首页

> 论文发表知识库

首页 论文发表知识库 问题

数字图像变换毕业论文

发布时间:

数字图像变换毕业论文

数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

需要我帮你吗?

数字图像处理,MATLAB,可好 ,

你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!排版一定要遵循学校格式模板要求,否则参考文献、字体间距格式不对,要发回来重改,老师还会说你不认真希望可以帮到你,有什么不懂的可以问我,下面对论文写作提供一些参考建议仅供参考:论文题目论文题目应该简短、明确、有概括性。读者通过题目,能大致了解论文的内容、专业的特点和学科的范畴。但字数要适当,一般不宜超过24字。必要时可加副标题。摘要与关键词论文摘要论文摘要应概括地反映出毕业设计(论文)的目的、内容、方法、成果和结论。摘要中不宜使用公式、图表,不标注引用文献编号。摘要以300~500字为宜。关键词关键词是供检索用的主题词条,应采用能覆盖论文主要内容的通用技术词条(参照相应的技术术语标准)。关键词一般为3~5个,按词条的外延层次排列(外延大的排在前面)。目录按章、节、条三级标题编写,要求标题层次清晰。目录中的标题要与正文中标题一致。目录中应包括绪论、论文主体、结论、致谢、参考文献、附录等。论文正文是毕业设计(论文)的主体和核心部分,一般应包括绪论、论文主体及结论等部分。绪论一般作为第一章,是毕业设计(论文)主体的开端。绪论应包括:毕业设计的背景及目的;国内外研究状况和相关领域中已有的研究成果;课题的研究方法;论文构成及研究内容等。绪论一般不少于1千字。论文主体是毕业设计(论文)的主要部分,应该结构合理,层次清楚,重点突出,文字简练、通顺。论文主体的内容应包括以下各方面:(1) 毕业设计(论文)总体方案设计与选择的论证。(2) 毕业设计(论文)各部分(包括硬件与软件)的设计计算。(3) 试验方案设计的可行性、有效性以及试验数据的处理及分析。(4) 对本研究内容及成果应进行较全面、客观的理论阐述,应着重指出本研究内容中的创新、改进与实际应用之处。理论分析中,应将他人研究成果单独书写,并注明出处,不得将其与本人提出的理论分析混淆在一起。对于将其他领域的理论、结果引用到本研究领域者,应说明该理论的出处,并论述引用的可行性与有效性。(5) 自然科学的论文应推理正确,结论清晰,无科学性错误。(6) 管理和人文学科的论文应包括对研究问题的论述及系统分析,比较研究,模型或方案设计,案例论证或实证分析,模型运行的结果分析或建议、改进措施等。结论学位论文的结论单独作为一章排写,但不加章号。结论是毕业设计(论文)的总结,是整篇论文的归宿。要求精炼、准确地阐述自己的创造性工作或新的见解及其意义和作用,还可进一步提出需要讨论的问题和建议。致谢致谢中主要感谢导师和对论文工作有直接贡献及帮助的人士和单位。参考文献按论文正文中出现的顺序列出直接引用的主要参考文献。毕业设计(论文)的撰写应本着严谨求实的科学态度,凡有引用他人成果之处,均应按论文中所出现的先后次序列于参考文献中。并且只应列出正文中以标注形式引用或参考的有关著作和论文。一篇论著在论文中多处引用时,在参考文献中只应出现一次,序号以第一次出现的位置为准。附录对于一些不宜放入正文中、但作为毕业设计(论文)又是不可缺少的部分,或有重要参考价值的内容,可编入毕业设计(论文)的附录中。例如,过长的公式推导、重复性的数据、图表、程序全文及其说明等。

