)Web数据挖掘的特点

计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

(3)计算机web数据挖掘技术的类别

web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

计算机web数据挖掘技术与电子商务的关系

借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

计算机web数据挖掘在电子商务中的具体应用

(1)电子商务中的web数据挖掘的过程

在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

(2)Web数据挖掘技术在电子商务中的应用

目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

结语

本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

关键词: 电子商务;数据挖掘;应用

1概述

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

2数据挖掘技术概述

数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

3Web数据挖掘特点

Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

4电子商务中Web挖掘中技术的应用分析

1)电子商务中序列模式分析的应用

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

2)电子商务中关联规则的应用

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

3)电子商务中路径分析技术的应用

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

4)电子商务中分类分析的应用

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

参考文献:

[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):

[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

关于数据挖掘的期刊论文

数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

Web数据挖掘技术探析论文

在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

引言

当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

计算机web数据挖掘概述

1.计算机web数据挖掘的由来

计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

2.计算机Web数据挖掘含义及特征

(1)Web数据挖掘的含义

Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

(2)Web数据挖掘的特点

计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

(3)计算机web数据挖掘技术的类别

web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

计算机web数据挖掘技术与电子商务的关系

借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

计算机web数据挖掘在电子商务中的具体应用

(1)电子商务中的web数据挖掘的过程

在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

(2)Web数据挖掘技术在电子商务中的应用

目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

结语

本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

关键词: 电子商务;数据挖掘;应用

1概述

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

2数据挖掘技术概述

数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

3Web数据挖掘特点

Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

4电子商务中Web挖掘中技术的应用分析

1)电子商务中序列模式分析的应用

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

2)电子商务中关联规则的应用

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

3)电子商务中路径分析技术的应用

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

4)电子商务中分类分析的应用

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

参考文献:

[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):

[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

汉斯有本(数据挖掘)刊物,你可以参考下上面的文献,找下方法

这个杂志没有吧

基于数据挖掘技术论文开题报告

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

论文开题报告评语

论文的评语对学生今后的论文写作和发展影响巨大而深远,导师应该加以重视,那么,论文的开题报告评语要如何写呢?

1.学生xx的选题,紧扣专业方向、紧扣现实,做到理论与实践结合、与实习体会结合,有现实意义,有完成选题的能力和条件,其开题报告体现了我院培养高级实用型人才的目标的要求。且该生对于所开课题进行了较为详尽的调研,参考了许多文献,最后确定的课题具有一定的实用价值。本课题是学生所学专业知识的延续,符合学生专业发展方向,对于提高学生的基本知识和技能,对于提高学生的研究能力有益。研究方法和研究计划基本合理,难度合适,学生能够在预定时间内完成该课题的设计。

2.该生对本课题相关的知识与理论研究比较透彻,参考了许多的文献资料,具有一定的研究价值。本课题结构合理,内容完整,主要观点突出,并且时效性强,是学生学习方向的延续,对于提高学生的能力有利。

3.该生通过与课题组成员和老师充分讨论,参考了许多文献,确定了具有一定的市场价值的课题。本课题初步确定的论文设计思路基本明确,通过分析Grice的合作原则在国际商务谈判中的运用可以提高国际商务谈判的效率,以及促进国际贸易的发展。本课题的研究方法和研究步骤基本合理,难道合适,学生能够在预定时间内完成该课题的设计。

4. 该生用dreamweave和access数据库等技术对甘孜旅游网站进行设计,设计清新美观,主要问题回答准确,基本概念清楚,望对论文中指正的数据库存放问题进行修改。

5. 该生专业素养比较好,对所提问题回答流利,正确率高,对实现过程中遇到的难题认识到位,时间把握得当,若能用比较新的运行环境进行实现相对好。

6. 该生对数据库的设计细节讲解详细,研究深入,论坛设计部分独立完成,有一定的科研能力,答辩中思路清晰,回答得简明扼要,语言流利。答辩组经过认真讨论,一致同意通过该生成绩为良好,但要求该生纠正论文中尚存的某些错误。

7. 在十分钟的陈述中,该生介绍了论文的主要观点、内容与结构,以及论文的写作过程,条理清晰,语言无大错,对老师的提问做出了基本正确的回答,体现了一定的专业素养。但设计过程有点小问题,流程图不很完善,希望及时纠正。

8. 从答辩可以看出该生总体专业基础比较扎实,准备工作充分,对论文内容非常熟悉,能简洁明了的陈述设计思想和过程,系统展示流畅,回答问题有理有据,基本概念清楚,论文有一定创新。希望继续完善论文中的部分文字和符号,争取规范使用。

9. 该生在规定时间内比较流利、清楚的阐述论文的主要内容,能恰当回答与论文有关的问题,态度谦虚,体现了比较扎实的计算机基础。建议把图像的打开功能用适当的文字表达出来,继续完善使论文格式规范化。

10. 结合数学知识用计算机技术来处理地质问题,对方法原理掌握透彻,论文有比较好的创新。对快速傅里叶和小波变换图的结果分析到位,处理结果良好,计算机基础素养好。答辩中主要问题回答准确、深入。论文中变换的指标若有对比会更好。

11. 论文陈述清楚,讲解简单明了,存在不足在于缺少自己的新观点、新方法,多为套用他人研究成果,论文格式方面应多规范。

12. 答辩的准备工作充分,对老师的提问能详实回答,并对设计过程中所遇困境能反复探讨研究,找出更好的解决方法,专业技术比较好。若能结合专业改进使静态的网页成为动态的则更好,不足在于数据库中表的描述方式不太对,望改进。

