首页

> 论文发表知识库

首页 论文发表知识库 问题

药剂学青霉素的研究进展论文

发布时间:

药剂学青霉素的研究进展论文

青霉素 (Benzylpenicillin / Penicillin)【简介】 青霉素是指分子中含有青霉烷,能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素。 青霉素又被称为青霉素G、peillin G、 盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。 青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是第一种能够治疗人类疾病的抗生素。青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。青霉素G有钾盐、钠盐之分,钾盐不仅不能直接静注,静脉滴注时,也要仔细计算钾离子量,以免注入人体形成高血钾而抑制心脏功能,造成死亡。 青霉素类抗生素的毒性很小,由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显.是化疗指数最大的抗生素。但其青霉素类抗生素常见的过敏反应在各种药物中居首位,发生率最高可达5%~10% ,为皮肤反应 ,表现皮疹、血管性水肿,最严重者为过敏性休克,多在注射后数分钟内发生,症状为呼吸困难、发绀、血压下降、昏迷、肢体强直,最后惊厥,抢救不及时可造成死亡。各种给药途径或应用各种制剂都能引起过敏性休克,但以注射用药的发生率最高。过敏反应的发生与药物剂量大小无关。对本品高度过敏者,虽极微量亦能引起休克。注入体内可致癫痫样发作。大剂量长时间注射对中枢神经系统有毒性(如引起抽搐、昏迷等),停药或降低剂量可以恢复。 使用本品必须先做皮内试验。青霉素过敏试验包括皮肤试验方法(简称青霉素皮试)及体外试验方法,其中以皮内注射较准确。皮试本身也有一定的危险性,约有25%的过敏性休克死亡的病人死于皮试。所以皮试或注射给药时都应作好充分的抢救准备。在换用不同批号青霉素时,也需重作皮试。注射液、皮试液均不稳定,以新鲜配制为佳。而且对于自肾排泄,肾功能不良者,剂量应适当调整。此外,局部应用致敏机会多,且细菌易产生抗药性,故不提倡。【英文简述】 Penicillin (sometimes abbreviated PCN) refers to a group of beta-lactam antibiotics used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. The name “penicillin” can also be used in reference to a specific member of the penicillin group Penam Skeleton, which has the molecular formula R-C9H11N2O4S, where R is a variable side chain. 【分类】 按其特点可分为 : 青霉素G类:如青霉素G钾、青霉素G钠、长效西林等。 耐酶青霉素:如苯唑青霉素(新青Ⅱ号)、氯唑青霉素等。 广谱青霉素:如氨苄青霉素、羟氨苄青霉素等。 抗绿脓杆菌的广谱青霉素:如羧苄青霉素、氧哌嗪青霉素、呋苄青霉素等。 氮咪青霉素:如美西林及其酯匹美西林等,其特点为较耐酶,对某些阴性杆菌(如大肠、克雷伯氏和沙门氏菌)有效,但对绿脓杆菌效差。 【特点】 青霉素类抗生素是β-内酰胺类中一大类抗生素的总称,由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显,但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。青霉素G有钾盐、钠盐之分,钾盐不仅不能直接静注,静脉滴注时,也要仔细计算钾离子量,以免注入人体形成高血钾而抑制心脏功能,造成死亡。 青霉素类抗生素的毒性很小,是化疗指数最大的抗生素。但其青霉素类抗生素常见的过敏反应在各种药物中居首位,发生率最高可达5%~10% ,为皮肤反应 ,表现皮疹、血管性水肿,最严重者为过敏性休克,多在注射后数分钟内发生,症状为呼吸困难、发绀、血压下降、昏迷、肢体强直,最后惊厥,抢救不及时可造成死亡。各种给药途径或应用各种制剂都能引起过敏性休克,但以注射用药的发生率最高。过敏反应的发生与药物剂量大小无关。对本品高度过敏者,虽极微量亦能引起休克。注入体内可致癫痫样发作。大剂量长时间注射对中枢神经系统有毒性(如引起抽搐、昏迷等),停药或降低剂量可以恢复。 【历史发展】 亚历山大·弗莱明由于一次幸运的过失而发现了青霉素。有一次他外出度假时,把实验室里在培养皿中正生长着细菌这件事给忘了。3周后当他回实验室时,注意到在一个培养皿中长了一个霉菌斑。并且霉菌斑周围的细菌都死了。 霉菌渗出了什么强有力的物质?弗莱明称为青霉素,并发现了它可以杀死许多致命性细菌。然而,因为青霉素在试管内和血清混合后很快失活,弗莱明认为它不会在人和动物身上发生作用。 10多年后,弗洛里和钱恩在1940年用青霉素重新做了实验。他们给8只小鼠注射了致死剂量的链球菌,然后给其中的4只用青霉素治疗。几个小时内,只有那4只用青霉素治疗过的小鼠还健康活着。“这真像一个奇迹!”弗洛里说道。 到了1943年,制药公司已经发现了批量生产青霉素的方法。英国和美国当时正在和纳粹德国交战。这种新的药物对控制伤口感染非常有效。到了1944年,药物的供应已经足够治疗第二次世界大战期间所有参战的盟军士兵。 青霉素是一种高效、低毒、临床应用广泛的重要抗生素。它的研制成功大大增强了人类抵抗细菌性感染的能力,带动了抗生素家族的诞生。 20世纪40年代以前,人类一直未能掌握一种能高效治疗细菌性感染且副作用小的药物。当时若某人患了肺结核,那么就意味着此人不久就会离开人世。为了改变这种局面,科研人员进行了长期探索,然而在这方面所取得的突破性进展却源自一个意外发现。 在1928年夏季的一天,英国微生物学家弗莱明发现,一个与空气意外接触过的金黄色葡萄球菌培养皿中长出了一团青绿色霉菌。在用显微镜观察这只培养皿时弗莱明发现,霉菌周围的葡萄球菌菌落已被溶解。