首页

> 论文发表知识库

首页 论文发表知识库 问题

带式输送机传动装置毕业论文

发布时间:

带式输送机传动装置毕业论文

程设计 带式输送机传动装置 7毕业论文 桥式起重机副起升机构设计 8毕业论文 两齿辊破碎机设计 9 63CY14-1B轴向柱塞泵改进设计(共32页,19000字) 10毕业设计 连杆孔研磨装置设计 11毕业设计 旁承上平面与下心盘上平面垂直距离检测装置的设计 12.. 机械设计课程设计 带式运输机传动装置设计 13皮带式输送机传动装置的一级圆柱齿轮减速器 14毕业设计(论文) 立轴式破碎机设计 15毕业设计(论文) C6136型经济型数控改造(横向) 16高空作业车工作臂结构设计及有限元分析 17 2007届毕业生毕业设计 机用虎钳设计 18毕业设计无轴承电机的结构设计 19毕业设计 平面关节型机械手设计 20毕业设计 三自由度圆柱坐标型工业机器人 21毕业设计XKA5032A/C数控立式升降台铣床自动换刀设计 22毕业设计 四通管接头的设计 23课程设计:带式运输机上的传动及减速装置 24毕业设计(论文) 行星减速器设计三维造型虚拟设计分析 25毕业设计论文 关节型机器人腕部结构设计 26本科生毕业设计全套资料 Z32K型摇臂钻床变速箱的改进设计/ 27毕业设计 EQY-112-90 汽车变速箱后面孔系钻削组合机床设计 28毕业设计 D180柴油机12孔攻丝机床及夹具设计 29毕业设计 C616型普通车床改造为经济型数控车床 30毕业设计(论文)说明书 中单链型刮板输送机设计 液压类毕业设计1毕业设计 ZFS1600/12/26型液压支架掩护梁设计2毕业设计 液压拉力器 3毕业设计 液压台虎钳设计 4毕业设计论文 双活塞液压浆体泵液力缸设计 5毕业设计 GKZ高空作业车液压和电气控制系统设计 数控加工类毕业设计1课程设计 设计低速级斜齿轮零件的机械加工工艺规程 2毕业设计 普通车床经济型数控改造 3毕业论文 钩尾框夹具设计(镗φ92孔的两道工序的专用夹具) ...4 机械制造工艺学课程设计 设计“拨叉”零件的机械加工工艺规程及工艺装备(年产量5000件)5课程设计 四工位专用机床传动机构设计 6课程设计说明书 设计“推动架”零件的机械加工工艺及工艺设备 7机械制造技术基础课程设计 制定CA6140车床法兰盘的加工工艺,设计钻4×φ9mm孔的钻床夹具 8械制造技术基础课程设计 设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 9毕业设计 轴类零件设计 10毕业设计 壳体零件机械加工工艺规程制订及第工序工艺装备设计 11毕业设计 单拐曲轴零件机械加工规程设计说明书 12机械制造课程设计 机床传动齿轮的工艺规程设计(大批量) 13课程设计 轴零件的机械加工工艺规程制定 14毕业论文 开放式CNC(Computer Numerical Control)系统设计15毕业设计 单拐曲轴工艺流程 16毕业设计 壳体机械加工工艺规程 17毕业设计 连杆机械加工工艺规程 18毕业设计(论文) 子程序在冲孔模生产中的运用——编制数控加工(1#-6#)标模点孔的程序 19毕业设计 XKA5032A/C数控立式升降台铣床自动换刀装置的设计 20机械制造技术基础课程设计 设计“减速器传动轴”零件的机械加工工艺规程(年产量为5000件) 21课程设计 杠杆的加工 22毕业设计 多回转电动执行机构箱体加工工艺规程及工艺装备设计 23毕业论文 数控铣高级工零件工艺设计及程序编制 24毕业论文 数控铣高级工心型零件工艺设计及程序编制25毕业设计 连杆的加工工艺及其断面铣夹具设计 26机械制造工艺学课程设计说明书:设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 杂合XKA5032AC数控立式升降台铣床自动换刀装置设计机用虎钳课程设计.rar行星齿轮减速器减速器的虚拟设计(王少华).rar物流液压升降台的设计自动加料机控制系统.rar全向轮机构及其控制设计.rar齿轮齿条转向器.rar出租车计价系统.rar(毕业设计)油封骨架冲压模具连杆孔研磨装置设计 .rar蜗轮蜗杆传动.rar用单片机实现温度远程显示.doc基于Alter的EP1C6Q240C8的红外遥器(毕业论文).doc变频器 调试设计及应用镍氢电池充电器的设计.doc铣断夹具设计 q 348414338