13. 论文陈述清晰明白,开门见山,直接入题。对老师的提问能流利作答,思路清晰,但对论文中的部分代码解释不楚,有少量语言错误,望今后的研究中多创新。

14. 该生能在规定时间内陈述论文的主要内容,但答辩中回答问题不是很流畅,对设计的细节技术不太熟,回答问题不够切题。

15. 从五部分对论文进行阐述,重点突出,答辩流畅、熟练,知识掌握基本到位,时间符合要求。不足是论文中有部分概念错误。

1、xxx同学的学位论文,将计算机辅助设计技术覆盖产品设计的全过程是当前CAD研究的主要内容。传统意义下的CAD技术着重于辅助产品的详细设计和绘图输出,因而有较大的局限性。本文以图形单元作为产品设计资讯的载体,通过运动分析、功能映射、变型设计、关联设计等手段,将计算机辅助设计技术全面地融入产品概念设计过程,取得了一系列有创造性的研究成果:

1.将零件结构划分为零件、功能结构和基因单元三个层次,以功能结构为单位组织基因单元,有利于实现基于功能的零件概念设计。

2.提出了产品骨架单元的提取方法,通过插入、删除、替代、分解、整合、克隆、派生等多种骨架单元置换手段,在保持功能不变的条件下,对产品进行变型设计。与传统的基于尺寸的产品参数化设计不同,上述变形设计能导致产品结构的变化,因而为创新型设计提供了有效的CAD手段。骨架单元表示完整地体现了该结构与产品中其他结构的约束关系。在保证产品中各结构单元有序性、一致性的前提下,减少了所附加大数据量,有利于在概念设计中,对设计方案反复进行斟酌与修改。

3.在关联设计中,归纳总结了五种关联的约束模型,为详细设计阶段自动生成导出单元提供了设计依据。

4.以图形单元置换、叠代技术为核心,构造了单元化产品信息建模原型系统。在此基础上开发了MCADDS系统,并在冲剪机床设计XJD型转辙机传统系统设计中获得了成功的应用。

5.论文内容丰富、条理清晰、结构完整,特别是在运用CAD技术辅助产品的变型设计以及在设计过程中对设计方案的反复修改方面有重要突破。本文是一篇优秀的博士学位论文,建议提交答辩。

从某种角度来说,研究生学位论文评语既是对研究生学位论文研究工作的评价,也反映了评阅人综合水平。既反映了评阅人的学术水平,也反映了评阅人的写作文风。它属于应用写作中一种专业应用文写作,值得我们研究。

2、xxx同学的硕士毕业论文《消费者网上购物的网站体验对网上购买意愿影响的实证研究》在相关文献研究和时事动态分析的基础上,研究了网站体验的组成要素,以及网站体验对消费者网络购买意愿的影响,其选题具有一定的理论价值和现实意义。

论文发现论网站的易用性体验、网站的有用性体验、网站的视觉体验、价格体验、商品体验、服务体验、信誉体验等七个方面的体验可以很好地解释网站体验的内涵,利用SOR模型分析得知网站体验对购买意愿有显着正向影响,情绪和感知风险是网站体验和购买意愿之间的部分中介变量。论文采用规范分析和实证分析等方法来论证自己的观点,研究方法较为科学。论文在以下几个方面有所创新:一是构建了网站体验研究的新模型,二是比较系统地运用实证分析方法从多角度分析影响网络购买意愿的因素。论文有相当的理论深度。论文观点鲜明,论证清晰有力,论据充分可靠,数据准确,资料详实,文献综述丰富而规范,其中论文关于网站体验对购买意愿的影响的观点具有一定的新的见解。不足之处在于网站体验的维度还不够全面,尤其是网站技术因素部分,未来还可以考虑研究网速等网站技术因素对网站体验的解释力度。

论文结构严谨,层次分明,采用了递进式的'分析结构,逻辑性强,文笔流畅,表达清晰,重点突出。文章格式符合学术规范。反映作者具有较强的独立科研能力。论文表明作者掌握了企业管理学专业的基本理论和分析方法,论文达到了硕士学位论文水平,同意其参加论文答辩,并建议授予硕士学位。

3、该课题选题新颖,紧密结合临床,设计合理,属于本学科研究热点,研究工作具有一定的理论意义与实际价值。论文的内容与题目基本相符,结构完整,格式规范,层次清楚,条理分明,语言通顺流畅,内容丰富。文献材料收集丰富详实,基本涵盖了本学科相关的主要文献,并对本学科发展趋势有一定的归纳作用。数据资料充分,论述过程严谨,思路清晰,综合运用了所学知识解决问题,分析方法选用得当,结果可信。论文撰写严肃认真,推理符合逻辑,结论和建议具有现实意义,是一篇有较高学术价值的硕士生论文。

该论文反映出了作者在本门学科方面坚实的理论基础、系统的专业知识以及良好的科研能力。达到了硕士学位论文的要求,建议安排答辩。

4、xxx同学的学位论文《基于数据挖掘的高校本科专业设置预测系统数据模型的分析和研究》选题于教育部委托中山大学开展的高校本科专业设置预测系统项目。该论文研究成果对于构建高校本科专业设置预测系统具有一定的先导性意义。

本文主要围绕着高校本科专业设置预测系统的数据模型这个问题展开分析和研究。论文首先对已有的专业设置数据模型进行综述,分析其在功能性、预测性、分析性以及挖掘性方面的不足之处,然后结合高校本科专业设置的实际需求,引入数据挖掘技术、数据仓库和OLAP,构建基于数据挖掘的高校本科专业设置预测系统的数据模型。总的来说,论文框架清晰,逻辑严谨,行文体现了自己的学术思考及思辨结论,有自己的创见。