毕业论文基于小波变换的图像融合

图像融合是多传感器信息融合领域的一个重要分支[1],它是指将来自同一目标的不同传感器的信息通过一定的算法融合到一幅图上,从而获得比在单幅图上更完整、更精确的信息。图像融合在军事(如军事侦察、识别伪装)和非军事(如医疗诊断、遥感、计算机技术等)领域得到广泛的应用。就遥感图像融合而言,目前大致分4种类型:多种分辨率的融合处理、多时相的融合处理、多种传感器类型的融合处理、多波段大容量的融合处理。本文研究的对象属于最后一种,即不同光谱获得的图像。这里使用基于小波变换的塔式结构的优点是小波变换具有紧凑性、正交性、很好的方向性,这使得小波变换可以很好地提取不同尺度上的显著特征,相对于高斯—拉普拉斯金字塔技术而言,不仅可以产生更好的融合结果,而且进行反向变换时稳定性更好;另外小波变换的塔式结构还使得不管原图像的长度是否2的幂次方,最终变换后的图像与原图像尺寸相同,这使得开发实用的并行算法系统成为可能。本文正是基于这点,在对图像小波多分辨分解叙述的基础上,构造了一种图像融合算法,最后对算法进行了仿真,并对结果进行了分析。1图像的小波变换定义1多分辨分解设fj+1∈V2j+1,由V2j+1=V2j W2j可得,存在fj∈V2j,gj∈W2j,有fj+1=fj+gj对于图像f(x,y)而言,由文献[2]可得图像的Mallat二进小波的塔式分解为fj+1(x,y) =∑k,mCj,k,mj,k,m+∑ε=1,2,3∑k,mDεj,k,mΨεj,k,m(1)式中:Cj,k,m=∑l,nhl-2khn-2mCj+1,l,n;D1j,k,m=∑l,nhl-2kgn-2mCj+1,l,nD2j,k,m=∑l,ngl-2khn-2mCj+1,l,n;D3j,k,m=∑l,ngl-2kgn-2mCj+1,l,n在图像小波分解的表达式中Cj,k,m, D1j,k,m, D2j,k,m, D3j,k,m,分别对应图像的低频子带及水平、垂直与对角线3个方向的高频子带, Cj,k,m为图像在aj分辨率下的离散逼近,D1j,k,m, D2j,k,m, D3j,k,m为2j分辨率下的离散细节。{hk}k∈z可看作低通滤波器系数, {gk}k∈z可看作高通滤波器系数,为尺度函数,Ψ为正交小波函数。{j,k,m|k,m,∈z}构成Vj2的规范正交基,{Ψεj,k,m|j,k,m∈z}构成W2j的规范正交基。另外,通过小波分解,除了低频子带都是一些正的变换值外,其它的3个高频子带都包含了一些在零附近的变换值,在这些子带中,较大的变换值对应着亮度急剧变化的点,也就是图像中的显著特征,如边缘、亮线及区域轮廓。既然小波变换具有很好的空域及频域局部性,融合的效果就是:对来自同一目标的两个不同传感器所获解的图象A和B,融合前在图像A中若比图像B中显著,融合后图像A中的目标就被保留,图像B中的目标就被忽略;对不同的场景,比如图像A中的目标的外部轮廓比较明显,图像B中目标的内部轮廓比较明显,这种情况,图像A、B中目标的小波变换系数将在不同的分辨率水平上占统治地位,从而在最终的融合图像中,图像A中的外部结构与图像B中的内部结构都被保留。因此通过融合可以实现在单幅图像上的片面的、不完整、不精确的信息得到更一致更精确的体现。最后对组合后的变换系数进行反向小波变换,就可得到融合后的图像。2基于区域的图像增强算法在图像的融合算法中,图像不同,图像的数据表征不同,融合算法也各不相同,目前采用的融合方法主要有[3]:基于像素的代数组合法、统计/数值法以及与颜色有关的技术。但是我们知道图像中的有用特征通常大于1个像素,因此基于像素的选择方法可能不是最适合的,近几年又提出了基于区域的选择方法,比较有代表性的是文献[4]中提出的基于区域的均值选择法,该方法用一M×N的窗口对图像块进行求方差运算,计算结果作为与窗口中心像素对应的一种度量方法,中心像素的选择方法为:如果两幅图像方差在对应位置上的度量值相近,取2者的均值作为输出的新值,否则取较大的值作为输出。文献[5]中提出利用不同的特征选择算子,有方向的计算对应细节图像的局域能量,由局部能量构造匹配度及加权因子,从而对图像进行加权运算。这里以均值、方差、相关等统计参量构造一种新的区域融合算法。以下计算以两幅图像为例,对3幅以上的图像融合算法与此类似,具体步骤如下:首先,利用M×N (一般选M,N为奇数,常用的窗口为3×5或5×5)窗口计算小波分解各子带系数的均值和方差,子带中以(x,y)位置为中心的区域均值与方差分别为mi(x,y) =1M×N∑Mm=1∑Mn=1fi(x+ m -M+12,y+ n -N+12) (2)σ2i(x,y) =1M×N∑Mm=1∑Mn=1(fi(x+ m -M+12,y+ n -N+12)- mi(x,y))2(3)图像1以(x,y)位置为中心与图像2对应区域的协方差为β2(x,y)=1M×N∑Mm=1∑Mn=1(fi(x+m-M+12,y+n-N+12)-m1(x,y))×(f2(x+m-M+12,y+n-N+12)-m2(x,y))(4)构造匹配度ρ及加权系数W:ρ=β2σ1σ2;Wmax=1-12ρ;Wmin=1-Wmax然后,利用下式对两幅图像中的对应子带像素进行融合计算f(x,y)=Wmax·MAX(f1(x,y),f2(x,y))+Wmin·MIN(f1(x,y),f2(x,y)) (5)这里f1(x,y),f2(x,y)是上述对应窗口中心位置的两幅图像的像素灰度值。这样就完成了2j分辨率下的数据融合,最后对融合后的子带系数进行反变换就可得到融合后的图像。需要的话给我你的邮箱,发到你邮箱!

