学术堂整理了一篇200字的科技小论文,供大家参考:论文题目:鸡蛋为什么捏不碎今天我陪妈妈去超市,妈妈买了很多东西,回来的时候,里面的鸡蛋有几个已经碎了。我想再没有比鸡蛋更脆弱的东西了,我拿起一个,生气地看着它,捏了一下,它没有碎掉,于是我又多用了一点力,它还是没有碎,我开始慢慢加大自己的力气,到后来用尽全力狠狠地捏它,但它居然还是完好无损。我好奇怪,这么易碎的鸡蛋,为什么我这么用力捏它,但它却不破呢?我好奇地问妈妈,妈妈说,这个问题你自己去探讨吧。于是我打开电脑寻求答案。很快,我就百度到了鸡蛋为什么用手捏不碎。原来,小小的鸡蛋,虽然壳很薄,但是它是椭圆形的,有无数个拱形,能承受很大的力,大于人的握力。当你捏它时,它会把你使出的力量均匀分布到整个鸡蛋表面,它的受力面积大,压强就小,所以捏不碎。而在平时,比如在鸡蛋的搬运过程中,妈妈磕鸡蛋的时候,只要用力一碰,它就很容易破碎,因为受力面积小,只在一处受力。我又多明白了一件事情,原来只要你愿意做个有心人,生活中到处充满了学问。
模 拟 下 雨 我知道,下雨是由天气干旱,蒸气往上飘而形成的。 今天科学课上,老师让我们回家做一个小实验《造雨》,并详细地讲解了如何造雨。回到家的第一件事,当然就是做实验了。我先从冰箱里拿出几块冰,把冰放进一个玻璃杯里,在玻璃杯口上放一个玻璃罩,把玻璃杯放到阳台上。可我等了好一会儿,还不见雨滴,真有点恼火,我拿起话筒,打给我的同学黄秋阳,问他实验有没有成功?他回答没成功。我又打给了其他几位同学,实验成功了没有?同样,他们也没有成功。我不信,又埋起头来,看起科学书。一看书,我才知道,实验没有成功的原因是什么?由于傍晚的太阳光太弱啦!水蒸气没法增加。怎么办呢?我思来想去,很快就找到了增加水蒸气的办法,请妈妈帮助在煤气灶上加热。这样,玻璃杯里就起雾了。真是功夫不负有心人,雾很快就变成了小水点儿,聚集在玻璃罩下面,不一会儿,雨就“滴答滴答”地下起来了。我高兴地直喊:“我成功了,我成功了!”妈妈看了,也很高兴,直夸我肯动脑筋。 经过这件事,我受到了很大启发:要做好一件事,遇到困难不要气馁,多学习,多想办法,敢于实践,就能获得成功。 不 倒 翁 与 重 心 亲爱的同学,你听说过哥伦布竖鸡蛋的故事吗?哥伦布将鸡蛋打碎才能竖起来,其实,不用打碎也能竖起来,但是大约要花五分钟的时间,真是太麻烦了。因为重心在三角形的正上方时,鸡蛋才能竖起来。重心不在三角形上方时,鸡蛋就倒下了。所谓重心,是指物体各部分所受重力的合力的作用点。由此,我们可以想到一个物体,它不但能够站起来,而且怎么推也推不倒。不用我说,聪明的你肯定会想到,那就是不倒翁。有趣的不倒翁,无论你怎么使劲推它都不会倒,甚至你把它横过来放,倔强的它又会站在你的面前。不倒翁为什么不会倒下来呢? 哦!一方面,是因为它上轻下重,底部有一个较重的铁块,所以重心很低;另一方面,不倒翁的下半部,都是做成滑滑的球状,当它受力向一边倾斜时,它的重心被提高了,而处于不稳定的状态。在重力的作用下,它向稳定平衡状态的位置运动。由天惯性,它要来回几次摆动后,最终又停留在原来的位置上。 啊!