本文的写作符合硕士研究生毕业论文规范,学术水准较好,体现了两年学习的成果,可进入答辩程序。

论文长于思辨和综合,而短于对实际需求和现实情况的考量,比如各用户对于专业设置的需求以及数据挖掘中数据的可采集性及可用性等。建议今后在相关研究中采取更广泛视角。

5、xxx同学的硕士毕业论文《电信融合计费系统设计与应用》在相关文献研究和时事动态分析的基础上,探讨了既可以维持运营商利益同时也使消费者利益最大化的融合计费方式,并结合现实运营商的计费系统,设计了几个场景,进行了模拟分析验证,论证了该系统功能够满足了融合计费的实际工作需要,达到了设计目标。

该论文选题具有一定的理论价值和现实意义。论文以3G计费的基本流程为依据,采用全集中处理模式,搭建了集数据采集功能,预处理功能,计费功能,利用数据挖掘技术进行融合结算分析等功能的融合计费账务系统平台。该平台旨在实现客户的融合,即客户品牌与付费方式的融合;业务的融合,即实现跨业务、跨产品、跨客户的产品捆绑、交叉优惠,实现业务经营与计费策略的完整衔接;计费方式的融合,即在线计费与离线计费的融合;付费方式的融合,即预付费和后付费的融合。充分体现了3G网络下满足现有用户全部需求,发挥运营商服务到极致的工作目标,对目前电信融合方式具有一定的现实意义。

论文采用规范分析和实证分析等方法来论证自己的观点,研究方法较为科学。论文在以下几个方面有所创新:一是构建了融合结算分析的新模型,二是比较系统地运用实证分析方法从多角度分析影响融合结算的因素。三是平台设计理念新颖,投资低,可操作性强。论文有相当的理论深度。论文观点鲜明,论证清晰有力,论据充分可靠,数据准确,资料详实,文献综述丰富而规范。不足之处在于电信融合计费的实验论证还不够全面,有效工作量不够。

论文结构严谨,层次分明,采用了递进式的分析结构,逻辑性强,文笔流畅,表达清晰,重点突出。文章格式符合学术规范。反映作者具有较强的独立科研能力。论文表明作者掌握了企业管理学专业的基本理论和分析方法,

论文达到了硕士学位论文水平,同意其参加论文答辩,并建议授予硕士学位。

6、该论文选题合理,为xxxx提供理论支持,研究意义重大。

该论文引用文献具有代表性和科学性,对有关的中外文献材料进行综合分析和归纳整理,掌握了xxxx的研究背景、研究现状和发展前景等内容,文献综述丰富而规范。

论文借助统计分析软件对xxxx进行了因素分析,论文内容丰富、条理清晰、结构完整,资料收集详实,数据准确,论证清晰有力,论据充分可靠,结论可靠。

该论文研究结果表明,xxxx,研究具有很强的实践价值和操作性,充分反映了作者对于xxxx知识掌握的全面性,对于xxxx实践有经验,有分析,有思考,有建议。

论文格式正确,结构严谨,层次分明,书写规范,逻辑严密,语言流畅,重点突出,反映了作者具有较强的独立科研能力。论文总体优秀,同意提交答辩,建议授予农学硕士学位。

基于长尾理论的营销策略研究论文

网络营销论文参考文献

参考文献是在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献在注释中已注明,不再出现于文后参考文献中。按照字面的意思,参考文献是文章或著作等写作过程中参考过的文献。下面是我整理的网络营销论文参考文献,欢迎大家阅览。