一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。(2) 原始数据:滚筒圆周力F=;带速V=;滚筒直径D=220mm。 运动简图二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=××××(2)电机所需的工作功率:Pd=FV/1000η总=1700×× =、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD=60×1000×π×220=根据【2】表中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×符合这一范围的同步转速有960 r/min和1420r/min。由【2】表查出有三种适用的电动机型号、如下表方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比 KW 同转 满转 总传动比 带 齿轮1 Y132s-6 3 1000 960 3 Y100l2-4 3 1500 1420 3 综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y100l2-4。其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩。三、计算总传动比及分配各级的传动比1、总传动比:i总=n电动/n筒=1420/、分配各级传动比(1) 取i带=3(2) ∵i总=i齿×i 带π∴i齿=i总/i带=四、运动参数及动力参数计算1、计算各轴转速(r/min)nI=nm/i带=1420/3=(r/min)nII=nI/i齿=(r/min)滚筒nw=nII=(r/min)2、 计算各轴的功率(KW) PI=Pd×η带=× PII=PI×η轴承×η齿轮=××、 计算各轴转矩Td=וm TI=入/n1 =•m TII =入/n2=•m 五、传动零件的设计计算1、 皮带轮传动的设计计算(1) 选择普通V带截型由课本[1]P189表10-8得:kA= P=×据PC=和n1=由课本[1]P189图10-12得:选用A型V带(2) 确定带轮基准直径,并验算带速由[1]课本P190表10-9,取dd1=95mm>dmin=75dd2=i带dd1(1-ε)=3×95×()= mm由课本[1]P190表10-9,取dd2=280带速V:V=πdd1n1/60×1000=π×95×1420/60×1000 =在5~25m/s范围内,带速合适。(3) 确定带长和中心距初定中心距a0=500mmLd=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0=2×500+(95+280)+(280-95)2/4×450=根据课本[1]表(10-6)选取相近的Ld=1600mm确定中心距a≈a0+(Ld-Ld0)/2=500+()/2=497mm (4) 验算小带轮包角α1= ×(dd2-dd1)/a=×(280-95)/497=>1200(适用) (5) 确定带的根数单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=查[1]表10-3,得Kα=;查[1]表10-4得 KL= PC/[(P1+△P1)KαKL]=[() ××]= (取3根) (6) 计算轴上压力由课本[1]表10-5查得q=,由课本式(10-20)单根V带的初拉力:F0=500PC/ZV[(α)-1]+qV2=[()]+ =则作用在轴承的压力FQFQ=2ZF0sin(α1/2)=2×3×()=、齿轮传动的设计计算(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;精度等级:运输机是一般机器,速度不高,故选8级精度。(2)按齿面接触疲劳强度设计由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3确定有关参数如下:传动比i齿=取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=取z2=78 由课本表6-12取φd=(3)转矩T1T1=×106×P1/n1=×106וmm(4)载荷系数k : 取k=(5)许用接触应力[σH][σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:σHlim1=610Mpa σHlim2=500Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60××10×300×18= /×108查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=按一般可靠度要求选取安全系数SHmin=[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa[σH]2=σHlim2ZN2/SHmin=故得:d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3= 模数:m=d1/Z1=取课本[1]P79标准模数第一数列上的值,m=(6)校核齿根弯曲疲劳强度σ bb=2KT1YFS/bmd1确定有关参数和系数分度圆直径:d1=mZ1=×20mm=50mm d2=mZ2=×78mm=195mm齿宽:b=φdd1=×50mm=55mm取b2=55mm b1=60mm(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1= (8)许用弯曲应力[σbb]根据课本[1]P116:[σbb]= σbblim YN/SFmin由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1计算得弯曲疲劳许用应力为[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa校核计算σbb1=2kT1YFS1/ b1md1=< [σbb1]σbb2=2kT1YFS2/ b2md1=< [σbb2]故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩aa=(d1+d2)/2= (50+195)/2=(10)计算齿轮的圆周速度V计算圆周速度V=πn1d1/60×1000=××50/60×1000=因为V<6m/s,故取8级精度合适. 六、轴的设计计算 从动轴设计 1、选择轴的材料 确定许用应力 选轴的材料为45号钢,调质处理。查[2]表13-1可知: σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa [σ0]bb=102Mpa,[σ-1]bb=60Mpa 2、按扭转强度估算轴的最小直径 单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为: d≥C 查[2]表13-5可得,45钢取C=118 则d≥118×()1/3mm= 考虑键槽的影响以及联轴器孔径系列标准,取d=35mm 3、齿轮上作用力的计算 齿轮所受的转矩:T=×106P/n=×106× N 齿轮作用力: 圆周力:Ft=2T/d=2×198582/195N=2036N 径向力:Fr=Fttan200=2036×tan200=741N 4、轴的结构设计 轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。 (1)、联轴器的选择 可采用弹性柱销联轴器,查[2]表可得联轴器的型号为HL3联轴器:35×82 GB5014-85 (2)、确定轴上零件的位置与固定方式 单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置 在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合分别实现轴向定位和周向定位 (3)、确定各段轴的直径将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm. (4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm. (5)确定轴各段直径和长度Ⅰ段:d1=35mm 长度取L1=50mmII段:d2=40mm 初选用6209深沟球轴承,其内径为45mm,宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:L2=(2+20+19+55)=96mmIII段直径d3=45mmL3=L1-L=50-2=48mmⅣ段直径d4=50mm长度与右面的套筒相同,即L4=20mmⅤ段直径d5=52mm. 长度L5=19mm由上述轴各段长度可算得轴支承跨距L=96mm(6)按弯矩复合强度计算①求分度圆直径:已知d1=195mm②求转矩:已知T2=•m③求圆周力:Ft根据课本P127(6-34)式得Ft=2T2/d2=2×④求径向力Fr根据课本P127(6-35)式得Fr=Ft•tanα=×tan200=⑤因为该轴两轴承对称,所以:LA=LB=48mm(1)绘制轴受力简图(如图a)(2)绘制垂直面弯矩图(如图b)轴承支反力:FAY=FBY=Fr/2=由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为MC1=FAyL/2=×96÷2=•m截面C在水平面上弯矩为:MC2=FAZL/2=×96÷2=•m(4)绘制合弯矩图(如图d)MC=(MC12+MC22)1/2=()1/2=•m(5)绘制扭矩图(如图e)转矩:T=×(P2/n2)×106=•m(6)绘制当量弯矩图(如图f)转矩产生的扭剪文治武功力按脉动循环变化,取α=,截面C处的当量弯矩:Mec=[MC2+(αT)2]1/2=[(×)2]1/2=•m(7)校核危险截面C的强度由式(6-3)σe=×453=< [σ-1]b=60MPa∴该轴强度足够。主动轴的设计 1、选择轴的材料 确定许用应力 选轴的材料为45号钢,调质处理。查[2]表13-1可知: σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa [σ0]bb=102Mpa,[σ-1]bb=60Mpa 2、按扭转强度估算轴的最小直径 单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为: d≥C 查[2]表13-5可得,45钢取C=118 则d≥118×()1/3mm= 考虑键槽的影响以系列标准,取d=22mm 3、齿轮上作用力的计算 齿轮所受的转矩:T=×106P/n=×106× N 齿轮作用力: 圆周力:Ft=2T/d=2×53265/50N=2130N 径向力:Fr=Fttan200=2130×tan200=775N 确定轴上零件的位置与固定方式 单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置 在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定 ,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位, 4 确定轴的各段直径和长度初选用6206深沟球轴承,其内径为30mm,宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。(2)按弯扭复合强度计算①求分度圆直径:已知d2=50mm②求转矩:已知T=•m③求圆周力Ft:根据课本P127(6-34)式得Ft=2T3/d2=2×④求径向力Fr根据课本P127(6-35)式得Fr=Ft•tanα=×⑤∵两轴承对称∴LA=LB=50mm(1)求支反力FAX、FBY、FAZ、FBZFAX=FBY=Fr/2=(2) 截面C在垂直面弯矩为MC1=FAxL/2=×100/2=19N•m(3)截面C在水平面弯矩为MC2=FAZL/2=×100/2=•m(4)计算合成弯矩MC=(MC12+MC22)1/2=(192+)1/2=•m(5)计算当量弯矩:根据课本P235得α=[MC2+(αT)2]1/2=[(×)2]1/2=•m(6)校核危险截面C的强度由式(10-3)σe=Mec/()=(×303)=<[σ-1]b=60Mpa∴此轴强度足够(7) 滚动轴承的选择及校核计算 一从动轴上的轴承根据根据条件,轴承预计寿命L'h=10×300×16=48000h (1)由初选的轴承的型号为: 6209, 查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=, 基本静载荷CO=, 查[2]表可知极限转速9000r/min (1)已知nII=(r/min)两轴承径向反力:FR1=FR2=1083N根据课本P265(11-12)得轴承内部轴向力FS= 则FS1=FS2=(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1=682N FA2=FS2=682N(3)求系数x、yFA1/FR1=682N/1038N = =根据课本P265表(14-14)得e=48000h ∴预期寿命足够二.主动轴上的轴承: (1)由初选的轴承的型号为:6206 查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,基本额定动载荷C=,基本静载荷CO=, 查[2]表可知极限转速13000r/min 根据根据条件,轴承预计寿命L'h=10×300×16=48000h (1)已知nI=(r/min)两轴承径向反力:FR1=FR2=1129N根据课本P265(11-12)得轴承内部轴向力FS= 则FS1=FS2=(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1= FA2=FS2=(3)求系数x、yFA1/FR1= = =根据课本P265表(14-14)得e=48000h ∴预期寿命足够 七、键联接的选择及校核计算1.根据轴径的尺寸,由[1]中表12-6高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79大齿轮与轴连接的键为:键 14×45 GB1096-79轴与联轴器的键为:键10×40 GB1096-792.键的强度校核 大齿轮与轴上的键 :键14×45 GB1096-79b×h=14×9,L=45,则Ls=L-b=31mm圆周力:Fr=2TII/d=2×198580/50=挤压强度: =<125~150MPa=[σp]因此挤压强度足够剪切强度: =<120MPa=[ ]因此剪切强度足够键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。八、减速器箱体、箱盖及附件的设计计算~1、减速器附件的选择通气器由于在室内使用,选通气器(一次过滤),采用M18×油面指示器选用游标尺M12起吊装置采用箱盖吊耳、箱座吊耳.放油螺塞选用外六角油塞及垫片M18×根据《机械设计基础课程设计》表选择适当型号:起盖螺钉型号:GB/T5780 M18×30,材料Q235高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235螺栓:GB5782~86 M14×100,材料Q235箱体的主要尺寸:: (1)箱座壁厚z=× 取z=8 (2)箱盖壁厚z1=× 取z1=8 (3)箱盖凸缘厚度b1=×8=12 (4)箱座凸缘厚度b=×8=12 (5)箱座底凸缘厚度b2=×8=20 (6)地脚螺钉直径df = ×(取18) (7)地脚螺钉数目n=4 (因为a<250) (8)轴承旁连接螺栓直径d1= =×18= (取14) (9)盖与座连接螺栓直径 d2=()df =× 18= (取10) (10)连接螺栓d2的间距L=150-200 (11)轴承端盖螺钉直d3=()df=×18=(取8) (12)检查孔盖螺钉d4=()df=×18= (取6) (13)定位销直径d=()d2=×10=8 (14)至外箱壁距离C1 (15) (16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。(17)外箱壁至轴承座端面的距离C1+C2+(5~10)(18)齿轮顶圆与内箱壁间的距离:> mm (19)齿轮端面与内箱壁间的距离:=12 mm (20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm (21)轴承端盖外径∶D+(5~5.5)d3 D~轴承外径(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.九、润滑与密封1.齿轮的润滑采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。2.滚动轴承的润滑由于轴承周向速度为,所以宜开设油沟、飞溅润滑。3.润滑油的选择齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。4.密封方法的选取选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为轴承盖结构尺寸按用其定位的轴承的外径决定。十、设计小结课程设计体会课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。十一、参考资料目录[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版