小波变换将源图像分解为高频部分和低频部分,高频和低频部分特性不同,融合规则不同,分别将高频和低频部分融合,再逆变换,得到融合后的图像。

你这个不如给你讲一下,如果要写出来,估计比较费时!

This paper describes the digital image fusion, digital image fusion is the fusion of multiple images of two or more sensors in the same scene; or the same sensor at different times of the same scene multiple images to be comprehensive,generate a new image, image fusion techniques can effectively reduce the perceived object or environmental interpretation of uncertainty and error, to maximize the use of the source image, image enhancement, feature extraction, denoisingtarget recognition and tracking, and paper studies the image fusion method based on wavelet transform of the first wavelet decomposition of the source image is decomposed into two parts of the high-frequency component and low frequency components, high-frequency domain decomposition of the image, select the average absolute value than the multi-source image neighborhood big factor as an important wavelet coefficients; in the low frequency region, the new approximation coefficient by multi-source image approximation coefficient weighted average, then the important wavelet coefficients and weighted approximation coefficients of the wavelet transform can be obtained after the fusion of images .The design study of fusion algorithm and simulation using MATLAB software, we can see the image fusion method based on wavelet transform fusion image is more clear, more discriminating and quality has been greatly improved and can be used widely Research neighborhood.希望可以帮到你,谢谢!

数字图像论文

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像 处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。

毕业论文图像变形

随着影像医学的快速发展,影像检查已成为医疗工作中的重要环节,临床医疗对影像检查的依赖性越来越强。下面是我为大家整理的医学影像技术 毕业 论文,供大家参考。

《 医学影像学的现状和未来初探 》

摘要:医学影像学检查不仅在诊断与治疗的环节发挥作用,而且可以在疾病预防、健康体检、重大疾病筛查、健康管理、早期诊断、病情严重程度评估、治疗 方法 选择、疗效评价、康复等环节发挥越来越大的作用,医学影像学科的地位必将不断提高。

关键词:医学影像学;现状;未来;综述

【中图分类号】R473【文献标识码】A【 文章 编号】1672-3783(2012)04-0140-01

随着医学影像学飞速发展,它在临床医学中的地位不断提高,由X线、超声、放射性核素显像、CT、数字减影血管造成影及介入装置、磁共振成像所组成的医学影像学家族已经成为临床主要的诊断和鉴别诊断方法、医院现在化的重要标志、科学研究的主要手段及医院重要的经济收入来源。现将医学影像学的发展与展望综述如下。

1 医学影像学技术发展的历史回顾

1895年11月8日德国物理学家伦琴发现了一种新型射线(a kind of new rays)。并于11月22日为夫人拍摄了一张手部x线照片,也是人类第一张x线影像。随后,x线被广泛的应用于对疾病的诊断和治疗,形成了放射诊断学和放射治疗学。x线还用于疾病的预防、康复和预后随访。在医学之外,还用于x线衍射分析和工业探伤等多种用途。因此,x线的发现对人类作了重大贡献。1971年亨氏菲尔德发明了CT,将传统的X线的直接成像转变为间接成像,从而奠定了现在影像学的基础,随后出现的MRI、正电子发射型体层摄影术等影像学技术,以及近期出现的分子成像和光成像,使医学影像学在显示形态学状态之外,还能完成组织器官功能检查,并最终在分子和细胞水平显示组织、器官的化学成分和代谢变化。