[1]蒋一清,陶丽。“互联网+”背景下江苏农产品电子商务网络营销策略研究[J] 劳动保障世界,2017,(12):51+54。

[2]张娟。试析中国经济型酒店的发展现状及策略[J] 商业经济,2017,(04):86—88。

[3]蒋一清,陶丽。“互联网+”背景下江苏农产品电子商务网络营销策略研究[J] 劳动保障世界,2017,(12):51+54。

[4]李剑赟。药品网络营销的现状与发展策略[J] 产业与科技论坛,2017,(08):14—15。

[5]李瑶,周仕洵。基于大数据的网络营销对策探索[J] 产业与科技论坛,2017,(08):254—255。

[6]白珺。苏宁易购网络营销策略研究[J] 经营管理者,2017,(11):233。

[7]张翊。移动互联网模式的小米公司网络营销探析[J] 经营管理者,2017,(11):237。

[8]李思璇。国内农产品网络营销现状研究[J] 科技创业月刊,2017,(07):35—37。

[9]李瑶,周仕洵。网络营销绩效评价体系研究评述[J] 产业与科技论坛,2017,(07):115—116。

[10]陈晓娜。TEA排名前25的中国主题公园网站营销分析[J] 当代经济,2017,(09):156—157。

[11]于晓冰。浅析中小企业网络营销发展的现状及对策[J] 商业经济,2017,(03):112—114。

[12]徐幸。浅析SWOT战略分析方法在阿里巴巴中的应用[J] 当代经济,2017,(08):74—75。

[13]李瑞新。浅析企业网络营销效果评估与经营风险管理[J] 现代商业,2017,(08):12—13。

[14]祁丹萌。苏州中小外贸企业跨境电子商务发展调研分析[J] 苏州市职业大学学报,2017,(01):29—35。

[15]陈佳佳。电子商务模式下的网络营销渠道建设[J] 中小企业管理与科技(中旬刊),2017,(03):135—136。

[16]杜光友,陈红莲。恒大集团创意传播管理策略研究——从恒大足球创意营销说起[J] 新闻知识,2017,(03):25—28。

[17]李新霞。基于大数据背景下的小微企业互联网金融营销案例分析[J] 经贸实践,2017,(05):50—51。

[18]薛蕾。电子商务环境下的企业网络营销策略探讨[J] 科技经济导刊,2017,(07):203。

[19]陈怡。论网络经济时代市场营销策略的转变[J]中国集体经济,2017,(06):52—53。

[20]江欣。全球化时代背景下茶叶企业的网络营销策略研究[J] 福建茶叶,2017,(02):58—59。

[21]陈雨轩。基于电子商务环境下农产品网络营销策略浅析[J] 当代经济,2017,(05):46—47。

[22]肖妮,庞如春。吉林省旅游网络营销策略研究[J] 吉林省经济管理干部学院学报,2017,(01):30—33。

[23]张义。浅谈新媒体发展对出版企业网络营销的影响[J] 出版发行研究,2017,(02):50—52。

[24]冯彩云。浅析我国中小企业网络营销的现状及对策[J] 低碳世界,2017,(05):273—274。

[25]戴昕哲。网络营销对传统营销管理的修正与挑战[J] 经营管理者,2017,(05):259。

[26]吴振立。煤炭企业网络营销战略分析与实践[J]中国煤炭工业,2017,(02):63—65。

[27]尚平泉,黄毅,夏志英。网络营销对服装销售的影响[J] 武汉纺织大学学报,2017,(01):33—36。

[28]陈雨荷,邱灿华。中小旅游企业社交网络使用影响研究[J]中国集体经济,2017,(04):58—60。

[29]杜晓,王灵。基于微信的企业网络营销模式探讨[J] 经营管理者,2017,(04):233。

[30]陈丽花。网络营销风险指标体系的建立原则和评价方法[J]中国管理信息化,2017,(03):79。

[31]杨金会。基于计算机技术的乌龙茶营销策略分析[J] 福建茶叶,2017,(01):53—54。

[32]杨庆。我国中小型企业网络营销的分析及建议[J] 当代经济,2017,(02):52—53。

[33]于菊珍,王卫东。电子商务环境下企业网络营销策略分析[J] 经济研究导刊,2017,(02):126+130。

[34]陈宇航。电子商务对我国未来市场营销方式的影响[J] 商场现代化,2017,(01):50—51。

[35]郭小玉。小微企业网络营销策略研究[J] 商场现代化,2017,(01):74—75。

[36]高新。论新时期下企业网络营销的现状及问题[J] 科技视界,2017,(02):184。

[37]高凤荣。网络营销渠道与传统营销渠道整合策略[J] 现代商业,2017,(01):52—53。

[38]蔡葵。我国小微企业网络营销存在的问题及对策探究[J] 全国商情,2016,(35):11—12。

[39]刘畅。试论企业网络营销运作策略与效益评价[J] 佳木斯职业学院学报,2016,(12):477。

[40]冯巧慧。互联网+背景下我国农产品营销模式创新研究[D]北京印刷学院,2017。

[41]王猛。探索烟草商业企业发挥网络营销水平的途径与方法[A] 。中国烟草学会2016年度优秀论文汇编——电子商务与物流主题[C]:,2016:6。

[42]张琰。许昌市小微企业网络营销策略的优化路径[J] 许昌学院学报,2016,(06):121—125。

[43]蒋云龙,朱彩霞。网络营销在烟草商业企业的实施[J] 现代经济信息,2016,(22):310。

[44]林琢人。电子商务环境中企业网络营销策略分析[J] 现代国企研究,2016,(22):5。

[45]唐滢。福建省中小企业网络营销问题研究[J] 北方经贸,2016,(11):59—60。

[46]王良。携程旅行网旅游产品的网络营销策略研究[D]华东理工大学,2017。

[47]冯维。绍兴K企业的服装网络营销策略研究[D]浙江理工大学,2016。

[48]王捷。企业网络营销的现状与发展对策研究[J] 河北软件职业技术学院学报,2016,(03):58—61。

[49]欧阳芳。福建小微企业运用长尾理论开展网络营销的策略[J] 科学经济社会,2016,(03):40—44。

[50]洪顺。网络营销在中小企业中的应用现状及对策建议[J] 企业导报,2016,(18):1—2。

[51]李洪运。“网络营销”在企业财务管理的运用分析[J] 财会学习,2016,(17):45+47。

[52]李明华。电商企业网络营销的现状及成功因素分析[J] 现代经济信息,2016,(17):355。

[53]万敏慧。新羽通公司环保材料网络营销策略研究[D]安徽大学,2016。

[54]吴心怡。百度搜索在E公司产品推广中的运用研究[D]苏州大学,2016。

[55]韩宝军。我国企业网络营销创新改革探索[J] 产业与科技论坛,2016,(16):12—13。

[56]李瑶。浅析新网络营销模式下中小型企业面临的机遇与挑战[J] 现代经济信息,2016,(15):148+155。

[57]张庆稳。郑州市小微企业网络营销问题分析[J] 新经济,2016,(20):15。

[58]郁宇。社会资本视角下微型企业网络营销策略探讨[J] 商业经济研究,2016,(13):60—62。

[59]张娜娜,马蕾,张忠秋。中小企业开展网络营销策略分析[J] 现代经济信息,2016,(13):309。

[60]胡志权。基于顾客信任的`企业网络营销模式构建[J] 内蒙古财经大学学报,2016,(03):28—33。

[61]曾海亮,张金飞。我国服装企业网络营销存在的问题及对策研究[J] 现代营销(下旬刊),2016,(06):90—91。

[62]陈姝。电子商务环境下传统品牌企业网络营销策略[J] 新西部(理论版),2016,(11):75—76。

[63]李翔宇。我国中小企业网络营销发展问题研究[J] 商业经济,2016,(06):79—80。

[64]刘柯志。基于微信的企业网络营销模式探讨[J] 商场现代化,2016,(17):69—70。

[1] Michael Morris,Minet Schinde hutte,Jeffrey Allen。The entrepreneur's business model toward aunified perspective[J]Journal of Business Research,2003(6)