计算内容 计算结果 一, 设计任务书 设计题目:传送设备的传动装置 (一)方案设计要求: 具有过载保护性能(有带传动) 含有二级展开式圆柱齿轮减速器 传送带鼓轮方向与减速器输出轴方向平行 (二)工作机原始数据: 传送带鼓轮直径___ mm,传送带带速___m/s 传送带主动轴所需扭矩T为 使用年限___年,___班制 工作载荷(平稳,微振,冲击) (三)数据: 鼓轮D 278mm,扭矩T 带速V ,年限 9年 班制 2 ,载荷 微振 二.电机的选择计算 1. 选择电机的转速: a. 计算传动滚筒的转速 nw= 60V/πd=60×× r/min b.计算工作机功率 pw= nw/×10³=248××10³= 2. 工作机的有效功率 a. 传动装置的总效率 带传动的效率η1= 弹性联轴器的效率η2= 滚筒的转速 nw= r/min 工作机功率 pw= 计算内容 计算结果 滚动轴承的效率 η3= 滚筒效率 η4= 齿轮啮合效率 η5= 总效率 η=η1×η2×η34×η4×η5²= ×××ײ= c. 所需电动机输出功率Pr=Pw/η= 3. 选择电动机的型号: 查参考文献[10] 表16-1-28得 表 方案 号 电机 型号 电机 质量 (Kg) 额定 功率 (Kw) 同步 转速(r/min) 满载 转速 (r/min) 总传 动比 1 Y100L1-4 34 1500 1420 2 Y112M-6 45 1000 940 根据以上两种可行同步转速电机对比可见,方案2传动比小且质量价格也比较合理,所以选择Y112M-6型电动机。 三.运动和动力参数的计算 1. 分配传动比取i带= 总传动比 i= i减=i/i带= 减速器高速级传动比i1= = 减速器低速级传动比i2= i减/ i1= 2. 运动和动力参数计算: 总效率 η= 电动机输出功率 Pr= 选用三相异步电动机Y112M-6 p= kw n=940r/min 中心高H=1112mm,外伸轴段D×E=28×60 i= i12= i23= P0= 计算内容 计算结果 0轴(电动机轴): p0=pr= n0=940r/min T0=103P0/n0=103 Ⅰ轴(减速器高速轴): p1=p.η1= n1= n0/i01=940/ T1=103P1/n1= Ⅱ轴(减速器中间轴): p2=p1η12=p1η5η3= = Kw n2= n1/i12=376/ r/min T2=103 P2/n2= Ⅲ轴(减速器低速轴): p3=p2η23= p2η5η3= Kw n3= n2/i23= r/min T3=103 P3/n3= Ⅳ轴(鼓轮轴): p4=p3η34= Kw n4= n3= r/min T4=103 P4/n4= 四.传动零件的设计计算 (一)减速器以外的传动零件 1.普通V带的设计计算 (1) 工况系数取KA= 确定dd1, dd2:设计功率pc=KAp= n0=940r/min T0= p1= n1=376r/min T1= p2= n2= r/min T2= p3= n3= r/min T3= p4= Kw n4= T4= 小带轮转速n1= n0=940 r/min 选取A型V带 取dd1=118mm dd2=(n1/n2)dd1=(940/376) 118=295mm 取标准值dd2=315mm 实际传动i=dd1/ dd2=315/118= 所以n2= n1/i=940/(误差为>5%) 重取 dd1=125mm, dd2=(n1/n2)dd1=(940/376)125= 取标准值dd2=315mm 实际传动比i= dd1/ dd2=315/125= n2= n1/i=940/ (误差为8% 允许) 所选V带带速v=πdd1 n1/(601000)= 125940/(601000)= 在5 ~25m/s之间 所选V带符合 (2)确定中心距 ①初定a0 :(dd1 +dd2)≤a0≤ 2(dd1 +dd2) 308≤a0≤880 取a0=550mm ②Lc=2 a0+(π/2)( dd1 +dd2)+( dd2 -dd1)²/4 a0 =2550+() (315+125)+(315-125)²/4550= ③取标准值:Ld=1800mm ④中心距:a=a0+ (Ld­Lc)/2=550+()/2 计算内容 计算结果 = 取a=547mm,a的调整范围为: amax=a+ Ld=601mm amin= (2)验算包角: α≈180°-(dd2-dd1) 60° /a=180°-(315-125) 60°/547=159°>120°,符合要求。 (3)确定根数:z≥pc/p0’ p0’=Kα(p0+Δp1+Δp2) Kα=(1- )= 对于A型带:c1=10-4,c2=10-3, c3=10-15,c4=10-5 L0=1700mm ω1= = = p0= dd1ω1[c1- - c3 (dd1ω1)²- c4lg(dd1ω1)] =125[10-4-  10-15 (125)²- 10-5 lg(125)]= Δp1= c4dd1ω1 = Δp2=c4dd1ω1 = p0’= ()= Kw 确定根数:z≥ ≤Zmax z= = 取z=2 (4)确定初拉力F0 F0=500 =500× = (5)带对轴的压力Q Q=2 F0zsin =2 = (二)减速器以内的零件的设计计算 1.齿轮传动设计 (1)高速级用斜齿轮 ① 选择材料 小齿轮选用40Cr钢,调质处理,齿面硬度250~280HBS大齿轮选用ZG340~ 640,正火处理,齿面硬度170 ~ 220HBS 应力循环次数N: N1=60n1jLh=60×376×(9×300×16)=×108 N2= N1/i1=×108 ÷×108 查文献[2]图5-17得:ZN1= Z N2=(允许有一点蚀) 由文献[2]式(5-29)得:ZX1 = ZX2=,取SHmin=,Zw=,ZLVR= 按齿面硬度250HBS和170HBS由文献[2]图(5-16(b))得:σHlim1=690Mpa, σHlim2=450 Mpa 许用接触应力[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR= Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR = Mpa 因[σH]2〈[σH]1,所以计算中取[σH]= [σH]2 = Mpa ②按接触强度确定中心距 初定螺旋角β=12° Zβ= = 初取KtZεt2= 由文献[2]表5-5得ZE= ,减速传动u=i1 =,取Φa= 端面压力角αt=arctan(tanαn/cosβ)=arctan(tan20°/cos12°)=° 基圆螺旋角βb= arctan(tanβ×cosαt)= arctan(tan12°×°)=° ZH= = = 计算中心距a: 计算内容 计算结果 a≥ = = 取中心距 a=112mm 估算模数mn=()a=()×= 取标准模数mn=2 小齿轮齿数 实际传动比: 传动比误差 在允许范围之内 修正螺旋角β= 10°50′39〃 与初选β=12°相近,Zβ,ZH可不修正。 