原来我们身边处处有科学,我们一定要多做科学实验,多学科学知识,好好学习,才能造福人类。 大 气 压 力 读了《一堂实验课》这篇作文后,我怀疑球外大气压真的能将两个半球压在一块儿。 今天我把大气压力重做了一遍。想知道结果吗?慢慢看吧。 放学后,我约了几个同学做大气压力的实验,我先拿出两个铁的半球,这两个半球大小一样,空心的,半球顶部拴了根粗绳。开始了,我从气孔中慢慢抽出空气,又赶紧用橡皮塞塞住气孔。最后,用铁球顶部的绳子拴在桌子腿上,准备好了,我朋友个个争先恐后地抢着做,我看他们那么乱,就把他们一个一个排好,按次序来。我一声令下,第一个就使劲地往旁边拉,铁球就像铸在一起,纺丝不动。我们都为他加油,可最后还是没有拉开。第二个人上场了,他用力拉了好几分钟,都没拉下来。这时,我火冒三丈,一会儿用牙咬,一会儿用文具盒打,还用石头打,都没变成两半。就这样,一个个的都失败了。还有最后几个人了,鸦雀无声,一个都不敢拉,他们暗想,就这么个铁球,竟然没有拉下来。我想,书上的办法说不定真的有用,我胆怯地碰了碰绳子,朋友们给了我勇气,我拔开橡皮塞,这时只用很小的劲就拉开了铁球。 事后,大家问我:“为什么能拔开?”我却说:“天机不可泄漏。” 黄豆为什么不发芽 上星期,我做了一个新奇的实验——孵豆芽。 外婆给了我一些黄豆种,我嫌少,还要从妈妈扎紧的塑料袋里去拿,妈妈说袋里的豆是不能孵出豆芽的,我不信,偏偏要做实验。于是,我将两种黄豆分开了,孵起来。 根据书上的介绍和老师的指导,我把浸胀了的两种黄豆分开放进两层湿稻草中间,每天早、中、晚各淋一次水。我想,一样的孵法,怎么可能不长出一样的豆芽来呢? 第二天,我轻轻地翻开豆芽上面的稻草,外婆的黄豆种已膨胀到它原来的两倍大了,许多豆粒的腰部长出了短短的、粗壮的芽。可是妈妈的黄豆,只发胖,不发芽,这是怎么回事呢? 第四天,外婆的豆芽又长高了许多,可妈妈的那些黄豆,却变颜色了,由淡黄色变成深黄色了,还有几粒变成淡黑色了。看来,真要被妈妈“不幸言中”了。 第五天,第六天,时间一天天过去了,用外婆的黄豆孵的豆芽,越长越高,越长越嫩,玉柱金顶,漂亮极了!而妈妈的那些黄豆却腐烂了。我这才相信,妈妈讲的是真的了,可这是为什么呢?我只好去向妈妈请教了,妈妈笑眯眯地说:“豆种尽管已经干了,可还是要呼吸的,你外婆的豆种挂在屋檐下,空气新鲜,呼吸当然不成问题。而那塑料袋里的黄豆,因为袋口紧扎着,不通气,它们没法呼吸,早就憋死了。”“哦,原来是这样啊!”我若有所思地说。 真没想到,晒干了的黄豆也会憋死。生活中真是处处有科学啊! ` `````` 捏 鸡 蛋 同学们看了我这篇作文的题目一定会说:“鸡蛋怎么能捏呢?”谁都知道鸡蛋薄薄的壳,一碰就破。“其实呀,这里面还有个科学道理呢!不信的话你就往下面看吧! 那是爸爸带我到成才书店里买的《世界奇妙》。我一回家就忙着看,突然我看到一个有趣的故事,上面说:“一个大力士能把砖块打碎。可有个人叫他把鸡蛋捏破,可大力士怎么也捏不破。我看了半信半疑,决定找个机会试验一下。 机会终于来了,一天爸爸买回一袋鸡蛋,我便向妈妈请求要一个鸡蛋做一次小实验。经过我的苦苦哀求,妈妈终于同意了。 我先拿来一个碗,为的是防止捏时被捏碎了,那些蛋黄撒一地。