[2] Thomas some business models perform better than others[J]MIT SloanWorking Paper, 2006(5)

[3] ,and .Clarifying business of the modles:origins,present,andfuture of the concept[J] .Communication Association for Information Systems,2005(15)

[4] 张兵。传统零售企业的战略转型[J]企业改革与管理,2000

[5] 毕红毅,孙明岳。我国零售业发展现状、存在问题及发展思路[J]山东财政学院学报,2009

[6] 李嶙屹。电子商务环境下苏宁电器战略转型的。研究[D]上海:华东理工大学,2011

[7] 张向阳。我国传统零售企业转型网上零售模式的问题与对策研究[J],2012

[8] 汪孔文。互联网环境下零售商业模式创新[D]福建:华伦大学,2011

[9] Martin .电子商务管理者指南从战术到战略[M]黄京华译,北京:清华大学出版社,2002

[10]Ravi Kalakota,Andrew B Whinston。电子商务管理指南[M]陈雪美译,北京:清华大学出版社,2005

[11]宋倩,王能。互联网条件下国内零售企业商业模式创新[J]电子商务,2013

[12]Zhang Shanshan。A Comparative Study on Online Retailing of and [D]Liaoning:LiaoNing,Dongbei University of Finance and Economics,2011

[13]姚远。我国大型网上零售企业的网络营销策略研究[D]辽宁:东北财经大学,2001

[14]沈瑞山。电子商务的发展对市场营销的影响[J]华东经济管理,2004,18(3)

[15]陈捷。传统中小企业电子商务模式初探[J]电子商务,2010,(6)

[16]刘苗。电子商务模式及其发展策略分析[J]我国商贸,2010,(20)

[17]张秋蓉。试论企业电子商务的风险控制[J]云南则一贸学院学报,2001,(S2)

[18]Amit R,Zott creation in e—business[J]Strategic Man Journa1,2001,(22)

[19]张喜征,傅荣,胡湘云,胡南相。网络营销中的信任传递模式与策略分析[J]商业研究,2006,(9)

[20]菲利普科特勒。营销管理[M]北京:我国人民大学出版社,2009

[21]高世宁。典型零售企业盈利模式分析[J]当代经济研究,2007(03)

[22]戚安邦。项目评估学[M]天津:南开大学出版社,2006

[23]Viktor Mayer—SchSnberger,Kenneth Cukier。大数据时代:生活、工作与思维的大变革[M]盛杨燕,周涛译。杭州:浙江人民出版社,2013

[24]2013 年度我国网络零售市场数据监测报告[R]杭州:我国电子商务研究中心,2014

[25]李雨妇。家电连锁产业的行业集中度发展研究[J]现代商业,2012(20)

[26]袁峰,宿恺。电子商务企业风险防范体系研究[J]物流科技,2004(6)

[27]黄敏学。电子商务[M]北京:高等教育出版社。2001

[28]章佳元。传统零售企业线上线下协同发展的商业模式研究:以苏宁为例[D]浙江工业大学经贸学院,2013

[29]程光。我国大型百货业电子商务发展研究[D]北京:首都经济贸易大学经济学院,2012

[30]Efraim Turban,David King.电子商务:管理视角(原书第 5 版)[M]严建援译,北京:机械工业出版社,2010

这么重要的知识,没有分数,没有人说的很清楚地。

网络营销论文2500字

无论是在学校还是在社会中,大家都经常接触到论文吧,借助论文可以有效提高我们的写作水平。你所见过的论文是什么样的呢?以下是我精心整理的网络营销论文2500字,欢迎阅读,希望大家能够喜欢。

回望金融危机以来中国经济运行中的闪光足迹,令人印象尤为深刻的,莫过于“节能减排持续深入开展”、“家电下乡轰轰烈烈”、“‘用工荒’引发企业‘加薪潮’”、“现代文化创意产业的迅速崛起”,以及“电子商务发展迎来又一春”,并成功地助企添翼增力了。对于中国的针织服饰企业来说,响应并落实党和国家关于“节能减排”的一大举措,就是要在减少对土地、原料、器材、能源等消耗的情况下,把营销渠道做大做畅。“家电下乡”等活动为启动农村消费、拉动国民经济复苏起到了积极的作用,家里领着补贴种粮、外头打工搛钱的中国农民真的是“不差钱”了网络营销论文,目光敏锐的针织企业家们不约而同地举起了“城市包围农村”的大旗。