这意味着霉菌的某种分泌物能抑制葡萄球菌。此后的鉴定表明,上述霉菌为点青霉菌,因此弗莱明将其分泌的抑菌物质称为青霉素。然而遗憾的是弗莱明一直未能找到提取高纯度青霉素的方法,于是他将点青霉菌菌株一代代地培养,并于1939年将菌种提供给准备系统研究青霉素的英国病理学家弗洛里和生物化学家钱恩。 通过一段时间的紧张实验,弗洛里、钱恩终于用冷冻干燥法提取了青霉素晶体。之后,弗洛里在一种甜瓜上发现了可供大量提取青霉素的霉菌,并用玉米粉调制出了相应的培养液。1941年开始的临床实验证实了青霉素对链球菌、白喉杆菌等多种细菌感染的疗效。青霉素之所以能既杀死病菌,又不损害人体细胞,原因在于青霉素所含的青霉烷能使病菌细胞壁的合成发生障碍,导致病菌溶解死亡,而人和动物的细胞则没有细胞壁。但是青霉素会使个别人发生过敏反应,所以在应用前必须做皮试。在这些研究成果的推动下,美国制药企业于1942年开始对青霉素进行大批量生产。这些青霉素在世界反法西斯战争中挽救了大量美英盟军的伤病员。1945年,弗莱明、弗洛里和钱恩因“发现青霉素及其临床效用”而共同荣获了诺贝尔生理学或医学奖。 青霉素的出现开创了用抗生素治疗疾病的新纪元。通过数十年的完善,青霉素针剂和口服青霉素已能分别治疗肺炎、肺结核、脑膜炎、心内膜炎、白喉、炭疽等病。继青霉素之后,链霉素、氯霉素、土霉素、四环素等抗生素不断产生,增强了人类治疗传染性疾病的能力。但与此同时,部分病菌的抗药性也在逐渐增强。为了解决这一问题,科研人员目前正在开发药效更强的抗生素,探索如何阻止病菌获得抵抗基因,并以植物为原料开发抗菌类药物。【药理学】 内服易被胃酸和消化酶破坏。肌注或皮下注射后吸收较快,15~30min达血药峰浓度。青霉素在体内半衰期较短,主要以原形从尿中排出。 氯霉素是具广谱抗菌作用,对革兰阴性菌的作用较革兰阳性菌强,对伤寒杆菌、流感杆菌和百日咳杆菌的作用比其他抗生素强,对立克次体感染(如斑疹伤寒)以及病毒感染(如沙眼)均有较好作用。对布氏杆菌、大肠杆菌、产气杆菌、肺炎杆菌、痢疾杆菌、霍乱弧菌、脑膜炎双球菌、淋球菌等也有较强抗菌作用。本品属抑菌剂,其作用机理主要抑制细菌蛋白质的合成,系作用于核糖核蛋白体的50S亚基上,抑制肽基转移酶的作用,阻止了肽链的增长。临床上主要用于伤寒、副伤寒和其他沙门氏菌感染,疗效好,目前仍是治疗这些疾病的首选药物。【作用】 青霉素对溶血性链球菌等链球菌属,肺炎链球菌和不产青霉素酶的葡萄球菌具有良好抗菌作用。对肠球菌有中等度抗菌作用,淋病奈瑟菌、脑膜炎奈瑟菌、白喉棒状杆菌、炭疽芽孢杆菌、牛型放线菌、念珠状链杆菌、李斯特菌、钩端螺旋体和梅毒螺旋体对本品敏感。本品对流感嗜血杆菌和百日咳鲍特氏菌亦具一定抗菌活性,其他革兰阴性需氧或兼性厌氧菌对本品敏感性差.本品对梭状芽孢杆菌属、消化链球菌厌氧菌以及产黑色素拟杆菌等具良好抗菌作用,对脆弱拟杆菌的抗菌作用差。青霉素通过抑制细菌细胞壁四肽则链和五肽交连桥的结合而阻碍细胞壁合成而发挥杀菌作用。对革兰阳性菌有效,由于革兰阴性菌缺乏五肽交连桥而青霉素对其作用不大。 其中青霉素为以下感染的首选药物: 1.溶血性链球菌感染,如咽炎、扁桃体炎、猩红热、丹毒、蜂窝织炎和产褥热等 2.肺炎链球菌感染如肺炎、中耳炎、脑膜炎和菌血症等 3.不产青霉素酶葡萄球菌感染 4.炭疽 5.破伤风、气性坏疽等梭状芽孢杆菌感染 6.梅毒(包括先天性梅毒) 7.钩端螺旋体病 8.回归热 9.白喉 10.青霉素与氨基糖苷类药物联合用于治疗草绿色链球菌心内膜炎 青霉素亦可用于治疗: 1.流行性脑脊髓膜炎 2.放线菌病 3.淋病 4.奋森咽峡炎 5.莱姆病 6.多杀巴斯德菌感染 7.鼠咬热 8.李斯特菌感染 9.除脆弱拟杆菌以外的许多厌氧菌感染 风湿性心脏病或先天性心脏病患者进行口腔、牙科、胃肠道或泌尿生殖道手术和操作前,可用青霉素预防感染性心内膜炎发生【生产方法】 天然青霉素与半合成青霉素生产方法完全不同。 天然青霉素 青霉素G生产可分为菌种发酵和提取精制两个步骤。①菌种发酵:将产黄青霉菌接种到固体培养基上,在25℃下培养7~10天,即可得青霉菌孢子培养物。用无菌水将孢子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空;气、搅拌,在27℃下培养24~28h,然后将种子培养液接种到发酵罐已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27℃下培养7天。在发酵过程中需补入苯乙酸前体及适量的培养基。②提取精制:将青霉素发酵液冷却,过滤。滤液在pH2~的条件下,于萃取机内用醋酸丁酯进行多级逆流萃取,得到丁酯萃取液,转入~的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐。青霉素G钠盐是将青霉素G钾盐通过离子交换树脂(钠型)而制得。 半合成青霉素 以6APA为中间体与多种化学合成有机酸进行酰化反应,可制得各种类型的半合成青霉素。 6APA是利用微生物产生的青霉素酰化酶裂解青霉素G或V而得到。酶反应一般在40~50℃、pH8~10的条件下进行;近年来,酶固相化技术已应用于6APA生产,简化了裂解工艺过程。6APA也可从青霉素G用化学法来裂解制得,但成本较高。侧链的引入系将相应的有机酸先用氯化剂制成酰氯,然后根据酰氯的稳定性在水或有机溶剂中,以无机或有机碱为缩合剂,与6APA进行酰化反应。缩合反应也可以在裂解液中直接进行而不需分离出6APA。【剂型用法和用量】 片剂:每片克。胶囊剂:每粒克。注射剂:每支2毫升,含药克。滴眼剂:8毫克:克。口服,每天成人1~2克;儿童每日按千克体重服用50~100毫克,分2~4次。肌注,成人每次~1克,每天2次;儿童每日按千克体重服用25~50毫克,分2次。静脉滴注,剂量同肌注,因注射剂系以丙二醇为溶剂,用时以等渗葡萄糖注射液或生理盐水稀释至毫克:毫升供用,即2毫克(克)以100毫升输液稀释,并应以干燥空针抽取,以免析出结晶,稀释完后应仔细检查无结晶析出,方可使用。【不良反应】 1.主要毒性反应是抑制骨髓造血机能,引起粒细胞及血小板减少症,用药期间如发现轻度白细胞或血小板减少,应立即停药,一般可恢复。氯霉素所致的再生障碍性贫血虽少见,但难逆转,常可致死,多发生于儿童长期反复用氯霉素者,偶有用量很少而发病者。 