接着我把鸡蛋放在手里抓住,这时,我的心“砰砰”直跳,手里全是汗。鸡蛋破碎的一幕仿佛出现在我的眼前,为了弄清楚鸡蛋能不能捏碎,我双眼一闭,手用力一捏,然后等待鸡蛋破裂的声音响起。但令我吃惊的是,我睁开眼睛时,鸡蛋竟没破,可我还是有些怀疑,准备再做一次实验。 我又把鸡蛋放在手上(这回我用的是两只手),然后咬起牙,睁大眼睛,使出全身的力量去捏鸡蛋。可我尽管使出九牛二虎之力,可那只鸡蛋还是安然无恙。这真让我又烦恼又惊奇,我只得去问爸爸。 爸爸听了我的话后,笑着说:“这其实是一个科学原理。鸡蛋虽然很薄,但它是一个椭圆形的,当你去捏它4,它就把你使出的力量全部均匀地分布在鸡蛋各个地方,所以它能承受很大的力量。一些薄壳形建筑物就是运用这个原理建成的呀!”听了爸爸的话,我真的相信了书上的故事了。
在很长一段时间,在天文学中占统治地位的观点认为,广袤的星际空间是一片死寂,由于超低温、超真空和强辐射的离解作用,星际空间很难形成分子,更不要说是有机大分子了.但是,1968年,美国天文学家汤斯等利用6米的射电望远镜却在人马座B2星云中发现了氨分子和水分子.翌年,美国另一个天文小组又采用43米射电望远镜在人马座A和人马座B2星云中进一步发现了由三种元素、四个原子组成的有机分子——甲醛(H2CO).这使人们大吃一惊,原来星际空间有复杂分子,而且有有机分子!许多天文学家纷纷投入对星际分子的研究,到目前为止,科学家已用射电望远镜发现了50多种星际分子,其中包含有6种化学元素——氢、碳、氧、氮、硫和硅,最复杂的分子是包含11个原子的HC9N.有趣的是,1974年在人马座B2星云中央发现了大量乙醇分子(乙醇也即酒精),其含量有8000亿亿亿升,比地球上有史以来人们酿成的酒要多得多.人们不禁要问,天上的酿酒人是谁?这些星际有机分子是如何形成的呢?还有人预言,星际空间存在着更复杂的有机分子,比如氨基酸,但是到现在还没有拿到确切的证据.星际有机分子的发现,被誉为60年代天文学的四大发现之一.如果说射电望远镜为我们提供了地球外化学进化的间接证据的话,那知来自天外的使者——陨石就我们送来了地球外存在有机物的直接证据.但是太阳系(除地球)中还没有发现任何生命迹象,可以肯定的是,宇宙中肯定还存在新的生命!
妈妈曾给我出过这样一个谜语:“南阳诸葛亮,稳坐中军帐。排下八卦阵,单捉飞来将。”这则迷语告诉我们:蜘蛛专吃活的东西,难道它不吃死的东西吗?这引起了我的兴趣,我做了实验。我从墙角处捉来一只小蜘蛛,把它放进一个盒子里(四周扎有小洞,上面盖有玻璃,便于观察)。没等蜘蛛织网,我又捡来一只死的小虫、一只死苍蝇,放在蜘蛛的前面,蜘蛛置之不理,随即用手碰撞盒子,蜘蛛就向其他方向爬去了。为了彻底弄懂蜘蛛吃不吃死苍蝇,第二天,我又来到盒子前观察,看到死昆虫、死苍蝇还在原来的地方,可盒子角处多了一个网,蜘蛛在网上安静地趴着。这时,我想:昨天死苍蝇、死昆虫没被吃掉是不是因为没有网呢?于是,我又将死苍蝇拿起来轻轻地放在网上,可蜘蛛还是一动不动,紧接着,我又用笔轻轻地触动了一下网的边缘,咦,蜘蛛好像有了反应,开始向颤动的方向爬去,我把笔收回,网停止了颤动,信号断了,它就停了下来,不一会儿,蜘蛛又向网中心爬去。