2 医学影像学现状

曾经在我国长期使用用的x线透视检查的应用逐年减少, 大型医院或者发达地区的中小医院已逐步取消透视, 而代之 以x线摄影检查, 且以DR检查占主导地位。传统 X线造影检查被多排螺旋CT和磁共振成像所取代 首先是 X线脊髓造影检查被 MRI所取代;其次是多排螺旋CT和MRI结合光学内镜逐步取代 X线消化道造影、经静脉肾盂造影和胆道造影等检查;然后是 DSA的诊断性血管造影检查逐步被CT血管成像和MR血管成像所取代。 伴随设备的逐步普及,CT已经成为临床(尤其急诊)最重要的影像检查方法。MRI具有无创伤、 无射线辐射危 害,成像参数多、获得的信息量大,软组织对比度最佳等显著优点,是最活跃的影像学研究手段,已经成为很多重要疾病的确证诊断方法。超声以其设备普及、价格低廉、无创伤、无射线辐射危害、可在病床旁边实施和便于复查等优点, 成为目前临床应用最主要的影像学筛选检查技术。以早年的CT为起点,CT、MRI等设备开始提供横断层面影像。同时,得益于计算机技术的进步,今天已经可以在较短时间内把上述的信息“重组”(reformation)为三维的、分别显示兴趣结构的、带有仿真色彩的,甚至以内窥镜的信息模式显示的“直观信息”。举例说,一个重度创伤的病人可能会有骨折、颅脑损伤、内脏损伤、血管损伤及其他并发症。今天,只需用CT从头到脚在数十秒钟内完成采集,病人即可回病房作急症处理,而放射科医师可使用一次采集的信息分别显示出骨骼、颅脑、内脏、血管等结构与病变,并给急症医师提供“直观的”兴趣结构的三维的、彩色仿真的诊断信息。这样的信息已经超越了大体解剖学的可视能力,达到了即使在手术刀或解剖刀下都不可能完全洞察的水平。

3 医学影像学技术的发展趋势

各种医学影像学设备向小 型化、专门化、高分辨力和超快速化方向发展,MRI和CT的全器官灌注成像得到临床普及应用。虽然目前MSCT主要生产厂家的设计理念和主攻方向不一致,导致彼此设备的差异巨大,但是可以预测,在不远的将来,CT机的构造(包括发生器、X线球管的结构和数量、探测器种类和排数等) 将发生实质性变改, 也许球管和探测器的旋转速度更快,使MSCT的时间分辨力突破50 ms大关,使心脏得到真正的“冻结”,而探测器材质的改进能显著提高MSCT的空间分辨力。 各种介入治疗成为常规有效的治疗方法。集诊断与治疗一体化的医学影像学设备也在不断成熟和普及, 使疾病的诊断更加及时、 准确,治疗效果更佳。应用计算机仿真技术设计外科手术方案、 由影像导航 系统直接引导外科手术入路、确定手术切除范围,并在术中直接应用MRI对病灶切除范围进行现场评价会逐渐普及应用。在影像学网络化的基础上,医学图像处理将成为常规,而服务器软件取代工作站,实现多点同时后处理,并使图像后处理的自动化程度进一步提高。 伴随远程影像学的普及和宽频带网络的应用,医学影像学图像的远程传输更为快捷,图像更加清楚,影像学科医生可以在家里或者在出差旅途中完成诊断 报告 。

分子成像是医学影像学的 热点 研究方向之一,伴随分子成像的研究进展,会有多种组织、器官特异性对比剂问世,这些新型对比剂能显示特定基因表达、 特定代谢过程、特殊生理功能,其毒副作用更小、对比增强效果更佳、诊断的特异性更强,真正实现疾病早期诊断。开发疗效监测对比剂(或称分子探针),以在最短时间得到治疗的反馈信息, 在分子水平上进行疾病的靶向治疗。除PET外, 其他医学影像学技术也能直接用于药物的研发和监测疗效,在活体早期、连续观察药物或基因治疗 的机制和效果,以利于药物筛选和新药开发。此外,分子成像方法和图像后处理技术将得到持续改进,并开发出用于分子成像的影像学新技术。 医学影像学技术的进展还将导致影像学科内部人员构成发生变化,物理师、数学家、生物医学工程师、计算机专家和循证医学专家占影像科室人员的比例越来越高,针对某种重大疾病可以组建包含内、外科和影像学医生的新型科室。医学影像学检查不仅在诊断与治疗的环节发挥作用,而且可以在疾病预防、健康体检、重大疾病筛查、健康管理、早期诊断、病情严重程度评估、治疗方法选择、疗效评价、康复等环节发挥越来越大的作用,医学影像学科的地位必将不断提高。参考文献