2.过敏反应较少见,但也可引起皮疹,药物热。少数可引起黄疸,原有肝脏疾病者甚至可引起急性肝坏死。 3.可引起精神症状如幻觉、谵妄,大多发生于用药后3~5日,停药后两日内可消失。 4.口服后可发生胃肠道反应,如恶心、呕吐、腹泻、食欲不振等。【副作用】1 青霉素类的毒性很低,但较易发生变态反应,发生率约为5%�10%。多见的为皮疹、哮喘、药物热、严重的可致过敏性休克而引起死亡。 2 大剂量应用青霉素抗感染时,可出现神经精神症状,如反射亢进、知觉障碍、抽搐、昏睡等,停药或减少剂量可恢复。 3 使用青霉素前必须作皮肤过敏试验。如果发生过敏性休克,应立即皮下或肌内注射肾上腺素~1ml,同时给氧并使用抗组胺药物及肾上腺皮质激素等。 4 肌注钾盐时局部疼痛较明显,用苯甲醇溶液作为稀释剂溶解,则可消除疼痛。 【细菌对青霉素类产生耐药性】细菌对青霉素类产生耐药性主要有三种机制:1.细菌产生β内酰胺酶,使青霉素类水解灭活;2.细菌体内青霉素作用靶位——青霉素结合蛋白发生改变;3.细胞壁对青霉素类的渗透性减低。其中以第一种机制最为常见,也最重要。青霉素类抗生素水溶性好,血消除半衰期大多不超过2小时,主要经肾排出,多数品种可经血液透析清除。按我国卫生部规定,使用青霉素类抗生素前均需做青霉素皮肤试验,阳性反应者禁用。【注意事项】 1.口服或注射给药时忌与碱性药物配伍,以免分解失效。 2.本品不宜与盐酸四环素、卡那霉素、多粘菌素E、磺胺嘧啶钠、三磷酸腺苷、辅酶A等混合静滴,以免发生沉淀或降效。 3.氯霉素与青霉素一般不要联用,因氯霉素为抑菌剂,而青霉素为繁殖期杀菌剂,联用可影响青霉素的抗菌活性而降效。但这一问题尚有争论,意见不一,因两者联用对革兰阳性菌、阴性菌混合感染及颅内感染临床效果好。解决的办法,如需联用,宜先用青霉素2~3小时后再用氯霉素。 4.由于本品可抑制某些肝脏酶的活性,因此可干扰甲苯磺丁脲、苯妥英钠和双香豆素在人体内的生物转化,可增强甲苯磺西脲、苯妥英钠的作用,对双香豆素和华法林的抗凝作用均可增强。 5.婴儿、肝、肾功能减退者慎用,妊娠末期产妇慎用,哺乳期妇女忌用。应用青霉素前除做皮试外,还要注意以下几点: 1、要到有抢救设备的正规医疗单位注射青霉素,万一发生过敏反应,可以得到及时有效的抢救治疗。在注射过程中任何时候出现头晕心慌、出汗、呼吸困难等不适,都要立即告诉医生护士。 2、注射完青霉素,至少在医院观察20分钟,无不适感才可离开。 3、不要在极度饥饿时应用青霉素,以防空腹时机体对药物耐受性降低,诱发晕针等不良反应。 4、两次注射时间不要相隔太近,以4—6小时为好。静脉点滴青霉素时,开始速度不要太快,每分钟以不超过40滴为宜,观察10—20分钟无不良反应再调整输液速度。 5、如果当天有注射青霉素史,在家中出现头晕心慌、出汗、呼吸困难等不适,应及时送医院诊治。青霉素配伍应用中的相互作用: 近年来,临床中出现滥用药物的问题,造成一些不良反应,尤其是青霉素与其他药物的配伍应用,所产生的相互作用和不良反应是不可忽视的。 1 青霉素不可与同类抗生素联用 由于它们的抗菌谱和抗菌机制大部分相似,联用效果并不相加。相反,合并用药加重肾损害,还可以引起呼吸困难或呼吸停止。它们之间有交叉抗药性,不主张两种β-内酰胺类抗生素联合应用。 2 青霉素不可与磺胺和四环素联合用药 青霉素属繁殖期“杀菌剂”,阻碍细菌细胞壁的合成,四环素属“抑菌剂”,影响菌体蛋白质的合成,二者联合作用属拮抗作用,一般情况下不应联合用药。临床资料表明单用青霉素抗菌效力为90%,单用磺胺类药效力为81%,两者联合用药抗菌效力为75%,若非特殊情况不可联合使用。 3 青霉素不可与氨基苷类联合用药 两者混合同于输液器给病人输液,因青霉素的β-内酰胺可使庆大霉素产生灭活作用,其机制为两者之间发生化学相互作用,故严禁混合应用,应采用青霉素静脉滴注,庆大霉素肌肉注射。 综上所述,青霉素联用不当,由于药物的相互作用,而导致药物不良反应是不可低估的。青霉素是治疗各种感染性疾病的最常用抗生素,严格掌握用药的适应证,合理联用,措施得力,减少不必要的不良反应。【青霉素家族】 青霉素用于临床是40年代初,人们对青霉素进行大量研究后又发现一些青霉素,当人们又对青霉素进行化学改造,得到了一些有效的半合成青霉素,70年代又从微生物代谢物中发现了一些母核与青霉素相似也含有β-内酰胺环,而不具有四氢噻唑环结构的青霉素类,可分为三代:第一代青霉素指天然青霉素,如青霉素G(苄青霉素);第二代青霉素是指以青霉素母核-6-氨基青霉烷酸(6-APA),改变侧链而得到半合成青霉素,如甲氧苯青霉素、羧苄青霉素、氨苄青霉素;第三代青霉素是母核结构带有与青霉素相同的β-内酰胺环,但不具有四氢噻唑环,如硫霉素、奴卡霉素。【青霉素浓缩法】 利用青霉素特异性地杀死野生型细胞、保留营养缺陷型细胞的方法。青霉素能抑制细菌细胞壁的合成,所以只能杀死生长繁殖中的细菌,而不能杀死停止分裂的细菌。在只能使野生型生长而不能使突变型生长的选择性液体培养基中,野生型被青霉素杀死,而突变型则不被杀死,从而淘汰野生型,使突变型得以浓缩。可适用于细菌和放线菌,是营养缺陷型突变体筛选的常用方法之一。 【岛青霉素】 稻谷在收获后如未及时脱粒干燥就堆放很容易引起发霉。发霉谷物脱粒后即形成"黄变米"或"沤黄米",这主要是由于岛青霉()污染所致。黄变米在我国南方、日本和其他热带和亚热带地区比较普遍。小鼠每天口服200g受岛青霉污染的黄变米,大约一周可死于肝肥大;如果每天饲喂黄变米,持续两年可诱发肝癌。流行病学调查发现,肝癌发病率和居民过多食用霉变的大米有关。吃黄变米的人会引起中毒(肝坏死和肝昏迷)和肝硬化。岛青霉除产生岛青霉素(Silanditoxin)外,还可产生环氯素(Cyclochlorotin),黄天精(Luteoskyrin)和红天精(Erythroskyrin)等多种霉菌毒素。 岛青霉素和黄天精均有较强的致癌活性,其中黄天精的结构和黄曲霉素相似,毒性和致癌活性也与黄曲霉素相当。小鼠日服7mg/kg体重的黄天精数周可导致其肝坏死,长期低剂量摄入可导致肝癌。环氯素为含氯环结构的肽类,对小鼠经口LD50为体重,有很强的急性毒性。环氯素摄入后短时间内可引起小鼠肝的坏死性病变,小剂量长时间摄入可引起癌变。