齿轮分度圆直径 圆周速度 由文献[2]表5-6 取齿轮精度为8级 ③验算齿面接触疲劳强度 按电机驱动,载荷平稳,由文献[2]表5-3 取 KA= 由文献[2]图5-4(b),按8级精度和 取KV= 齿宽 ,取标准b=45mm 由文献[2]图5-7(a)按b/d1=45/,取Kβ= 由文献[2]表5-4,Kα= 载荷系数K= KAKVKβKα= 计算重合度: 齿顶圆直径 端面压力角: 齿轮基圆直径: mm mm 端面齿顶压力角: 高速级斜齿轮主要参数: mn=2 z1=30, z2=80 β= 10°50′39〃 mt= mn/cosβ= d1= d2= da1= da2= df1= d1-2(ha*+ c*) mn= df2= d2-2(ha*+ c*) mn= 中心距a=1/2(d1+d2)=112mm 齿宽b2=b= 45mm b1= b2+(5~10)=50mm 计算内容 计算结齿面接触应力 安全 ④验算齿根弯曲疲劳强度 由文献[2]图5-18(b)得: 由文献[2]图5-19得: 由文献[2]式5-23: 取 计算许用弯曲应力:计算内容 计算结果 由文献[2]图5-14得: 由文献[2]图5-15得: 由文献[2]式5-47得计算 由式5-48: 计算齿根弯曲应力:均安全。 ⑵低速级直齿轮的设计 ①选择材料 小齿轮材料选用40Cr钢,齿面硬度250—280HBS,大齿轮材料选用ZG310-570,正火处理,齿面硬度162—185HBS 计算应力循环次数N:同高速级斜齿轮的计算 N1=60 n1jL h=×108 N2= N1/i1=×108 计算内容 计算结果 查文献[2]图5-17得:ZN1= Z N2= 按齿面硬度250HBS和162HBS由文献[2]图(5-16(b))得:σHlim1=690Mpa, σHlim2=440 Mpa 由文献[2]式5-28计算许用接触应力: [σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR= Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR = Mpa 因[σH]2〈[σH]1,所以取[σH]= [σH]2 = Mpa ②按接触强度确定中心距 小轮转距T1= 初取KtZεt2= 由文献[2]表5-5得ZE= ,减速传动u=i23=,取Φa= 计算中心距a: a≥ = 取中心距 a=150mm估算模数m=()a=()×150= 1.05~3 取标准模数m=2 小齿轮齿数 齿轮分度圆直径 齿轮齿顶圆直径: 齿轮基圆直径: mm mm 圆周速度 由文献[2]表5-6 取齿轮精度为8级 按电机驱动,载荷平稳,而工作机载荷微振,由文献[2]表5-3 取 KA= 按8级精度和 取KV= 齿宽 b= ,取标准b=53mm 由文献[2]图5-7(a)按b/d1=53/100=,取Kβ= 由文献[2]表5-4,Kα= 载荷系数K= KAKVKβKα= 计算端面重合度: 安全。 ③校核齿根弯曲疲劳强度 按z1=50, z2=100,由文献[2]图5-14得YFa1= ,YFa2= 由文献[2]图5-15得YSa1= ,YSa2=。 Yε= εα= 由文献[2]图5-18(b),σFlim1=290Mp, σFlim2=152Mp 由文献[2]图5-19,YN1= YN2=,因为m=4〈5mm,YX1= YX2=。 取YST=,SFmin=。 计算许用弯曲应力: [σF1]= σFlim1YST YN1 YX1/SFmin=414Mp [σF2]= σFlim2YST YN2 YX2/SFmin=217Mp 计算齿根弯曲应力: σF1=2KT1YFa1YSa1Yε/bd1m=2××136283××××100×2=〈[σF1] σF2=σF1 YFa2YSa2/ YFa1YSa1=〈[σF2] 均安全。 五.轴的结构设计和轴承的选择 a1=112mm, a2=150mm, bh2=45mm, bh1= bh2+(5~10)=50mm bl2=53mm, bl1= bl2+(5~10)=60mm (h----高速轴,l----低速轴) 考虑相邻齿轮沿轴向不发生干涉,计入尺寸s=10mm,考虑齿轮与箱体内壁沿轴向不发生干涉,计入尺寸k=10mm,为保证滚动轴承放入箱体轴承座孔内,计入尺寸c=5mm,初取轴承宽度分别为n1=20mm,n2=22,n3=22mm,3根轴的支撑跨距分别为: 计算内容 低速级直齿轮主要参数: m=2 z1=50, z1=50 z2=100 u= d1=100mm d2=200mm da1=104mm da2=204mm df1= d1-2(ha*+ c*) m=95mm df2= d2-2(ha*+ c*) m=195mm a=1/2(d2+ d1)=150mm 齿宽b2 =b=53mm b1=b2+ (5~10)=60mm 计算结果 l1=2(c+k)+bh1+s+bl1+n1=2×(5+10)+50+10+60+20=170mm l2=2(c+k)+bh1+s+bl1+n2=2×(5+10)+50+10+60+20= 172mm l3=2(c+k)+bh1+s+bl1+n3=2×(5+10)+50+10+60+20=172mm (2)高速轴的设计: ①选择轴的材料及热处理 由于高速轴小齿轮直径较小,所以采用齿轮轴,选用40r钢, ②轴的受力分析: 如图1轴的受力分析: lAB=l1=170mm, lAC=n1/2+c+k+bh1/2=20/2+5+10+50/2=50mm lBC= lAB- lAC=170-50=120mm (a) 计算齿轮啮合力: Ft1=2000T1/d1=2000× Fr1=Ft1tanαn/cosβ×tan20°/°= Fa1= Ft1tanβ×°= (b) 求水平面内支承反力,轴在水平面内和垂直面的受力简图如下图: RAx= Ft1 lBC/ lAB=×120/170= RBx= Ft1-RAx= RAy=(Fr1lBC+Fa1d1/2)/lAB=(×120+× )/170= RBy= Fr1-RAy= (c) 支承反力 弯矩MA= MB=0,MC1= RA lAC= MC2= RB lBC= 转矩T= Ft1 d1/2= 计算内容 计算结果 d≥ ③轴的结构设计 按经验公式,减速器输入端轴径A0 由文献[2]表8-2,取A0=100 则d≥100 ,由于外伸端轴开一键槽, d=(1+5%)=取d=20mm,由于da1<2d,用齿轮轴,根据轴上零件的布置、安装和定位的需要,初定轴段直径和长度,其中轴颈、轴的结构尺寸应与轴上相关零件的结构尺寸联系起来考虑。 初定轴的结构尺寸如下图: 高速轴上轴承选择:选择轴承30205 GB/T297-94。 (2)中间轴(2轴)的设计: ①选择轴的材料及热处理 选用45号纲调质处理。 ②轴的受力分析: 如下图轴的受力分析: 计算内容 计算结果 lAB=l2=172mm, lAC=n2/2+c+k+bh1/2=22/2+5+10+50/2=51mm lBC= lAB- lAC=172-51=121mm lBD=n2/2+c+k+bl1/2=22/2+5+10+60/2=56mm (a) 计算齿轮啮合力: Ft2=2000T2/d2=2000× Fr2=Ft2tanαn/cosβ=×tan20°/°= Fa2=Ft2tanβ=×°= Ft3=2000T2/d3=2000× Fr3=Ft3tanα=×tan20°= (b)求水平面内和垂直面内的支反力 RAx=(Ft2lBC+Ft3lBD )/lAB=(×121+×56)/172= RBx=Ft2+Ft3-RAX= RAY=(Fa2d2/2-Fr2lBC+Fr3lBD)/lAB=(××121+×56)= RBY=Fr3-Fr2-RAY= 计算内容 计算结果 RA=, RB= ③轴的结构设计 按经验公式, d≥A0 由文献[2]表8-2,取A0=110 则d≥110 ,取开键槽处d=35mm 根据轴上零件的布置、安装和定位的需要,初定轴段直径和长度,其中轴颈、轴的结构尺寸应与轴上相关零件的结构尺寸联系起来考虑。 初定轴的结构尺寸如下图: 中间轴上轴承选择:选择轴承6206 GB/T276-94。 (3)低速轴(3轴)的设计: ①选择轴的材料及热处理 选用45号纲调质处理。 ②轴的受力分析: 如下图轴的受力分析: 计算内容 计算结果 初估轴径: d≥A0 =110 联接联轴器的轴端有一键槽,dmin=(1+3%)=,取标准d=35mm 轴上危险截面轴径计算:d=()a=()×150=45~60mm 最小值dmin =45×(1+3%)=,取标准 计算内容 计算结果 50mm 初选6207GB/T276-94轴承,其内径,外径,宽度为40×80×18 轴上各轴径及长度初步安排如下图: ③低速级轴及轴上轴承的强度校核 a、 低速级轴的强度校核 ①按弯扭合成强度校核: 转矩按脉动循环变化,α≈ Mca1= Mc= Mca2= Mca3=αT= 计算弯矩图如下图: 计算内容 计算结果 Ⅱ剖面直径最小,而计算弯矩较大,Ⅷ剖面计算弯矩最大,所以校核Ⅱ,Ⅷ剖面。 Ⅱ剖面:σca= Mca3/W=×35³= Ⅷ剖面:σca= Mca2/W=×50³= 对于45号纲,σB=637Mp,查文献[2]表8-3得 [σb] -1=59 Mp,σca<[σb] -1,安全。 ②精确校核低速轴的疲劳强度 a、 判断危险截面: 各个剖面均有可能有危险剖面。其中,Ⅱ,Ⅲ,Ⅳ剖面为过度圆角引起应力集中,只算Ⅱ剖面即可。Ⅰ剖面与Ⅱ剖面比较,只是应力集中影响不同,可取应力集中系数较大者进行验算。Ⅸ--Ⅹ面比较,它们直径均相同,Ⅸ与Ⅹ剖面计算弯矩值小,Ⅷ剖面虽然计算弯矩值最大,但应力集中影响较小(过盈配合及键槽引起的应力集中均在两端),所以Ⅵ与Ⅶ剖面危险,Ⅵ与Ⅶ剖面的距离较接近(可取5mm左右),承载情况也很接近,可取应力集中系数较大值进行验算。 计算内容 计算结果 b.较核Ⅰ、Ⅱ剖面疲劳强度:Ⅰ剖面因键槽引 起的应力集中系数由文献[2]附表1-1查得:kσ=, kτ= Ⅱ剖面配合按H7/K6,引起的应力集中系数由文献[2]附表1-1得:kσ=, kτ=。Ⅱ剖面因过渡圆角引起的应力集中系数查文献[2]附表1-2(用插入法): (过渡圆角半径根据D-d由文献[1]表查取) kτ=,故应按过渡圆角引起的应力集中系数验算Ⅱ剖面 Ⅱ剖面产生的扭应力、应力幅、平均应力为: τmax =T/ WT=×35³=, τa=τm =τmax /2= 绝对尺寸影响系数查文献[2]附表1-4得:εσ =,ετ =,表面质量系数查文献[2]附表1-5:βσ =,βτ = Ⅱ剖面安全系数为: S=Sτ= 取[S]=,S>[S] Ⅱ剖面安全。 b、 校核Ⅵ,Ⅶ剖面: Ⅵ剖面按H7/K6配合,引起的应力集中系数查附表1-1,kσ=, kτ= Ⅵ剖面因过渡圆角引起的应力集中系数查附表1-2, ,kσ=τ= Ⅶ剖面因键槽引起的应力集中系数查文献[2]附表1-1得:kσ=, kτ=。故应按过渡圆角引起 计算内容 计算结果 的应力集中系数来验算Ⅵ剖面 MVⅠ=113 RA=×113=, TVⅠ= Ⅵ剖面产生的正应力及其应力幅、平均应力: σmax= MVⅠ/W=×50³= σa=σmax= σm=0 Ⅵ剖面产生的扭应力及其应力幅,平均应力为: τmax =TⅥ/ WT=266133/×50³ 绝对尺寸影响系数由文献[2]附表1-4得:εσ =,ετ = 表面质量系数由文献[2]附表1-5查得:βσ =,βτ = Ⅵ剖面的安全系数: Sσ = Sτ= S= 取[S]= ,S>[S] Ⅵ剖面安全。 六.各个轴上键的选择及校核 1.高速轴上键的选择: 初选A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm,查文献[2]表2-10,许用挤压应力[σp]=110Mp,σp= 满足要求; 计算内容 高速轴上 选A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm 中间轴 选A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm, 计算结果 2.中间轴键的选择: A处:初选A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm, [σp]=110Mp σp= 满足要求; B处:初选A型10×45 GB1095-79: b=10mm,h=8mm,L=32mm,l=22mm,[σp]=110Mp σp= 满足要求. 3. 低速轴上键的选择: a.联轴器处选A型普通平键 初选A型10×50 GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm,查文献[2]表2-10,许用挤压应力[σp]=110Mp σp= 满足要求. b. 齿轮处初选A型14×40 GB1096-79:b=14mm,h=9mm,L=40mm,l=26mm, [σp]=110Mp σp= 满足要求. 七.联轴器的选择 根据设计题目的要求,减速器只有低速轴上放置一联轴器。 查表取工作情况系数K= 取K= 计算转矩 Tc=KT=× 选用HL3型联轴器:J40×84GB5014-85,[T]=, Tc<[T],n<[n],所选联轴器合适。 低速轴 联轴器处选A型10×50GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm 低速轴 齿轮处初选A型14×40GB1096-79: b=14mm,h=9mm,L=40mm,l=26mm 选用HL3型联轴器:J40×84GB5014-85参考资料:机械课程设计,理论力学回答者:tlzhangyuchuan 百度知道里有很多人问这个问题,建议你去看一下有没有你需要的