我又用笔尖触动网上死苍蝇的身体,网开始颤动,蜘蛛就开始向这边爬来,我又把笔尖收回,蜘蛛就停了,像上次那样,过了一会儿,蜘蛛又向网中心爬去。噢!我终于明白了:原来蜘蛛是靠网的颤动来产生感觉的,靠织网而捕食的。于是,我把实验结果记录下来。为了证实蜘蛛靠网的颤动产生感觉,我又做了实验。将笔尖放在网上死苍蝇的身上,长时间的颤动,网的震动越来越大,蜘蛛产生的感觉好像也越来越强烈,蜘蛛便匆匆地赶过来,等蜘蛛碰到苍蝇,我将笔尖收回,只见蜘蛛尾部很快喷出黏乎乎的丝将苍蝇捆住,接着又看着蜘蛛的背一动一动的,好像在吸食苍蝇,不一会儿,网上就剩下一个完整的空壳了。这个实验证明蜘蛛吃动的昆虫。
火能把乒乓球烧成灰。
蚂蚁为什么不会迷路? 蚂蚁,相信大家都很熟悉。那又有谁能真正地了解蚂蚁呢?蚂蚁为什么不会迷路呢? 带着这个问题,我查阅了一些书籍。书上说,蚂蚁从蚁穴出发到达目的地后,沿途会留下一些气味,返回蚁穴。用触角相互碰一下,通知其他的蚂蚁。科学家曾经就这个问题作了一个试验。科学家先确定一只蚂蚁,将他沿途到达目的地的地方用力擦干净。当这只蚂蚁返回时,在被擦去气味的地方突然间停了下来。原地边转圈边寻找着什么。从而得到蚂蚁是靠气味来辨别方向的。 我为了证实这个结论,我做了个试验。我首先准备了一个十厘米左右的细小树枝,在树枝的一头放上一个诱饵——小糖果。我把这个装置放在一个蚁穴附近。不一会儿,有一只蚂蚁出来探路了。我把他引上木棍后,他到达了糖果的地方,仿佛在闻一闻、嗅一嗅。我趁此机会将木棍的中断部分截下一厘米的木棍。当这只蚂蚁返回的时候,就在被截去的地方左转右转,就是找不到回家的路。 过了一会儿,我又重复了上面的试验,蚂蚁仍然没有找到回家的路。 通过这两次实验,我终于知道蚂蚁为什么不会迷路的秘密了。原来蚂蚁是根据气味来辨别方向的。 知道了蚂蚁的这一秘密后,我在想:是否我们可以制作一种蚂蚁报警器呢?当蚂蚁走到报警器附近时,报警器就能“闻”出蚂蚁的气味,然后发出鸣叫声,让我们知道蚂蚁跑到橱柜里了或其他地方
写作思路:不要平铺直叙地进行,要注意及时地、不断地变化描写的角度,使描写更加具体,给读者主体化之感。做到条理清楚、自然、明白,不杂乱,要倾注自己的思想感情。
正文内容:
“惊奇就是科学的种子”这是爱迪生说过的一句话。所以,我特别喜欢探索和研究,尤其是发明一些小东西。
今天我要发明太阳能电风扇,它的颜色是紫色的,形状是椭圆形的。它的配件是:温度测量器、风扇、太阳能测试器、无线天线等。
你别看它的配件很多,但它只有巴掌大,很方便携带。它的作用是:用太阳能测试器测出太阳能,供电;然后用温度测量器,按一下按钮,就会测出温度。有时候,天上有云不容易测,所以就安装上无线天线,它可以穿过云层测量。如果温度高于22度,就调出低于22度的温度,让小风扇来帮忙吹出凉风。
如果温度低于22度,就调出高于22度的温度。当然,它不是让你猜几度,而是有一个小屏幕,屏幕上会显示这个数。太阳能电风扇还有一条绳子,可以挂在脖子上。太阳能电风扇最大的优点是:不浪费电池,保护环境!
太阳能电风扇的优点太多了,也很容易做,你喜欢吗?