31 四片青霉素烧焦一个十八岁少女 家庭护士 2007/04 中国期刊全文数据库 32 丘吉尔与青霉素的发明者 健康必读 2007/03 中国期刊全文数据库 33 短波近红外光谱法非破坏分析青霉素V钾粉末药品 生命科学仪器 2007/02 中国期刊全文数据库 34 药物影响皮试结果致青霉素过敏反应死亡2例报告 山东医药 2007/07 中国期刊全文数据库 35 微波对青霉素酰化酶催化反应性能的影响 生物学杂志 2007/01 中国期刊全文数据库 36 对青霉素连续用药过程中更换批号重做皮试的探讨 护理研究 2007/03 中国期刊全文数据库 37 青霉素皮试假阳性原因探讨 护理研究 2007/06 中国期刊全文数据库 38 痰热清联合青霉素治疗新生儿感染性肺炎40例 陕西中医 2007/03 中国期刊全文数据库 39 门冬氨酸洛美沙星联合青霉素治疗慢性肺心病呼吸道感染的疗效观察 临床和实验医学杂志 2007/02 中国期刊全文数据库 40 青霉素对老化洋葱种子发芽及幼苗生长的影响 新疆农业大学学报 2007/01 中国期刊全文数据库 41 肌肉注射苄星青霉素的改进方法 现代医药卫生 2007/06 中国期刊全文数据库 42 青霉素G不合理应用分析 现代食品与药品杂志 2007/01 中国期刊全文数据库 43 青霉素过敏性皮试——一道难解的医学难题 首都医药 2007/05 中国期刊全文数据库 44 青霉素脱敏治疗二期复发性梅毒1例的护理 中国皮肤性病学杂志 2007/02 中国期刊全文数据库 45 基于多向核主元分析的青霉素生产过程在线监测 浙江大学学报(工学版) 2007/02 中国期刊全文数据库 46 氨苄青霉素过敏致严重剥脱性皮炎1例报告 中国耳鼻咽喉颅底外科杂志 2007/01 中国期刊全文数据库 47 口服青霉素V钾片致过敏性休克1例 中国社区医师(综合版) 2007/04 中国期刊全文数据库 48 青霉素诱发18例癫痫样发作回顾性分析 中国药房 2007/02 中国期刊全文数据库 49 展青霉素检测方法的研究进展 中国食品卫生杂志 2007/02 中国期刊全文数据库 50 苄星青霉素治疗67例早期梅毒疗效分析 中国医药导刊 2007/01 51 桐油青霉素制剂在外科的应用 兽医导刊 2007/04 52 流动注射化学发光法测定青霉素G钾 分析试验室 2007/04 53 注射用青霉素钠稳定性考察 黑龙江医药 2007/02 54 应用青霉素瓶胶塞环状缝合治疗猪直肠脱 养殖技术顾问 2007/04 55 青霉素V亚砜酸的制备 长春工业大学学报(自然科学版) 2007/01 56 羟氨苄青霉素致急性肾功能衰竭1例 检验医学与临床 2007/03 57 过敏性休克岂是青霉素的“专利” 开卷有益(求医问药) 2007/04 58 青霉素过敏继发癔症盲1例 临床荟萃 2007/07 59 介绍长效青霉素肌肉注射方法的改进 临床护理杂志 2007/02 60 苄星青霉素和普鲁卡因青霉素治疗妊娠梅毒研究 岭南皮肤性病科杂志 2007/01