一、带式输送机传动装置,可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,不过增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。二、设计安装调试:1.输送机的各支腿、立柱或平台用化学锚栓牢固地固定于地面上。2.机架上各个部件的安装螺栓应全部紧固。各托辊应转动灵活。托辊轴心线、传动滚筒、改向滚筒的轴心线与机架纵向的中心线应垂直。3.螺旋张紧行程为机长的1%~。4.拉绳开关安装于输送机一侧,两开关间用覆塑钢丝绳连接,松紧适度。5.跑偏开关安装于输送机头尾部两侧,成对安装。开关的立辊与输送带带边垂直,且保证带边位于立辊高度的1/3处。立辊与输送带边缘距离为50~70mm。6.各清扫器、导料槽的橡胶刮板应与输送带完全接触,否则,调节清扫器和导料槽的安装螺栓使刮板与输送带接触。7.安装无误后空载试运行。试运行的时间不少于2小时。并进行如下检查:(1)各托辊应与输送带接触,转动灵活。(2)各润滑处无漏油现象。(3)各紧固件无松动。(4)轴承温升不大于40°C,且最高温度不超过80°C。(5)正常运行时,输送机应运行平稳,无跑偏,无异常噪音。

带式输送机传动装置的毕业论文

论文编号:JX235 所有图纸,任务书.论文字数:40706.页数:105摘 要 本设计主要是带式输送机全自动液压张紧装置的设计。它是在吸收国、内外输送机张紧技术的基础上,根据国内带式输送机的运行特点及要求研制的。它采用比例控制技术及可靠性较高的可编程控制技术,可以对张紧力进行多点控制,根据不同工作情况随时调节张紧力的大小。能最大程度的延长皮带的寿命,大大节约了成本。在设计中,用一个动滑轮使液压缸的行程减少了一半,避免使用行程较长的液压缸,减少了制造液压缸的难度。同时,系统中增加了若干个蓄能器,可以最大限度的吸收液压冲击,减小对皮带的冲击力提高胶带的使用寿命。本设计在总结其它常规皮带张紧装置的基础上,设计了能够满足皮带机的皮带长度变化较大时的皮带拉紧装置。此装置在皮带机启动阶段,能提供足够大的启动张力;启动完毕后, 又可使皮带的张力恢复到额定值以维持皮带机的正常运行。本文根据液压自动张紧装置的液压原理,详细阐述了自动张紧装置的结构组成、控制原理及功能特点,并阐明了控制系统的设计关键在于压力值和最大拉力值的设定。介绍了带式输送机运行系统要求,并运用PLC可编程控制技术对带式输送机的起动、制动和拉紧部分实时监控,完全实现了带式输送机自动控制运行方式,构成了一个高可靠性的设备运行控制系统。关键词:带式输送机; 自动液压张紧装置; 自动控制; 可编程控制PLCABSTRACT This design is mainly about full automatic hydraulic tension station for belt conveyer. It is designed on the foundation of opening technology in and outside, according to the domestic operation characteristic of belt conveyer and requirement. The equipment is also made on domestic belt-type conveyer movement characteristic and requestment. It uses the proportional control technology and the reliable higher programmable control technology, It may carry on the multi-spots control to strict the strength, adjusts pressing the strength size as necessary according to the different working can be the greatest degree lengthen the leather belt the life, greatly saved the cost. In the design, It causes the hydraulic cylinder with a movable pulley the stroke to reduce one half, and avoides using a stroke longer hydraulic this way,it reduces difficulty of the hydraulic cylinder’s produce. At the same time, it increases certain accumulators in the system, and limits absorption hydraulic pressure impact,which reduces the leather belt impulse and enhances the adhesive tape’s this issue ,the belt conveyer device whose tension force varied greatly is desiged to satisfy the re2 quirement s of the st ressed belt in varied length. It s tersion is greater in starting state ,and smaller in normal state moving. In the basis of working principle of automatic hydraulic tensioning device , st ructure composing , cont rol principle and function characteristics of the device were int roduced in this paper. It also expounded the design key of the cont rol system is to set pressure value and maxim drawing requirement of belt conveyer operating system. PLC is utilized to monitor the drive , brake and tension part of belt conveyer in real time and to realize autocontrol operating mode completely, constructing a control system with super reliability for equipment words:Belt-type conveyer; full automatic hydraulic tension station; automatic control; programmable control目 录1 概述 张紧装置的作用 张紧装置的类型及其介绍 液压张紧装置的基本介绍及其特点 液压张紧装置的特点 新型自动控制液压张紧装置的主要技术特点 液压传动的特点 带式输送机张紧装置的PLC控制系统介绍 PLC的介绍 带式输送机张紧装置的控制原理 62 带式输送机的工作原理 带式输送机的组成及工作原理 带式输送机的组成 带式输送机的工作原理 带式输送机的驱动原理——摩擦传动原理 单滚筒驱动情况 多滚筒驱动情况 163 带式输送机的选型设计计算 设计参数 带式输送机的机型选择 输送带的选择设计 选取带速 选择带宽 运行阻力的计算 输送带张力的计算 校核 张紧行程及张紧力的计算 张紧行程 张紧力 机型布置 布置原则 布置形式 滚筒的选择 电机、减速器的选型及有关驱动装置部件的选用 减速器的选型 有关驱动装置部件的选用 354 带式输送机的起动分析 带式输送机的起动曲线 起动时的动张力计算 起动时间 425 张紧装置选择方案 张紧装置的类型 方案比较与选择 446 张紧装置的设计 张紧装置组成 主要技术问题 张紧装置参数的确定 张紧力和张紧行程 启动加速度 起动时间 液压站及有关元件的设计与选用 液压油缸的设计 齿轮泵及电机 蓄能器 液压油箱的设计 电液比例溢流阀及其放大器 电磁换向阀、单向阀 机械结构设计 张紧车架 滑轮 注意事项与要求 张紧装置的振动 设备使用要求 587 电控系统 控制系统的硬件组成 PLC及扩展模块 测速传感器 压力变送器 PLC控制系统的硬件配置图 软件设计 思路及流程图 输入输出点地址分配 参数设定 带式输送机张紧装置PLC程序 68结 论 75参考文献 76英文原文 77中文译文 99致 谢 104可&联[系Q——Q:13....6.........后面输入....775..........接着输入12......5Q——Q空间里有所有内容。

本次毕业设计是关于矿用固定式带式输送机的设计。首选胶带输送机作了简单的概述:接着分析了带式输送机的选型原则及计算方法;然后根据这些设计准则与计算选型方法按照给定参数要求进行选型设计;接着对所选择的输送机各主要零部件进行了校核。普通带式输送机由六个主要部件组成:传动装置,机尾和导回装置,中部机架,拉紧装置以及胶带。最后简单的说明了输送机的安装与维护。目前,胶带输送机正朝着长距离,高速度,低摩擦的方向发展,近年来出现的气垫式胶带输送机就是其中的一中。在胶带输送机的设计、制造以及应用方面,目前我国与国外先进水平相比仍有较大差距,国内在设计制造带式输送机过程中存在着很多不足。关键词:带式输送机,选型设计,主要部件以上资料来自“三人行设计网” 我只是复制了一部分给你看 但愿能对你有所帮助 他的还算比较全 你可以去看看 呵呵