而海外市场的相对疲软导致以外向型经济为主的东南沿海地区出现了严重的“用工荒”问题,迫使企业通过“加薪”10—30%的不等幅度来招聘人才,也使得企业家们认真思考起如何在节约或减少产品销售渠道的费用又扩大产品销售的问题了。而电子商务瞅准了危机中的新机遇,在内强素质的同时,也与现代文化创意产业一起从不同角度上积极地介入到企业的生产和销售领域,在帮助和服务企业洼地重起的进程,不断伸展开强健的翅翼论文网站大全。所有这一切,都给金融危机重创下的、正为资金“瓶颈”而发愁的纺织企业家们带来了希望,尝试“触网”的热情再度升腾,网络营销因而也就成为了“低碳化”时代的最时髦的营销话题之一。

展望到品牌“无缝隙营销”的美好未来

实现工业信息化的发展目标是党和国家从十六大以来一直特别强调要着重抓好的一项重点工作,尤其是“十一五”规划期间,我国信息高速公路建设快速推进并覆盖了广大的城市乡村,同时还与国际互联网进行了亲密的接触,这不仅为由高科技一手打造起来的电子商务经济模式的发展提供了无限的可能,也为广大的实体经济企业描绘了一种全新的营销模式――“网络营销”的发展前景。业内有人又将企业和电子商务借助信息高速公路打通的网络营销渠道称为“虚拟营销渠道”,而将企业面向终端市场构建起来的,主要以旗舰店、连锁店、商场专柜(专厅)、专卖店等为代表的营销网点称为“实体营销渠道”。根据最新统计数据表明,中国目前已经拥有4亿网民,2009年中国纺织服装品牌借助电子商务平台实现网络购物成交额高达亿元。

虽然网络购物在已经成为一种购物消费的时尚新趋势网络营销论文,但在络购物的普及率目前仅为上网人数的,而且大多在17――30岁的年龄范围。这与网络购物普及率高达的美国、的韩国相对差距甚大,而平均每分钟就新100位网民的中国大陆,网络购物具有巨大的发展潜力。另外,电子商务平台的“入市”门槛较低,网络购物价格相对于实体营销价格也很优惠,这都极大地吸引着广大的企业与消费,网络营销商机无限。根据市场研究分析,4月26日,百度董事长兼首席执行官李彦宏在2010百度联盟峰会上指出,“未来五年、十五年,中国互联网面向商业发展的机会很多”、“互联网‘好戏才演半场’”。随着信息技术的不断发展,信息高速公路建设的升级换代,电子商务与企业合作互动的日益亲密和紧密,纺织企业扩大营销渠道,实现品牌“无缝隙营销”指日可待。网络无所不在,营销无孔不入。

感受到品牌建设所面临的严峻挑战

电子商务为纺织企业量身打造的品牌视窗,以高科技的技术手段,借助现代文化创意的写实手法网络营销论文,将纺织服饰的品牌理念、品牌文化、功能特点和服务特色等,全面地、细致地、真实地展现在了世人的眼前,营造出各种神奇的视觉效果论文网站大全。

如,日前在香港举办的“亚洲零售博览会”上,网络平台上的智能专卖店里配有利用无线射频识别技术开发的智能货架系统、智能试衣镜,在给顾客带来一种全新的购物体验的同时,也对品牌的所有细节进行了生动的描绘和真实的展示。借助电子商务平台,纺织企业品牌信息上网方便了消费者对品牌的认识和了解,推动了企业的品牌营销战略。但从另一个层面来说,这也公开了企业的经营“秘密”,特别是品牌的流行款式,很容易引起针织同行们的效仿,甚至是抄袭,从而加重了产品同质化竞争的恶性循环。而要解决这一潜在的威胁,纺织企业就得在品牌特色、品牌优势的“不可复制性”方面下足功夫。随时替换或更新能吸纳低碳纺织原料的、能对接新能源的最新纺机设备自不必说,增强款式设计的文化创意品味、提升设计手段的高科技智能化水平都至关重要。而且在品牌影响力相当而又各领风骚的竞争环境下,围绕低碳纺织的新要求来培育、巩固并不断增强自主品牌的特色服务,以值得信赖的品牌形象聚集更多的网络购物人群,从而实现不断提升产品营销额的目的。

同时网络营销论文,网络平台加快了品牌信息的传播与消费意见的反馈,促进了企业与消费者的良性互动,便于企业及时地根据消费者的意愿和市场流行趋势的变化可能,改进品牌建设,新增品牌活力,提高品牌竞争力。另外,品牌上网也强烈呼吁整个社会要尊重与维护好纺织品牌的知识产权,加快网络经济立法,营造良好的网络营销风气,为纺织品牌建设提供有力保障。

为广大纺织企业寻找到突围发展的新路径

在国内市场的纺织大牌中,金融危机爆发之前李宁品牌年销售额一直排在耐克和阿迪达斯之后。为了改变这种受制于人的窘境,李宁品牌在营销观念上来了一次重大的变革,觅得危中之机踏上了电子商务平台,大举进军网络营销市场,先后在淘宝等电子商务平台上建立了1000多家网店,终于在2009年实现销售收入亿元,一举超越了这年销售额约为70亿元的阿迪达斯,与这年销售额仍为冠军的耐克差距甚微,并以一家主要依托互联网平台和IT技术手段的“轻公司”的新形象网络营销论文,树立在纺织大牌的最前沿,也为广大的纺织企业树立了通过网络营销实现品牌从激烈的市场竞争中成功突围的典型案例。