【青霉素过敏休克机制研究新进展】最近有研究人员发现,白细胞中的嗜碱性粒细胞可引发过敏性休克。这使得研究人员对过敏性休克的发病机制有了进一步了解。过敏性休克是外界某些抗原性物质进入已致敏的肌体后,通过影响免疫机制引起的、在短时间内发生的、一种强烈的多脏器累及症群。所以过敏性休克通常会突然发生且很剧烈,若不及时处理,可危及生命。日前,据日本《每日新闻》报道,东京医科齿科大学教授鸟山一等研究人员从引发慢性过敏反应如特异性皮炎的嗜碱性粒细胞着手,研究过敏性休克。他们选择了一些在青霉素作用下会发生过敏性休克的实验鼠,去除实验鼠的嗜碱性粒细胞后,再给实验鼠注射青霉素,实验鼠就不出现过敏性休克了。他们进一步研究发现,嗜碱性粒细胞表面具有抗体活性的动物蛋白———免疫球蛋白G可以与过敏原相结合,释放出引起过敏症状的血小板活性因子。

青蒿素抗肿瘤药物的研究进展论文

自屠呦呦发现青蒿素以来,青蒿素衍生物一直作为最有效、无并发症的疟疾联合用药。然而,世卫组织最新发布的《2018年世界疟疾报告》显示,全球疟疾防治进展陷入停滞,疟疾仍是世界上最主要的致死病因之一,“在2020年前疟疾感染率和死亡率下降40%”的阶段性目标将难以实现。究其原因,除对疟疾防治经费支持力度和核心干预措施覆盖不足等因素外,疟原虫对青蒿素类抗疟药物产生抗药性是当前全球抗疟面临的最大技术挑战。

屠呦呦认为,要想破解“青蒿素抗药性”难题,就必须搞清楚青蒿素的作用机理。屠呦呦团队成员、中国中医科学院青蒿素研究中心研究员王继刚说,青蒿素在人体内半衰期(药物在生物体内浓度下降一半所需时间)很短,仅1至2小时,而临床推荐采用的青蒿素联合疗法疗程为三天,青蒿素真正高效的杀虫窗口只有有限的4至8小时。

而现有的耐药虫株充分利用青蒿素半衰期短的特性,改变生活周期或暂时进入休眠状态,以规避敏感杀虫期。同时,疟原虫对青蒿素联合疗法中的辅助药物“抗疟配方药”也可产生明显的抗药性,使青蒿素联合疗法出现“失效”。

屠呦呦认为,解决“青蒿素抗药性”难题意义重大:一是坚定了全球青蒿素研发方向,即在未来很长一段时间内,青蒿素依然是人类抗疟首选高效药物;二是因青蒿素抗疟药价格低廉,每个疗程仅需几美元,适用于疫区集中的非洲广大贫困地区人群,更有助于实现全球消灭疟疾的目标。

屠呦呦认为,要想破解“青蒿素抗药性”难题,就必须搞清楚青蒿素的作用机理。

屠呦呦团队会找到更好的解决办法,他们通过改变药物来提高效果。

一提到青蒿素,很多人就会条件反射的想到疟疾,不少人甚至认为青蒿素只是治疗疟疾的“特效药”,除此之外对其他疾病并无作用,事实真的如此吗?