科学小论文范文 鱼会说话吗? 您相信鱼会说话吗?这是一个耐人寻味的事,我想知道鱼是否会说话? 我家买了两条小金鱼,一条是全黑的,黑的叫乐乐,因为它很快乐。一条红白相间的名字叫欣欣,因为它懂得欣赏,很好玩吧!他俩生活在鱼缸里,这个鱼缸可“非比寻常”。里面有山、花、树、贝壳、彩色石头……。很美吧!让我们一起来观察它! 9月23日凌晨五点左右,我正要去喂食,我看见这么一个现象,我把鱼食撒到鱼缸里,乐乐吃了一点就不吃了。 9月23 日傍晚5 点15分,我看见鱼缸里的贝壳反过来了,小欣欣看见了,好像以为它——这个小贝壳要死了,连忙游过去,用它的头去抵,抵了近三、四分钟,它就不抵了,它游到乐乐旁边,用自己的尾巴扫了扫乐乐,然后互相碰了一下头,乐乐和欣欣一起游过去,把那块贝壳一起弄回原样了,这一点证明了“团结力量大”。 通过两次的观察,让我知道了人类有人类的表达方式和交流语言,动物也有自己王国的表达方式和交流,这也告诉了我们,如果你不团结,那么你将一无所有,朋友之间的友谊真伟大。同时,我们也要多观察,多发现,但是不能因为你在动物身上作试验,就伤害小动物,因为动物是人类的朋友。 蚂蚁为什么不会迷路? 蚂蚁,相信大家都很熟悉。那又有谁能真正地了解蚂蚁呢?蚂蚁为什么不会迷路呢? 带着这个问题,我查阅了一些书籍。书上说,蚂蚁从蚁穴出发到达目的地后,沿途会留下一些气味,返回蚁穴。用触角相互碰一下,通知其他的蚂蚁。科学家曾经就这个问题作了一个试验。科学家先确定一只蚂蚁,将他沿途到达目的地的地方用力擦干净。当这只蚂蚁返回时,在被擦去气味的地方突然间停了下来。原地边转圈边寻找着什么。从而得到蚂蚁是靠气味来辨别方向的。 我为了证实这个结论,我做了个试验。我首先准备了一个十厘米左右的细小树枝,在树枝的一头放上一个诱饵——小糖果。我把这个装置放在一个蚁穴附近。不一会儿,有一只蚂蚁出来探路了。我把他引上木棍后,他到达了糖果的地方,仿佛在闻一闻、嗅一嗅。我趁此机会将木棍的中断部分截下一厘米的木棍。当这只蚂蚁返回的时候,就在被截去的地方左转右转,就是找不到回家的路。 过了一会儿,我又重复了上面的试验,蚂蚁仍然没有找到回家的路。通过这两次实验,我终于知道蚂蚁为什么不会迷路的秘密了。原来蚂蚁是根据气味来辨别方向的。 知道了蚂蚁的这一秘密后,我在想:是否我们可以制作一种蚂蚁报警器呢?当蚂蚁走到报警器附近时,报警器就能“闻”出蚂蚁的气味,然后发出鸣叫声,让我们知道蚂蚁跑到橱柜里了或其他地方 。 蛋壳的秘密“同学们,蛋壳都带来了吗?”老师问。“带来了!”我们异口同声地回答。 为了今天的科学课,老师让我们带蛋壳来。带蛋壳做什么呢?是做不倒翁吗?我们都很好奇。“今天,我们要用这两个半截蛋壳做一个小实验。做之前,请大家先猜猜,我用这枝铅笔朝着蛋壳垂直往下刺,是口朝上的蛋壳先破呢,还是口朝下的蛋壳先破?”“当然是口朝下的先破!”大多数同学都抢着回答。“口朝上的先破!”同桌偏要和大家作对。老师微笑着说:“那好,下面我们就来做做实验,看谁的答案才是正确的。” 老师叫了一名同学上讲台,让他用铅笔对准自己手上口朝上的蛋壳。老师一声令下,同学手一放,铅笔刺到了蛋壳上,蛋壳没有破。老师又让他试了几次,铅笔第三次刺下的时候,终于刺破了蛋壳。接着,老师又让他用铅笔刺口朝下的蛋壳。“一下、两下、三下……”我们一起数着;但那半个蛋壳就像穿了盔甲一样,被刺了十几下还是不破。 “耶!我猜对了!”同桌高兴得手舞足蹈。虽然我们都不服气,但经过多次试验,我们发现,同样的两个半边蛋壳,用铅笔垂直去刺,的确是口朝上的比较容易破。老师告诉我们,这是因为口朝上的蛋壳受力比较集中,而口朝下的蛋壳受力分散,所以就比较坚固。难怪建筑工地里的工人叔叔们都戴着口朝下的安全帽,原来就是这个道理啊!