再看金融危机影响下的国内市场上的其他纺织企业(特别是中小纺织企业),迫于转型升级的压力、劳动力成本骤增的压力、企业向中西部或海外转移的压力,一时难以将有限的人力、财力和物力用于扩大营销渠道之上论文网站大全。当它们看到以阿里巴巴等为代表的电子商务企业抛出的营销橄榄枝时,也都纷纷尝试起“触网”来,希望能像李宁品牌那样,借助网络平台能将自己所积累的用户资源迅速地转变为消费受众的市场功能,来实现自主品牌逆势飘红、企稳拉升、再创辉煌的意愿。此时,金融危机中迎来发展新机遇的电子商务领域,也在不断强化内功,实现了从原来单一的提供网络营销平台到开通网络支付功能的转变,甚至是实现了向纺织品牌的“网络代理商”角色的成功转换。如,由阿里巴巴集团创办的“网货交易”,就是通过电子商务的网络平台,由淘宝卖家先扮演企业品牌代理商的角色,再将其向广大企业所采购来的大量商品卖给国内广大消费者的商品流通模式。

据悉,“2010年(第五届)网货交易会”将于9月上旬在杭州和平会展中心举行。在“网货交易”模式中,独立承担起商品销售的电子商务又与物流、包装等行业建立起战略合作关系,甚至是在其内部衍生出相似功能的配送机构来网络营销论文,从而创造出新的就业岗位来,为消费市场的扩大提供了更大的可能,也激发了企业生产的热情。另外,自世界金融危机从2008年9月爆发以来,已经出现过了美国次贷危机、迪拜危机、欧元危机等的多次变脸。海外市场变化多端、风云莫测,对于众多外向型的纺织企业来说,利用电子商务平台来做品牌的网络广告,不仅覆盖面大而广,而且也开通了规避诸多风险的广告投入新路径,在以“中国智造”创世界名牌的口号声中,品质卓越、服务提升的网络商品,会赢得良好的网络口碑,产生品牌形象传播的“鲶鱼效应”。“低成本、高效益、零风险”的网络广告模式,纺织企业家们何乐而不为呢!

在全球化时代,信息的沟通和共享给消费者带来了更多的选择,绝大多数产品都面临供过于求的问题,在处于“丰饶”“富足”经济的状态下,中国占90%以上的中小企业如何杀出竞争激烈的红海,实施蓝海战略,自身的市场定位与营销策略息息相关。

网络营销可以降低企业的经营成本、营销销成本和储存成本,甚至可以实行无店面销售,而且供需双方可以直接见面,减少了中间环节,企业内部各部门之间的信息传递也更加快速准确,有利于提高效率。特别是可以发挥中小企业规模小的优势,与客户和顾客紧密联系,灵活运作,市场适应能力强,并且可以及时发布合作信息和产品动态,在激烈的市场竞争中,寻找合作伙伴,形成战略联盟,实现双赢共享的合作。借助网络营销,中小型企业也可以在全球国际化的大市场中参与市场竞争,寻求自己的市场空间。

但是根据有关调查报告显示,页面每天访问量在50以下的企业网站超过半数, 近四成企业网站通过网站发布的信息占其所有公布信息的比例低于二成 ,每周至少更新一次网站信息的企业仅占到三成 ,这说明我国中小企业的网络营销应用水平较低,大量可以利用的资源被浪费。在山东临沂,情况要稍微好一些,几家较知名的企业都建了自己的网站,作为企业宣传及产品展示、信息发布的平台,天元集团、鲁南制药厂、银凤陶瓷等企业的网站都较好发挥了形象展示和信息沟通的作用,但还没有充分利用网络来展开深入的互动式营销。

分析中小企业网络营销的现状,可能有以下几个原因:

1、资金、技术、人才问题。大量的中小企业由于缺乏门户网站的'支持,要进行网络营销只有建设自己的网站,但是对于资金财力和人力资本都十分有限的中小企业来说,建立自己的网站并进行维护和更新的难度非常大,网络营销包含了许多技术性的工作,企业自身很难做到,延缓了新技术和新营销手段的应用,从而差距进一步加大。

2、意识观念问题。网络营销不仅涉及大量的投入和技术上的变革定制营销,而且还涉及到企业的业务与管理流程、组织结构、管理制度等一系列问题。许多中小企业这方面意识薄弱,影响了中小企业网络营销的顺利进行,不少企业上网了,但往往存在“重建设轻维护更新”、“重硬件轻软件”、“重技术轻管理”等倾向和误区,只是把企业名称、地址、电话留下,发布一下信息,没有以、的理念意识,扩展网络销售,网络营销调查、数据库挖掘分析,和售后服务等深层次业务,进一步开发潜在顾客需要,保持顾客忠诚度。

3、网络营销目标不明确或缺乏预期。是为了增加销售渠道、提升推广品牌形象、还是为了寻求凸显企业核心竞争力?盲目根据服务商的名气或价格的高低进行投放广告,缺乏对网络营销的模式、方法的筛选与营销成果的预测, 网络营销收效甚微论文网站。

下面作相应对策的探讨。首先,做好企业和产品的整体营销规划,将网络营销作为有机的组成部分,对实施的方式,投入维护,及资料数据分析,回馈反应机制、预期效果与评估,包括实施中可能遇到的问题做详细的考察,和周密计划。有条件的企业考虑建立完善的网络营销系统,与传统营销方式整合,共同推广自身品牌,提高产品市场占有率。由于资金、人才等资源缺乏网络营销有难度的中小企业,可以考虑将这块找专业公司或专门人士来打理,进行外包。

其次,对具体网络广告的投入方式,及营销策略的可行性进行科学分析。除了建设企业网站之外,网络营销还包括网站推广、Email营销、 网络广告等丰富的内容。企业可以根据自身条件及产品特点、行业特性进行合理选择。比如,博客营销。美国的Twitter不愿接受大量企业做媒体广告的要求,但同意在自愿的前提下,用户的博客上出现收费的商业性广告,根据用户与企业签订的协议分成,用户可以拿走大部分广告费,也可随时终止广告,按实际投入的天数计算费用。