认为青蒿素只能治疗疟疾的观点当然是错的。40多年来,青蒿素、双氢青蒿素、复方蒿甲醚、青蒿素哌喹片青蒿素和它的衍生物在抗疟临床得到广泛应用,并走出国门,影响世界。2019年6月17日,屠呦呦团队对外公布其青蒿素抗药性研究取得阶段性进展。同时,团队还发现,双氢青蒿素对治疗具有高变异性的红斑狼疮效果独特。

除了治疗红斑狼疮外,青蒿素还有望成为抗肿瘤的“新法宝”。上海交通大学医学院教授王慧团队首次发现了双氢青蒿素抗癌靶点和潜在敏感人群,为青蒿素类化合物抗肿瘤机制研究、药物开发和临床应用打下了坚实基础。他们发现青蒿素及其衍生物能通过抑制肿瘤生长和周期进展、促进肿瘤细胞凋亡而发挥抗癌功效,并能增敏临床化疗药物和靶标药物治疗效果。他们还利用生物信息学手段构建了青蒿素作用的分子网络,并预测其主要靶蛋白、通路和作用方式。

近来还陆续有研究发现青蒿素类药物在其他方面的作用,如英国玛丽女王大学研究人员今年2月报告说,青蒿素类药物青蒿琥酯能有效缓解严重外伤引起的器官衰竭等。相信在不久的将来,青蒿素会被发现出更多功效,更好地造福人类。

本文由首钢医院内科主任姚震进行科学性把关。

青霉素的合成工艺研究论文

青霉素生产工艺过程 一、青霉素的发酵工艺过程 1、工艺流程 (1)丝状菌三级发酵工艺流程 冷冻管(25°C,孢子培养,7天)——斜面母瓶(25°C,孢子培养,7天)——大米孢子(26°C,种子培养56h,1:)——一级种子培养液(27°C,种子培养,24h,1:)——二级种子培养液(27~26°C,发酵,7天,1:)——发酵液。 (2)球状菌二级发酵工艺流程 冷冻管(25°C,孢子培养,6~8天)——亲米(25°C,孢子培养,8~10天)——生产米(28°C,孢子培养,56~60h,1:)——种子培养液(26~25-24°C,发酵,7天,1:)——发酵液。

青霉素G生产可分为菌种发酵和提取精制两个步骤。①菌种发酵:将产黄青霉菌接种到固体培养基上,在25℃下培养7~10天,即可得青霉菌孢子培养物。用无菌水将孢子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空;气、搅拌,在27℃下培养24~28h,然后将种子培养液接种到发酵罐已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27℃下培养7天。在发酵过程中需补入苯乙酸前体及适量的培养基。②提取精制:将青霉素发酵液冷却,过滤。滤液在pH2~的条件下,于离心机内用醋酸丁酯进行逆流萃取,得到BA萃取液,BA经水洗离心机洗去溶于水的色素及溶于水的杂酸。将此BA萃取液经活性炭脱色,脱色BA加入碳酸钾溶液调PH至7左右离心机反萃取得RB,RB加丁醇经共沸蒸馏过滤干燥即可得青霉素G钾盐。

青霉素的工业背景?

一、青霉素的发酵工艺过程1、工艺流程(1)丝状菌三级发酵工艺流程冷冻管(25°C,孢子培养,7天)——斜面母瓶(25°C,孢子培养,7天)——大米孢子(26°C,种子培养56h,1:)——一级种子培养液(27°C,种子培养,24h,1:)——二级种子培养液(27~26°C,发酵,7天,1:)——发酵液。(2)球状菌二级发酵工艺流程冷冻管(25°C,孢子培养,6~8天)——亲米(25°C,孢子培养,8~10天)——生产米(28°C,孢子培养,56~60h,1:)——种子培养液(26~25-24°C,发酵,7天,1:)——发酵液。

毛霉菌病研究进展论文

毛霉菌在显微镜下观察属于紫色的细菌,看起来长得还不错。毛霉菌在医学的应用上还是比较广泛的,这种细菌的适宜生长环境是土壤和粪便,如果不幸感染对身体的危害还是挺大的。那么,毛霉菌感染能治好么?请跟着我一起来看看关于这方面的那些事吧!

1、药物治疗

当发生毛霉菌感染后可以通过服用一些药物控制病情,如抗真菌药物,它在一定程度上缓解毛霉菌感染症状,控制病情。但我建议大家,在使用或服用任何药物前最好咨询专业医生,询问是否可以使用或服用该药物,避免错误服用或使用药物,最后加重病情。

2、注射药物

除了服用药物外,患者可以去正规治疗机构进行药物注射进行治疗,如两性霉素b,静脉注射等,患者不要节省部分治疗费用而自行购买注射药物,然后自行注射,这样很容易在注射过程中容易出现错误。经过治疗后,可以有效缓解病情,进而控制病情。

3、抗生素治疗

针对部分特殊的患者,建议患者在治疗前先做一个细菌培养,然后让医生为你找出有效抗生素治疗方法,再针对性治疗,也可以有效控制病情。

4、饮食调理

除了外治外,患者也要多注意自身的饮食习惯,多吃新鲜蔬果、多喝水、少食用辛辣油腻食物等等,养成一个良好的饮食习惯,对辅助治疗毛霉菌感染有一定帮助。

大家现在大概了解毛霉菌感染有什么方法治疗了吧,最后想提醒患者,虽然有一些药物可以缓解病情,但不能因为可以控制病情就大量服用该药物,常依赖药物对治疗是没有帮助,所以大家要记住。无论什么方法都好,主要还是按照自身病情去选择。

毛霉菌形态为白色管状菌丝和黑色球形孢子,属需氧性条件致病菌。其致病特点是损伤穿透血管内皮细胞形成栓塞,进而引起组织梗死。其梗死的组织表现为充血和紫黑色斑块,感染部位可涉及皮肤、鼻窦部、眼眶及脑组织等。