植物也会睡觉 过去,我们只知道人和动物会睡觉,通过睡眠来消除忙碌一天后的疲劳,调节生理机能,以便以旺盛的精力迎接第二天的生活。一个偶尔的机会,我发现了植物也会睡觉。 今天,我家栽了几盆花,从每棵花根部的土里第出了一些不起眼的酸角草,它们那嫩绿的大三瓣、小六瓣叶子均匀地铺在花盆里,倒也为盆花增添了几分姿色。入冬后,为了不让盆花受寒流的侵袭,爸爸便把这些花盆搬进屋内。 一天晚上,我半夜起床小便,无意中看见酸角草的叶子下垂,好像蔫了,再看其它盆内的酸角草也是一样,我以为这些小草可能是不适应室内环境快枯死了。第二天早晨起床,昨晚“蔫了”的酸角草叶子又展开了。这是怎么回事呢?我决定解开这个谜。以后的几个晚上,我都常在花盆旁仔细观察,并记下了观察日记。 晚上7点钟后,酸角草叶子开始下垂,慢慢地闭合成三角形,紧紧“抱住”叶柄,像一把把收拢的小伞;10点钟,叶子全部闭合;天亮后,这些合拢的叶片又重新张开,迎接朝阳,再次利用光能把水和二氧化碳制造成有机物。所以我断定:酸角草也会“睡觉”。 为什么小草也会像人一样睡觉呢?我查找有关资料,终于揭开了这个秘密。 原来,这种随昼夜的光暗周期而变化的运动形式,是由于夜晚到来的刺激所引起的感性运动,又称为“感夜运动”或“睡眠运动”。许多植物都具有这种运动。如花生、大豆、合欢和含羞草等的叶子,白天迎着朝阳舒展,一到晚上就成对地合拢起来。酸角草的感夜运动则表现为到晚上叶子便朝下,而白天则朝上。 酸角草的这种感夜运动,是由于它们叶柄上侧和下侧的生长素的含量随昼夜变化不同所引起的。白天,在阳光的沐浴下,叶子中生成的生长素向叶柄移动时,较多地集中在与叶柄的下侧的筛管连接的叶片部分,由于这部分生长素浓度较高,生长较快,结果是叶子朝上。而在夜间,生长素在叶柄的上侧含量比下侧高,使上侧生长加快,结果导致叶片朝下,以防止水分的散失。 酸角草的昼夜变化的秘密终于揭开了。它使我认识到,在我们周围还有许多奇花异草,只要我们仔细观察,认真思考,勤于学习,就能认识它们,揭开其中的奥秘。
白花变色我十分喜欢看各种科技知识的杂志。有一次,我在杂志上看到一篇名为《白花变色》的文章。我想花怎么会变色?一定弄错了!可是都登报了,能有假吗?对,试一下,不就真相大白了吗?于是,我便和妈妈照着书上的说明开始做了起来,我找来两个杯子和一些白醋,还有一朵水仙花,实验开始了,我先在两只杯子中分别倒入半杯水,然后在其中一只杯子中放了点石碱,然后放入花,可是过了一会儿花“安然无恙”我的疑心更大了,于是我把石碱全倒了进去。太好了,花终于变色了。接着我把变了色的花放入有白醋的杯子中,果然花又变白了我简直不敢相信这是真的。我查了《十万个为什么》才知道水仙花含有花青素。若浸入碱性溶液时,花会变色,变色的花再浸入酸性溶液时花又会变白。原来这个小小的实验藏着这么大的学问啊!