在知识经济条件下,网络技术的普及使市场被无限的细分。那些满足无数细分市场的利基产品经过长尾集合器,变得易于寻找,又通过互联网搜索引擎的过滤器的强大指引作用鼓励人们更多地探索。基于对个性化需求的重视,长尾理论在网络营销中被经常应用,当然,它的实现是一些必备条件的:一定的经济、技术背景,所适用的产业领域和能够实现的盈利模式。否则,边际成本的增加带不来相应的收益,长尾就没用了,但是,对长尾理论的延展思考却可能带来新的商机。

唐海军认为,长尾理论提供了一这种商业模式,体现了推动型模式与拉动型模式之间,广泛性与个性化需求之间的差别。这种商业模式,来自于对消费者需求心理的把握,和敏锐的消费者洞察。对中小企业来说定制营销,则提供了难得的市场机遇,可以考虑下面的策略进行实施:寻求较为准确的目标市场定位,打造核心竞争力,实现定制营销,从而把握商机,突破发展瓶颈。

一、把握网络消费的脉搏,从产品到企业实施战略定位。

所谓定位,“就是令你的企业和产品与众不同,形成核心竞争力;对受众而言,即鲜明地建立品牌。”定位理论的产生,源于人类各种信息传播渠道的拥挤和阻塞,可以归结为信息爆炸时代对商业运作的影响结果,媒体、产品、广告等外在多种因素的交叉组合,与消费行为、心理个性的差异,使消费者需求难以整体把握,满意度指标也在漂移中。网络营销中这种市场的裂变更为显著,体现在:消费者只能接收有限的信息,消费者喜欢简单,讨厌复杂、消费者缺乏安全感、消费者的想法容易失去焦点等方面,这就为中小企业提供了市场定位的契机。定位的方法有多种,如强化自己已有的定位、比附定位、单一位置策略、寻找空隙策略、类别品牌定位、再定位等。企业在尽量延长已有产品产品生命周期,进行重新定位的同时,也应该寻找市场空隙,对自身重新定位。搜集网络在线营销的反馈数据与信息,对网上产品开展的市场调查,都是定位的参考依据之一。

二、调整产业链结构,打造核心竞争力。

波特的五力竞争模型阐述了企业与供应商、批发商、竞争者,顾客等的多重关系,网上营销可以同时开展B2B/B2C方式的营销,在面对全球化合作的今天,共赢的合作可以让资源在全球范围内进行合理优化的配置,有些公司,如苹果公司除了保留其核心开发技术,其它环节都进行外包,形成了一个独特的产业价值链。日本的一些中小企业则处于一些核心企业的外围,是上游或下游的关系,为之提供服务,这种合作关系的紧密程度随市场形势的变化而定论文网站。中国的中小企业在有了合理明确的定位后,可以通过建立自己的网站、借用GOOLE、百度两个搜索引擎营销和投放流媒体等其他网络广告的形式,选择全球合作伙伴,突出自己的核心竞争力。

三、争取先机,服务为王,定制营销。

由于网络营销的的特点,可以进行大规模定制服务,更好地满足个人化需求,这是网络营销的优势,同时,网络营销要更多地考虑人性化,打消人们下订单的顾虑,在影响消费者购买行为的实现过程中定制营销,服务会产生信誉,服务会让企业走向成功。在充分竞争的网上购物红海中,开展B2C业务的Zappos被誉为“卖鞋的亚马逊”。创始人谢家华说:Zappos的定位是一家服务公司,它只是碰巧卖的是鞋子。公司的承诺是,给顾客最好的购物体验。“鞋合适就穿,不合适就换”,Zappos因此成为网上买鞋的首选,创造了年销售额超过8亿美元的业绩。

在今天,企业仅仅能够适应现在的市场环境是不够的,应该有对未来市场的预见和前瞻。以消费者的需求变化为导向,在工业经济时代的大批量复制生产之后,是大规模定制营销时代的到来。中小企业的网上定制营销,会更加曲尽人意,有更多的灵活性和生长空间。如果能够市场嗅觉灵敏,争取在未来市场中把握先机,就占据了竞争的优势地位。企业可以通过功能模块化设计,对一定范围内不同功能或相同功能不同性能、不同规格的产品进行功能分析,划分并设计一系列功能模块, 通过模块的选择和组合构成不同的产品,在这一过程中,可以利用顾客数据库,让顾客参与产品的设计,进行新的组合,来更好地适应消费者的需求变化。产品的成本在设计阶段就可确定下来,企业尽量对产品成本影响较大的零部件标准化,而通过把其他较小零部件变型或采取手工制作来满足顾客个性定制的需求。那个更大范围内应用的标准化部件可以作为帕雷托“二八原则”的体现,而变形零部件或手工创意制作的,聚合的长尾部分则可能带来更大的利润,中小企业的网络营销策略,也可以是对长尾理论和帕累托原则的再思考灵活应用。

参考文献:

1、克里斯·安德森长尾理论[M] 北京:中信出版社,2006.

2、里斯·特劳特王恩冕、余少蔚译定位中国财政经济.2002.

3、长尾理论经济学原理探析唐海军现代管理科学.2009年第1期.

4、定制营销浅析李桂隆黄蓓蓓经济理论研究全国商情.经济理论研究.2009年第1期.

相关百科

热门百科

首页
发表服务