毕业设计还是靠自己吧

带式输送机的传动装置毕业论文

论文编号:JX235 所有图纸,任务书.论文字数:40706.页数:105摘 要 本设计主要是带式输送机全自动液压张紧装置的设计。它是在吸收国、内外输送机张紧技术的基础上,根据国内带式输送机的运行特点及要求研制的。它采用比例控制技术及可靠性较高的可编程控制技术,可以对张紧力进行多点控制,根据不同工作情况随时调节张紧力的大小。能最大程度的延长皮带的寿命,大大节约了成本。在设计中,用一个动滑轮使液压缸的行程减少了一半,避免使用行程较长的液压缸,减少了制造液压缸的难度。同时,系统中增加了若干个蓄能器,可以最大限度的吸收液压冲击,减小对皮带的冲击力提高胶带的使用寿命。本设计在总结其它常规皮带张紧装置的基础上,设计了能够满足皮带机的皮带长度变化较大时的皮带拉紧装置。此装置在皮带机启动阶段,能提供足够大的启动张力;启动完毕后, 又可使皮带的张力恢复到额定值以维持皮带机的正常运行。本文根据液压自动张紧装置的液压原理,详细阐述了自动张紧装置的结构组成、控制原理及功能特点,并阐明了控制系统的设计关键在于压力值和最大拉力值的设定。介绍了带式输送机运行系统要求,并运用PLC可编程控制技术对带式输送机的起动、制动和拉紧部分实时监控,完全实现了带式输送机自动控制运行方式,构成了一个高可靠性的设备运行控制系统。关键词:带式输送机; 自动液压张紧装置; 自动控制; 可编程控制PLCABSTRACT This design is mainly about full automatic hydraulic tension station for belt conveyer. It is designed on the foundation of opening technology in and outside, according to the domestic operation characteristic of belt conveyer and requirement. The equipment is also made on domestic belt-type conveyer movement characteristic and requestment. It uses the proportional control technology and the reliable higher programmable control technology, It may carry on the multi-spots control to strict the strength, adjusts pressing the strength size as necessary according to the different working can be the greatest degree lengthen the leather belt the life, greatly saved the cost. In the design, It causes the hydraulic cylinder with a movable pulley the stroke to reduce one half, and avoides using a stroke longer hydraulic this way,it reduces difficulty of the hydraulic cylinder’s produce. At the same time, it increases certain accumulators in the system, and limits absorption hydraulic pressure impact,which reduces the leather belt impulse and enhances the adhesive tape’s this issue ,the belt conveyer device whose tension force varied greatly is desiged to satisfy the re2 quirement s of the st ressed belt in varied length. It s tersion is greater in starting state ,and smaller in normal state moving. In the basis of working principle of automatic hydraulic tensioning device , st ructure composing , cont rol principle and function characteristics of the device were int roduced in this paper. It also expounded the design key of the cont rol system is to set pressure value and maxim drawing requirement of belt conveyer operating system. PLC is utilized to monitor the drive , brake and tension part of belt conveyer in real time and to realize autocontrol operating mode completely, constructing a control system with super reliability for equipment words:Belt-type conveyer; full automatic hydraulic tension station; automatic control; programmable control目 录1 概述 张紧装置的作用 张紧装置的类型及其介绍 液压张紧装置的基本介绍及其特点 液压张紧装置的特点 新型自动控制液压张紧装置的主要技术特点 液压传动的特点 带式输送机张紧装置的PLC控制系统介绍 PLC的介绍 带式输送机张紧装置的控制原理 62 带式输送机的工作原理 带式输送机的组成及工作原理 带式输送机的组成 带式输送机的工作原理 带式输送机的驱动原理——摩擦传动原理 单滚筒驱动情况 多滚筒驱动情况 163 带式输送机的选型设计计算 设计参数 带式输送机的机型选择 输送带的选择设计 选取带速 选择带宽 运行阻力的计算 输送带张力的计算 校核 张紧行程及张紧力的计算 张紧行程 张紧力 机型布置 布置原则 布置形式 滚筒的选择 电机、减速器的选型及有关驱动装置部件的选用 减速器的选型 有关驱动装置部件的选用 354 带式输送机的起动分析 带式输送机的起动曲线 起动时的动张力计算 起动时间 425 张紧装置选择方案 张紧装置的类型 方案比较与选择 446 张紧装置的设计 张紧装置组成 主要技术问题 张紧装置参数的确定 张紧力和张紧行程 启动加速度 起动时间 液压站及有关元件的设计与选用 液压油缸的设计 齿轮泵及电机 蓄能器 液压油箱的设计 电液比例溢流阀及其放大器 电磁换向阀、单向阀 机械结构设计 张紧车架 滑轮 注意事项与要求 张紧装置的振动 设备使用要求 587 电控系统 控制系统的硬件组成 PLC及扩展模块 测速传感器 压力变送器 PLC控制系统的硬件配置图 软件设计 思路及流程图 输入输出点地址分配 参数设定 带式输送机张紧装置PLC程序 68结 论 75参考文献 76英文原文 77中文译文 99致 谢 104可&联[系Q——Q:13....6.........后面输入....775..........接着输入12......5Q——Q空间里有所有内容。

1. PLC电镀行车控制系统设计 2. 机械手模型的PLC控制系统设计 3. PLC在自动售货机控制系统中的应用 4. 基于PLC控制的纸皮压缩机 5. 基于松下系列PLC恒压供水系统的设计 6. 基于PLC的自动门电控部分设计 7. 基于PLC的直流电机双闭环调速系统设计 8. 基于PLC的细纱机电控部分设计 9. 燃气锅炉温度的PLC控制系统 10. 交流提升系统PLC操作控制台 11. 基于PLC铝带分切机控制系统的设计 12. 高层建筑电梯控制系统设计 13. 转炉气化冷却控制系统 14. 高炉上料卷扬系统 15. 调速配料自动控制系统 16. 基于PLC的砌块成型机的电气系统设计 17. PLC在停车场智能控制管理系统应用 18. PLC 在冷冻干燥机的应用 19. 基于PLC的过程控制 20. 电器装配线PLC控制系统 21. 基于PLC的过程控制系统的设计 22. 基于PLC的伺服电机试验系统设计 23. 陶瓷压砖机PLC电气控制系统的设计 24. 多工位组合机床的PLC控制系统 25. 基于PLC的车床数字化控制系统设计 26. PLC实现自动重合闸装置的设计 27. 混凝土搅拌站控制系统设计 28. 基于PLC控制的带式输送机自动张紧装置 29. 基于PLC的化学水处理控制系统的设计 30. S7-300 PLC在电梯控制中的应用 31. 模糊算法在线优化PI控制器参数的PLC设计 32. 神经网络在线优化PI参数的PLC及组态设计 33. 模糊算法优化PI参数的PLC实现及组态设计 34. BP算法在线优化PI控制器参数的PLC实现 35. 推钢炉过程控制系统设计 36. 焦炉电机车控制系统的设计 37. 基于PLC的锅炉控制系统设计 38. 热量计的硬件电路设计 39. 高层建筑PLC控制的恒压供水系统的设计 40. 材料分拣PLC控制系统设计 41. 基于PLC控制的调压调速电梯拖动系统设计 42. 基于PLC的七层交流变频电梯控制系统设计 43. 五层交流双速电梯PLC电气控制系统的设计 44. 四层交流双速电梯的PLC电气控制系统的设计 45. 三层楼交流双速电梯的PLC电气控制系统的设计 46. PLC在恒温控制过程中的应用 ,89 ........................................后面接着输入...... 36........................................后面接着输入...... 28........................................后面接着输入...... 136 (4行连着输入就是我的QQ) 47. 变频器在恒压供水控制系统中的应用 48. 基于西门子PLC的Z3040型摇臂钻床改造 49. PLC控制的恒压供水系统的设计

本次毕业设计是关于矿用固定式带式输送机的设计。首选胶带输送机作了简单的概述:接着分析了带式输送机的选型原则及计算方法;然后根据这些设计准则与计算选型方法按照给定参数要求进行选型设计;接着对所选择的输送机各主要零部件进行了校核。普通带式输送机由六个主要部件组成:传动装置,机尾和导回装置,中部机架,拉紧装置以及胶带。最后简单的说明了输送机的安装与维护。目前,胶带输送机正朝着长距离,高速度,低摩擦的方向发展,近年来出现的气垫式胶带输送机就是其中的一中。在胶带输送机的设计、制造以及应用方面,目前我国与国外先进水平相比仍有较大差距,国内在设计制造带式输送机过程中存在着很多不足。关键词:带式输送机,选型设计,主要部件以上资料来自“三人行设计网” 我只是复制了一部分给你看 但愿能对你有所帮助 他的还算比较全 你可以去看看 呵呵