希望对你有帮助 若不够 告诉我 我再帮你找《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
做潜望镜只需要两面一样大的小方镜和一块硬纸板。假如你的小镜子长十厘米,宽七厘米,这样,你就应该准备一张宽4×7=28厘米的硬纸板。纸板的长度可以根据条件自己决定。纸板长一些,潜望镜就可以做得高一些。在纸板上划出三条平行线,象图中所表示的一样,每条线之间的距离都是七厘米。把涂黑的部分剪去。用刀子沿着虚线划一个痕迹(注意不要划透)。然后,利用桌边折一下,这样就做成一个长方形的盒子,用牛皮纸把它粘好。 用白胶布把小镜子象下图中那样粘好(要使小镜子和长纸盒之间的交角等于45°)。两面小镜子平行对好。这样,一个潜望镜就做成了。 如果你手中的小镜子不足十厘米长,你可以根据勾股定理来算一算纸盒的尺寸,条件是保证镜面和纸盒之间的夹角为45°。 用潜望镜来观看窗外的景物是很有趣的,也可以用它来捉迷藏。当然,人们制造潜望镜主要是为科学研究和国防服务的。科学家利用潜望镜在地下室中观察火箭的发射;在进行原子物理实验的时候,科研工作者利用潜望镜隔着厚厚的保护墙,就能观察到那些有放射性的危险实验。潜水艇在水下航行的时候,也必须利用潜望镜观察海面的情况。 潜望镜是谁发明的,现在已经无法查考了。世界上最早记载潜望镜原理的古书,是公元前二世纪我国的《淮南万毕术》。书中记载了这样的一段话:“取大镜高悬,置水盘于其下,则见四邻矣。” 古代,在我国一些深山古庙的屋檐下,常常倾斜地挂着一面青铜大镜,如果在庙门以内的地上放一盆水,对正镜子,这就做成了一个最简单的潜望镜,在水中就会映出庙门外的羊肠小道及过往行人。 做潜望镜只需要两面一样大的小方镜和一块硬纸板。假如你的小镜子长十厘米,宽七厘米,这样,你就应该准备一张宽4×7=28厘米的硬纸板。纸板的长度可以根据条件自己决定。纸板长一些,潜望镜就可以做得高一些。
一一一一好好
五年级第二学期以来,我们学的主要内容就是长方体、正方体的表面积、体积和分数乘法的等。在长方体、正方体表面积的单元里,有许多典型的题目,而这些题目通常会导致我们思维混乱从而做错。下面,我就来分析一道多次出错的题目。 题目是这样的: 一个长方体鱼缸,长6米、宽2米、深1米,制作这个鱼缸至少要多少平方米的玻璃? 我是这样做的: (6×2+2×1+6×1)×2-6×2 分析我的做法: 我先算出整个鱼缸6个面的总面积,再减去缺少的那个面(上面)的面积。因为鱼缸要养鱼,所以不可能是完全封闭的,往往都是上面作为缸口,所以要减去上面的面积。 方法多种多样,做这一道题还有另一种方法: (2×1+6×1)×2+6×2 分析这样的做法: 已知鱼缸共有5个面,其中前面、后面是一组,左面、右面是一组,可以先算出前、后、左、4个面的总面积,再加上下面的面积,就可以求出鱼缸5个面的面积,也就是鱼缸的表面积。 最容易出错的地方: 像这样类型的题目,往往容易出错的有2点。一是不联合实际想,把鱼缸的表面积当做6个面来计算;二是虽然知道鱼缸只有5个面,但却不知道少的面面积应当怎么算。 我的建议: 当你做到这种题目时,应该画一画图来帮助你,并在图形上标明长、宽、高对应的数目,这样题目就一目了然,做起来就会得心应手了。另外,还要注意单位是否一致! 以上就是我对“鱼缸问题”的分析与见解
写的不精彩!!!
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:=(千米),=(千米),=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是=(千米),=(千米),=189(千米)。所以正确答案应该是:=(千米),=(千米),=261(千米)和=(千米),=(千米),=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 大家一定从小就开始奇怪了,0到底是怎么来的呢?关于0的起源,有以下几种观点。①、古巴比伦的0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作1。1②、在古印度数学中,发现0的最早记载是公元876年,欧洲许多数学家都同意这一观点。公元6世纪,印度人就开始用“?”,后来变成了一个圆圈。到了公元九世纪就固定成了今天的“0”。③、0的故乡在中国。我国最早的诗歌总集《诗经》中就有0的记载,只不过当时0的意思是“暴风雨末了的小雨滴”。在我国远古时代的结绳记数法中,0是在对“有”的否定中出现的,意思是“没有”。总之,有关0的起源还没有一个定论。 但是无论如何,0自从一出现就具有非常旺盛的生命力,现在,它广泛应用于社会的各个领域。 在课堂上,常听老师说,0就是没有的意思,你有0元钱,就代表没有钱;你有0支笔,就代表你没有笔。在这样的情况下,温度表上的0度就代表着没有温度吗?答案肯定是否定的。纯净的冰水混合物的温度就是0度。 想一想我们四年级学的素数与合数吧!老师是这样解释的“自然数可以分成3类:1、素数与合数,一个自然数只有一和它本身两个因数的数是素数,因数大于3个就是合数,1单独为一种。”那0也是自然数,它是最小的自然数,0到底是质数还是合数呢?这个谁也说不清楚。 我还有一个关于0的问题,自然数也可以分成奇数与偶数,能被2整除的数就是合数,反之就是奇数。0是奇数还是偶数呢?看上去像偶数,但又说不准,到底是什么数谁也不清楚。 0还有许多奇妙有趣的事就在我们身边呢,大家一起来发现吧! 麻烦采纳,谢谢!