毛霉菌病(Mucormycosis)的患病高危人群通常为恶性肿瘤、粒细胞缺乏、化疗及免疫抑制治疗、糖尿病、长期糖皮质激素应用者或HIV患者等。结合本案例,患者为3岁B-ALL儿童,因诱导治疗导致血三系减少、粒细胞极度低下(仅×109/L)。这些均为毛霉菌病的高危因素。

该病进展极快,易导致器官及组织坏死,因此早期诊断和治疗具有重要意义。在诊断上需要依赖病理发现,可以直观确切地观察到特征性菌丝及病理改变,因而组织病理学或涂片常成为诊断的唯一证据。

对于AML/ALL等恶性血液病患者,高强度的化疗常导致粒缺及免疫力低下,无疑使毛霉菌病的发病几率成倍上升。值得注意的是,该病的致死率极高,一项纳入929例毛霉菌病患者的Meta研究显示,侵犯鼻窦部及肺部的毛霉菌病死亡率分别达46%及76%,而毛霉菌广泛感染者的死亡率高达96%!

毛霉菌属于腐蚀性真菌,它在土壤,粪便以及空气中广泛存在。当人体免疫力低下或患有慢性疾病而长期使用免疫抑制剂药物会引发毛霉菌感染,轻者通过抗真菌药物治疗,严重会出现组织坏死则需要手术清创治疗。

毛霉菌是一种在自然界广泛存在的真菌,分布的每一个国家的每一个角落,甚至你家里就有,而且是一定有。毛霉菌病分为鼻-眼-脑型、肺型、胃肠型、皮肤型、广泛播散型和混合感染型,其中以鼻-眼-脑型毛霉菌病最常见,约占文献报道病例的75%。

毛霉菌病是由毛霉目中的根霉属、毛霉属、梨头霉属或者是被孢霉属等多种真菌感染引起的一种疾病,这些真菌的转播途径非常广,可以通过呼吸道、消化道、皮肤或者黏膜进入人体并感染人体。

毛霉菌病的特点就是起病急速、进展快、病死率高。随着现代医学的进步,这类疾病的总体发病率还是较低的,但是近年来的确诊数却在不断上升,本次印度就有已经超过2万人感染毛霉菌病。毛霉菌病平均在一百万的人口中有万人感染。可以发生在不同的人群中,在我国主要以中老年人为主,平均发病年龄在48岁左右,男性感染者会高于女性感染者,总体的死亡率高达40。82%。

免疫力低下、患有基础疾病(如糖尿病、白血病、进行器官移植术等)是主要的危险因素。这类疾病是不会传染的,根据类型的不同,本病的临床表现也是有所不同的。本病的治疗手段主要以抗真菌药物联合手术治疗为主。治疗毛霉菌病的关键还是在于早发现、早治疗。

毛霉菌病的主要危害有:发病急、进展快、病死率高的特点,因此若不及时发现与就医治疗,疾病的发展是迅速的,患者就有死亡的风险。此病也并非是绝症,经过规范的治疗,是可以避免死亡的,但是还是不可避免会有遗留的后遗症出现。如感染脑部并侵犯神经,可能导致偏瘫、失明、面瘫等一系列的后遗症。

对于毛霉菌病最好的预防措施就是提高机体的免疫力,规范自己的日常作息、饮食等等,强健的体魄是抵抗病毒最好的解药,对于自身所保留的一些潜在隐患,还是需要定期到医院体检,根据医生的指导进行身体的管控调理。

青霉菌研究目的论文

用于细菌感染的青霉素是从青霉菌中提取的,在第二次世界大战期间,青霉菌拯救了数百万人的生命。现在就来认识一下这位“传奇英雄”吧!了解它是如何被发现的,以及它与皮试的关系。培养基上的青霉菌拯救了无数人的青霉菌。青霉属。因其显微镜下的蓝绿色孢子而得名。其菌丝体由分支分离的菌丝组成,一部分伸入基质中吸收营养,另一部分接触空气体,在适宜的条件下繁殖。显微镜下的青霉菌极其美丽:在低倍显微镜下,看起来像热带丛林;在高倍显微镜下,它像一朵花,孢子正在向四周传播新的生命。青霉菌属于孢子繁殖,可以无性繁殖,也可以有性繁殖。绿色是大自然的基本色,是生命的象征;绿青霉菌产生的青霉素也是生命的象征。正是它的发现在第二次世界大战期间阻止了数百万人的死亡。低倍显微镜下的青霉菌青霉菌是怎么被发现的?说到青霉素的发现,就要提到一位科学家,弗莱明,他是偶然发现青霉素的。1928年的一天,弗莱明在一个简陋的实验室里研究引起发烧的葡萄球菌。因为没有盖好盖子,楼上一个研究青霉菌的学者的青霉菌就漂浮在用来培养细菌的琼脂上。弗莱明惊讶地发现,青霉附近的葡萄球菌溶解了。后来经过多次实验,他发现这种现象可以重复,并据此发现了葡萄球菌的克星青霉素。1929年,弗莱明发表了关于这一发现的相关论文,但他未能找到合适的纯化方法,并于1934年停止了对青霉素的研究。1940年,另外两位科学家弗洛里和钱恩重新用青霉素做实验,证明给老鼠注射青霉素可以有效治疗各种细菌感染,老鼠可以健康存活。这个实验表明青霉素可以杀死细菌而不伤害人体细胞。1941年前后,弗洛里和钱恩实现了青霉素的分离纯化,发现了青霉素对感染性疾病的疗效。但青霉素会引起个体过敏反应,所以使用前一定要做皮试。弗莱明(左)、弗洛里(中)、恩斯特·鲍里斯·钱恩(右)青霉素和皮肤试验青霉素溶液的降解产物中有引起人体过敏反应的过敏原。人第一次接触过敏原后,会在5 ~ 8天内产生抗体。当他们再次接触青霉素时,抗体会攻击青霉素溶液中的过敏原,引起过敏反应,甚至窒息和休克。皮试的原理是在第二次接触青霉素治疗前,向皮肤内注射青霉素皮试剂。如果是过敏患者,体内的抗体会攻击皮下注射的青霉素,引起皮肤过敏反应,提示患者不能使用青霉素,以免大量青霉素进入体内引起严重过敏反应。青霉菌虽然每个人的过敏原都不一样,也不是每个人都对青霉素过敏,但我们不知道每个人的过敏原是什么,也不知道我们在生活中是否接触过过敏原,所以每个人在吃药前都要做皮试。The worst sort of indolence is being given