带式输送机传动装置设计毕业论文

论文编号:JX235 所有图纸,任务书.论文字数:40706.页数:105摘 要 本设计主要是带式输送机全自动液压张紧装置的设计。它是在吸收国、内外输送机张紧技术的基础上,根据国内带式输送机的运行特点及要求研制的。它采用比例控制技术及可靠性较高的可编程控制技术,可以对张紧力进行多点控制,根据不同工作情况随时调节张紧力的大小。能最大程度的延长皮带的寿命,大大节约了成本。在设计中,用一个动滑轮使液压缸的行程减少了一半,避免使用行程较长的液压缸,减少了制造液压缸的难度。同时,系统中增加了若干个蓄能器,可以最大限度的吸收液压冲击,减小对皮带的冲击力提高胶带的使用寿命。本设计在总结其它常规皮带张紧装置的基础上,设计了能够满足皮带机的皮带长度变化较大时的皮带拉紧装置。此装置在皮带机启动阶段,能提供足够大的启动张力;启动完毕后, 又可使皮带的张力恢复到额定值以维持皮带机的正常运行。本文根据液压自动张紧装置的液压原理,详细阐述了自动张紧装置的结构组成、控制原理及功能特点,并阐明了控制系统的设计关键在于压力值和最大拉力值的设定。介绍了带式输送机运行系统要求,并运用PLC可编程控制技术对带式输送机的起动、制动和拉紧部分实时监控,完全实现了带式输送机自动控制运行方式,构成了一个高可靠性的设备运行控制系统。关键词:带式输送机; 自动液压张紧装置; 自动控制; 可编程控制PLCABSTRACT This design is mainly about full automatic hydraulic tension station for belt conveyer. It is designed on the foundation of opening technology in and outside, according to the domestic operation characteristic of belt conveyer and requirement. The equipment is also made on domestic belt-type conveyer movement characteristic and requestment. It uses the proportional control technology and the reliable higher programmable control technology, It may carry on the multi-spots control to strict the strength, adjusts pressing the strength size as necessary according to the different working can be the greatest degree lengthen the leather belt the life, greatly saved the cost. In the design, It causes the hydraulic cylinder with a movable pulley the stroke to reduce one half, and avoides using a stroke longer hydraulic this way,it reduces difficulty of the hydraulic cylinder’s produce. At the same time, it increases certain accumulators in the system, and limits absorption hydraulic pressure impact,which reduces the leather belt impulse and enhances the adhesive tape’s this issue ,the belt conveyer device whose tension force varied greatly is desiged to satisfy the re2 quirement s of the st ressed belt in varied length. It s tersion is greater in starting state ,and smaller in normal state moving. In the basis of working principle of automatic hydraulic tensioning device , st ructure composing , cont rol principle and function characteristics of the device were int roduced in this paper. It also expounded the design key of the cont rol system is to set pressure value and maxim drawing requirement of belt conveyer operating system. PLC is utilized to monitor the drive , brake and tension part of belt conveyer in real time and to realize autocontrol operating mode completely, constructing a control system with super reliability for equipment words:Belt-type conveyer; full automatic hydraulic tension station; automatic control; programmable control目 录1 概述 张紧装置的作用 张紧装置的类型及其介绍 液压张紧装置的基本介绍及其特点 液压张紧装置的特点 新型自动控制液压张紧装置的主要技术特点 液压传动的特点 带式输送机张紧装置的PLC控制系统介绍 PLC的介绍 带式输送机张紧装置的控制原理 62 带式输送机的工作原理 带式输送机的组成及工作原理 带式输送机的组成 带式输送机的工作原理 带式输送机的驱动原理——摩擦传动原理 单滚筒驱动情况 多滚筒驱动情况 163 带式输送机的选型设计计算 设计参数 带式输送机的机型选择 输送带的选择设计 选取带速 选择带宽 运行阻力的计算 输送带张力的计算 校核 张紧行程及张紧力的计算 张紧行程 张紧力 机型布置 布置原则 布置形式 滚筒的选择 电机、减速器的选型及有关驱动装置部件的选用 减速器的选型 有关驱动装置部件的选用 354 带式输送机的起动分析 带式输送机的起动曲线 起动时的动张力计算 起动时间 425 张紧装置选择方案 张紧装置的类型 方案比较与选择 446 张紧装置的设计 张紧装置组成 主要技术问题 张紧装置参数的确定 张紧力和张紧行程 启动加速度 起动时间 液压站及有关元件的设计与选用 液压油缸的设计 齿轮泵及电机 蓄能器 液压油箱的设计 电液比例溢流阀及其放大器 电磁换向阀、单向阀 机械结构设计 张紧车架 滑轮 注意事项与要求 张紧装置的振动 设备使用要求 587 电控系统 控制系统的硬件组成 PLC及扩展模块 测速传感器 压力变送器 PLC控制系统的硬件配置图 软件设计 思路及流程图 输入输出点地址分配 参数设定 带式输送机张紧装置PLC程序 68结 论 75参考文献 76英文原文 77中文译文 99致 谢 104可&联[系Q——Q:13....6.........后面输入....775..........接着输入12......5Q——Q空间里有所有内容。

1. PLC电镀行车控制系统设计 2. 机械手模型的PLC控制系统设计 3. PLC在自动售货机控制系统中的应用 4. 基于PLC控制的纸皮压缩机 5. 基于松下系列PLC恒压供水系统的设计 6. 基于PLC的自动门电控部分设计 7. 基于PLC的直流电机双闭环调速系统设计 8. 基于PLC的细纱机电控部分设计 9. 燃气锅炉温度的PLC控制系统 10. 交流提升系统PLC操作控制台 11. 基于PLC铝带分切机控制系统的设计 12. 高层建筑电梯控制系统设计 13. 转炉气化冷却控制系统 14. 高炉上料卷扬系统 15. 调速配料自动控制系统 16. 基于PLC的砌块成型机的电气系统设计 17. PLC在停车场智能控制管理系统应用 18. PLC 在冷冻干燥机的应用 19. 基于PLC的过程控制 20. 电器装配线PLC控制系统 21. 基于PLC的过程控制系统的设计 22. 基于PLC的伺服电机试验系统设计 23. 陶瓷压砖机PLC电气控制系统的设计 24. 多工位组合机床的PLC控制系统 25. 基于PLC的车床数字化控制系统设计 26. PLC实现自动重合闸装置的设计 27. 混凝土搅拌站控制系统设计 28. 基于PLC控制的带式输送机自动张紧装置 29. 基于PLC的化学水处理控制系统的设计 30. S7-300 PLC在电梯控制中的应用 31. 模糊算法在线优化PI控制器参数的PLC设计 32. 神经网络在线优化PI参数的PLC及组态设计 33. 模糊算法优化PI参数的PLC实现及组态设计 34. BP算法在线优化PI控制器参数的PLC实现 35. 推钢炉过程控制系统设计 36. 焦炉电机车控制系统的设计 37. 基于PLC的锅炉控制系统设计 38. 热量计的硬件电路设计 39. 高层建筑PLC控制的恒压供水系统的设计 40. 材料分拣PLC控制系统设计 41. 基于PLC控制的调压调速电梯拖动系统设计 42. 基于PLC的七层交流变频电梯控制系统设计 43. 五层交流双速电梯PLC电气控制系统的设计 44. 四层交流双速电梯的PLC电气控制系统的设计 45. 三层楼交流双速电梯的PLC电气控制系统的设计 46. PLC在恒温控制过程中的应用 ,89 ........................................后面接着输入...... 36........................................后面接着输入...... 28........................................后面接着输入...... 136 (4行连着输入就是我的QQ) 47. 变频器在恒压供水控制系统中的应用 48. 基于西门子PLC的Z3040型摇臂钻床改造 49. PLC控制的恒压供水系统的设计

可以给你个参考说明书看看,没有做的你这么完整看一下你要的是不是这个图,这个帖子有贴图,如果能帮你请hi我或者确认你的帖子时说明,我收到最佳答案的通知后传你邮箱图纸

带式传动装置设计毕业论文

如果自己做点工作还是有好处的,建议参考《运输机械手册》,里面已经比较详细了。

可以给你个参考说明书看看,没有做的你这么完整看一下你要的是不是这个图,这个帖子有贴图,如果能帮你请hi我或者确认你的帖子时说明,我收到最佳答案的通知后传你邮箱图纸

带式输送机传动装置设计论文,有的。

相关百科

热门百科

首页
发表服务