有趣的职业 小赵、小丁、小张分别是教师、医生和律师,只知道:1小赵比教师年纪大;2小张和教师不同岁;3小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗? 根据1小赵比教师年纪大和3小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据2小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。 这道题目很简单,我运用了排除法,比如:根据条件1和3就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。在我们学习数学的过程中,我们只要掌握方法,就可以解决一切难题,想不到从数学中也能得到乐趣。
千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
模糊不过vncjhvb
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 望采纳。
《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不著头脑,我心里琢磨著,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按著这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。
第一页 居中 先写题目 第二行写班级、姓名 换页 找关于论文的主题的例子 写完一个例子写两行左右的说明,例如这题的做法是怎么样的 写三到五个例题即可 一般用WROD两页即可,建议多写,但不要写的题目太难,不符合你的年龄段
写作思路及要点:以生活中的数学为题,围绕这一主题结合生活中的数学事迹展开详细描写,接着表达自己的想法以及观点。
正文:
生活中处处都有数学,一个井盖、一个圆柱、一个圆形……我们可不能小看了这数学,虽然这些东西在日常生活中很常见,可数学的用处可大着呢!不信,咱们来瞧瞧吧!
有一次,上二年级的小表妹来我家玩。我很欢迎她,听说小表妹很聪明,于是我便想到考考她。我上网找到十个城市的天气预报给妹妹,说这十个城市的天气弄混了,麻烦你帮忙整理的既清楚又简洁,我是想看她会不会用统计图来整理这些城市的天气。
妹妹接过资料,笑着对我说:“没问题,包在我身上了!”几分钟的功夫,妹妹就把一张干净、整洁的城市天气预报的统计图给了我。我仔细看过后,笑了笑,摸摸妹妹的头,“真是长大了,一天比一天棒了!”妹妹客气地对我笑了笑,然后我们俩一起出去玩了。
生活中处处都有数学,只是有的人发现了,有人没发现;只要我们认真去找,认真对待,我相信就一定会发现数学的奥秘的。一旦你发现了数学的奥秘,就会知道其中的乐趣。
像中国的墨子、祖冲之、张衡、刘益、朱世杰……外国的阿基米德、高斯、艾萨克·牛顿、伯努利、欧拉……这些著名的数学家难道天生就有这样的神力吗?不,他们是靠自己的不懈努力换来的成绩,并不是生下来就具有特殊能力的。
上天对每个人都是公平的,只是有的人不珍惜机会罢了,所以我们要把握好机会,把握好数学,不要到最后才后悔莫及。生活中有很多数学都在等你去探索呢!快去看看吧!
曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r2,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r2=92∏+62∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r2=152∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。 流氓兔
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
今天,我和妈妈去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。 妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?” 我思索了一会儿,不慌不忙地说:“可以这样算: 5÷1=5 30×5=150(小时)200小时>150小时 还可以这样算: 5÷1=5 200÷5=40(小时)30小时<40小时 由这几步可得出结论,节能灯泡省钱。” 妈妈又问我:“很好。再想想看,还有没有别的办法来算?” 我又想了一会儿,一个字一个字地说:“可不可以百分数?来 算。”也可以这样算: 5÷200×100=×100= 1÷30×100≈×100= > 或者这样算: 200÷5×100=40×100=4000 30×1×100=30×100=3000 4000>3000 因此,也是节能灯泡便宜。。” 我和妈妈买了比较划算的节能灯泡回去了。 从这件事中,我知道了:“生活处处有数学”。