[1] 贺延莉,王亚蓉,殷茜,等.T-PACS在医学影像学实践教学中的应用和优势[J].中国医学 教育 技术,2011,25(6):657-659

[2] 刘卫宾,韩冬.浅析普通X射线摄影及其应用[J].中国卫生产业,2011,8(11):115-115

[3] 蒋震,沈钧康,宦坚,等.医学影像学研究生读书报告的方法学探讨[J].中华医学教育探索杂志,2011,10(10):1179-1181

[4] 高艳,李坤成,杜祥颖,等.医学影像学教学中比较影像学的重要性[J].中国高等医学教育,2011(11):79-80

[5] 王安明,史跃,赵汉青,等.格式塔理论在医学影像学诊断中的作用[J].医学与哲学.临床决策论坛版,2011,32(10):67-68

[6] 江传海,余梁,胡正宇.PACS在医学影像学教学中的应用[J].安徽医学,2011,32(10):1778-1779

《 数字图象在医学影像中的应用 》

【摘要】医学影象技术从70年代进入数字时代,二十多年来先后有了MR、B超、DR、DSA、ECT、CR等数字化影像设备投入使用。对医学影像诊断起了很大的推进作用。在客观上促使各种成像技术凭借自身的优势竞相发展。取长补短,综合利用,使疾病的早期诊断率有明显提高。

【关键词】数字图象;医学影像;应用

Digital image in medicine image application

Rao Tianquan

【Abstract】medicine phantom technology enters the Digital Age from the 70's,20 for many years successively have had MR,B ultra,digitized image equipment and so on DR,DSA,ECT,R put into the use. Diagnosed the very big advancement function to the medicine image. In on is objective urges each kind of imagery technology to rely on own superiority unexpectedly to develop. Makes up for one's deficiency by learning from others' strong points,the comprehensive utilization,enable the disease the early diagnosis rate to have the distinct enhancement.

【key word】digital image; Medicine image; Using

图象是周围客观世界的一种印象,数字图象是60年代出现的一种全新的,科技含量极高的产物。它的出现使传统的模拟图象受到了极大的挑战。数字图象和模拟图象相比,二者的区别在于:一:模拟图象是以一种直观的物理量的方法来连续地表现我们期望得知的另一种物理场的特征。而且数字图象则完全以一种规则的数字量的集合来表达我们面对的物理图象。二:用模拟图象的方法来显示图象具有直观,方便的特点,一旦设计出一种图象的处理方法则具有全场性与实时处理等优点。但是模拟图象亦有抗干扰性差,重复精度差,处理功能有限,处理灵活性差的缺点。而数字图象具有很好的抗干扰性,图象处理方便,适应性能强等优点,特别是随着计算机技术的发展,数字图象处理的速度也变得越来越快,越来越显示它的发展潜力和优势。三:数字图象和模拟图象相比,它的图象更清晰、无失真,更便于储存和传输。

从70年代末期开始,医学影像技术进入了数字时代。二十多年来先后有了MR、B超、DR、DSA、ECT、CR等数字化影像设备投入使用。对医学影像诊断起了很大的推进作用。这一些进展无一不是从根本上破除了原有信息载体形式和成像原理的束缚,开创新径而取得的。同时这也在客观上促使各种成像技术凭借自身的优势竞相发展。它们之间不仅没有相互代替,而是取长补短,综合利用,使疾病的早期诊断率有明显提高。