青霉素是人类历史上发现的第一种抗生素,且应用非常广泛。早在唐朝时,长安城的裁缝会把长有绿毛的糨糊涂在被剪刀划破的手指上来帮助伤口愈合,就是因为绿毛产生的物质(青霉素素菌)有杀菌的作用,也就是人们最早使用青霉素。20世纪40年代以前,人类一直未能掌握一种能高效治疗细菌性感染且副作用小的药物。当时若某人患了肺结核,那么就意味着此人不久就会离开人世。为了改变这种局面,科研人员进行了长期探索,然而在这方面所取得的突破性进展却源自一个意外发现。近代,1928年英国细菌学家弗莱明首先发现了世界上第一种抗生素—青霉素,亚历山大·弗莱明由于一次幸运的过失而发现了青霉素。1928年,英国科学家Fleming在实验研究中最早发现了青霉素,但由于当时技术不够先进,认识不够深刻,Fleming并没有把青霉素单独分离出来。1929年,弗莱明发表了他的研究成果,遗憾的是,这篇论文发表后一直没有受到科学界的重视。在用显微镜观察这只培养皿时弗莱明发现,霉菌周围的葡萄球菌菌落已被溶解。这意味着霉菌的某种分泌物能抑制葡萄球菌。此后的鉴定表明,上述霉菌为点青霉菌,因此弗莱明将其分泌的抑菌物质称为青霉素。然而遗憾的是弗莱明一直未能找到提取高纯度青霉素的方法,于是他将点青霉菌菌株一代代地培养,并于1939年将菌种提供给准备系统研究青霉素的英国病理学家弗洛里(Howard Walter Florey)和生物化学家钱恩。1938年,德国化学家恩斯特钱恩在旧书堆里看到了弗莱明的那篇论文,于是开始做提纯实验。弗洛里和钱恩在1940年用青霉素重新做了实验。他们给8只小鼠注射了致死剂量的链球菌,然后给其中的4只用青霉素治疗。几个小时内,只有那4只用青霉素治疗过的小鼠还健康活着。此后一系列临床实验证实了青霉素对链球菌、白喉杆菌等多种细菌感染的疗效。青霉素之所以能既杀死病菌,又不损害人体细胞,原因在于青霉素所含的青霉烷能使病菌细胞壁的合成发生障碍,导致病菌溶解死亡,而人和动物的细胞则没有细胞壁。1940年冬,钱恩提炼出了一点点青霉素,这虽然是一个重大突破,但离临床应用还差得很远。1941年,青霉素提纯的接力棒传到了澳大利亚病理学家瓦尔特弗洛里的手中。在美国军方的协助下,弗洛里在飞行员外出执行任务时从各国机场带回来的泥土中分离出菌种,使青霉素的产量从每立方厘米2单位提高到了40单位。1941年前后英国牛津大学病理学家霍华德·弗洛里与生物化学家钱恩实现对青霉素的分离与纯化,并发现其对传染病的疗效,但是青霉素会使个别人发生过敏反应,所以在应用前必须做皮试。所用的抗生素大多数是从微生物培养液中提取的,有些抗生素已能人工合成。由于不同种类的抗生素的化学成分不一,因此它们对微生物的作用机理也很不相同,有些抑制蛋白质的合成,有些抑制核酸的合成,有些则抑制细胞壁的合成。通过一段时间的紧张实验,弗洛里、钱恩终于用冷冻干燥法提取了青霉素晶体。之后,弗洛里在一种甜瓜上发现了可供大量提取青霉素的霉菌,并用玉米粉调制出了相应的培养液。在这些研究成果的推动下,美国制药企业于1942年开始对青霉素进行大批量生产。到了1943年,制药公司已经发现了批量生产青霉素的方法。当时英国和美国正在和纳粹德国交战。这种新的药物对控制伤口感染非常有效。1943年10月,弗洛里和美国军方签订了首批青霉素生产合同。青霉素在二战末期横空出世,迅速扭转了盟国的战局。战后,青霉素更得到了广泛应用,拯救了数以千万人的生命。到1944年,药物的供应已经足够治疗第二次世界大战期间所有参战的盟军士兵。因这项伟大发明,1945年,弗莱明、弗洛里和钱恩因“发现青霉素及其临床效用”而共同荣获了诺贝尔生理学或医学奖。1944年9月5日,中国第一批国产青霉素诞生,揭开了中国生产抗生素的历史。截至2001年年底,中国的青霉素年产量已占世界青霉素年总产量的60%,居世界首位。2002年,Birol等人提出了基于过程机理的模型,该过程综合考虑了发酵中微生物的各种生理变化,发现这是个十分复杂的过程。为了更加方便地对青霉素过程进行研究,Birol对Bajpai和Reuss提出的非结构式模型进行了扩展,对模型进一步简化,方便研究。

相关百科

热门百科

首页
发表服务