1 数字X线图象的形成

X线透射成像是基于人体内不同结构的脏器对X线吸收的差异。一束能量均匀的X线照射到人体不同部位时,由于各部位对X线吸收的不同,透过人体各部位的X线的强度亦不同,这些穿透过人体的剩余X线就携带着人体被照射部分的组织密度和厚度的信息。这些信息投影到一个检测平面上,即形成一幅人体的X线透射图象。如果这个检测平面是荧光屏,那么我们就得到一幅模拟的图象了。再将这幅图象用不同的方法采集下来(如摄影,录像,拍照等方法)。检测器也可以是 其它 ,如电离室、光电管、晶体压电等等。然后将收集到的信号进行模数转换就形成了一组由不同数字代表X线强弱排列的数字信号了。最后将该组信号交计算机处理经数模转换即成为清晰、无干扰、无变形、无失真的数字X线图象。

2 数字图象技术在X线检查中的运用

X线电视系统:主要由影像增强器和X线闭路电视系统组成,影像增强器把X线像转换成可见光像,而且图象的亮度得到很大的增强,然后通过电视系统进行观察和分析图象,它是实现X线图象数字化的基础。

数字摄影:(DR)对影像增强器所得到的电视信号,用摄像机拾取的高信噪比的电视信号进行数字化,然后再进行各种计算机处理,得到不同效果的图象,这种技术多用于胃肠透视和血管造影成像。该种检查拍摄后立即可以得到图象。不必等待冲洗,还可以动态的观察。

计算机摄影:(CR)它是用影像板(IP)代替胶片暴光,然后将存储在IP板上的X线潜影用激光扫描拾取并转换成电信号,再经计算机处理得到一幅X线数字图象,最终用激光像机把X线图象记录在胶片上。这种方法灵敏度高、敏感范围大、图象清晰。

数字减影:(DSA)用于血管造影,原理是将检查部位于造影前后用摄像机各采集图象,然后将图象数字化后存储在计算机里,用计算机进行处理,将两次采集的图象进行对应像素逐个相减,减影后的图象只留下充盈的血管图象,这样去掉了组织的重叠干扰,可以清楚地观察血管情况。

计算机横断体层装置:(CT)X线对人体横断面的各个方向进行照射,检测器采集到体层各个面对X线的吸收曲线后,用计算机处理所得数据最后以数字矩阵的形式表示横断面上个点的密度值,这样断面上的各点的密度都用确定的数值表示出来,这种对组织密度的量化,可以从数值上来区分健康组织和病变组织,大大提高了诊断的科学性。

此外;数字图象还应用于MIR、ECT、B超等医学影象学科,在我们的日常生活中都离不开数字图象。

参考文献

[1] 王容泉. 《医用大型X线机系统》

[2] 梁振声. 《医用X先机结构与维修》

[3] 邹 仲.《X线检查技术学》

[4] 吴恩惠.《头部CT诊断学》

有关医学影像技术毕业论文推荐:

1. 医学影像毕业论文范文

2. 有关医学影像类毕业论文

3. 医学影像本科毕业论文

4. 医学影像学研究论文

5. 关于医学影像的论文

目录 一.引言……………………………………………………………………2 二.设计方法和创意 ………………………………………………………2 三.实例制作 …………………………………………………………………3 小结 …………………………………………………………………………8 参考文献 ………………………………………………8 一.引言 近年来,计算机图像技术的飞速发展和应用使个人电脑上的美术创作进入一个新的阶段,各种图像处理软件也越来越完善,普及程度不断的提高。其中的图像软件处理工具Photoshop是目前公认的、较好的通用平面美术设计软件,它功能完善,性能稳定,使用方便。Photoshop所具有的功能包括:可以对图像进行修饰、对图形进行编辑、对图像的色彩进行处理等,此外,还有绘图和输出功能。在实际生活和工作中,人们可以将数码照相机拍摄下来的照片利用Photoshop进行编辑和修饰,还可以利用PhotoShop为图像制作特效效果,如果和其它工具软件配合使用,则可以进行高质量的广告设计、美术创意和三维动画制作。由于PhotoShop功能强大,目前,正在被越来越多的图像编排、广告和形象设计以及婚纱影楼等领域广泛使用,是一个非常受欢迎的应用软件。本毕业论文中的设计实例就采用了Photoshop这一图像处理软件。 二.设计方法和创意 利用图像处理软件制作图形,要产生一个好的作品包括三个方面的内容:创意、构图能力、计算机表达。即首先要有好的创意,然后对其进行粗略构图,最后借助计算机手段,制作出所构想的最终效果图。当然,也有一些经典的创意,只用寥寥数笔即可表现,但这种情况非常少。上述所说的三个方面的内容,其中的创意需要具备跳跃思维,灵活善变,也与创作者的美术素养相关;而构图则主要指平面构成,色彩构成和立体构成。对于平面设计来说,平面构成和色彩构成尤为重要,它需要通过合理组织各种元素,确定视觉中心,使画面美观并能引导读者的目光和兴趣;计算机表达则是利用有关的图像处理软件工具,将构思的图像效果制作出来。本毕业论文的实例制作,就是利用Photoshop来制作水滴的效果图,设计思想是利用已有的素材,制作出将一个杯子的水倒入另一个杯子后产生水滴的效果。 三.实例制作 本实例制作通过制作相关素材,并运用了Photoshop中的笔刷、扭曲/波浪滤镜、自由变形等工具,最终合成所制作的素材以得到所构思的效果图。具体制作步骤如下: 1.新建一个100x100像素图像文件,背景为蓝色; 2.新建透明图层2,建立该图层的目的是因为本设计的主要操作是在图层2中进行的; 3.利用工具面板中的椭圆选框工具在图层2中选出一个圆形区域。 4.选取工具面板画笔工具(画笔颜色选白色,画笔大小13,不透明度100%)在选区的四周绘制线条。 5.再将画笔的不透明度调节为50%,绘制如下的线条;此时可以看到,所绘制的效果已经很像一颗水珠了。 6.选中图层2,可按Ctrl+A全选,拷贝图层2;然后新建一新的图像文件,大小为200x200,背景设为蓝色;把前一图像文件中的图层2中所制作好的水珠粘贴到该新建图像文件中,多粘贴几个,并调节好大小,然后合并为图层7。 7.选中当前图层(图层7),利用菜单命令:滤镜→扭曲→波浪,调节好参数值。即可得到 8.对图层7再进行波浪变形,参数要有所不同,以产生随机效果。 9.复制粘贴图层7以得到图层8,在图层8中利用自 由变换工具调节大小和角度。 10.再粘贴一次,完成后的效果。 11.对图层8、图层9分别再使用一次波浪变形滤镜; 12.将图层7、8、9合并,并作拷贝,导入一幅图片。 13.粘贴图层,用自由变换工具调整到合适位置,到此为止,整个效果图即制作完毕。 小结 平面设计是一项相当复杂的工作,要设计一件比较理想的平面作品,设计者需要具有一定的美术知识和素养。并且需要知道色彩的构成、分类与感情的关系,以及调和与配色等一系列美术知识,需要具备一定的设计经验。还要懂得如何使用相关平面设计软件,通过这次的毕业设计通过本次毕业设计,使我对Photoshop有了很深的认识,对平面设计的布局、创意都有了一定的提高。

数字图像处理图像复原论文

图像复原技术及其MATLAB实现摘 要图像复原的目的是从观测到的退化图像重建原始图像,它是图像处理、模式识别、机器视觉等的基础,在天文学、遥感成像、医疗图像等领域获得了重要应用。运动模糊图像的复原是图像复原的重要组成部分。由运动模糊图像复原出原图像关键问题是获取点扩展函数,模糊方向和长度的鉴别至关重要。本文通过对运动模糊图像的频域幅度图的黑带条纹(即图像零点个数)分析,计算出运动模糊PSF的参数。获得PSF的参数后,本文主要采用了逆滤波法、维纳滤波法、最小线性二乘法、Richardson-Lucy算法对模糊图像进行复原,并对各种复原方法的结果进行了分析与对比。关键词:图像复原;运动模糊;模糊方向;模糊长度引 言图像复原是图像处理领域一个具有现实意义的课题。运动模糊图像的研究越来越受到关注,这种模糊是成像过程中普遍存在的问题,其复原在许多领域都有广泛的应用。实际上,图像复原设计三个方面的内容:退化图像的成像模型,图像复原算法和复原图像的评价标准。不同的成像模型、问题空间、优化规则和方法都会导致不同的图像复原算法,适用于不同的应用领域。现有的复原方法概括为以下几个类型:去卷积复原算法、线性代数复原、图像盲反卷积算法等,其他复原方法多是这三类的衍生和改进。其中,去卷积方法包括维纳去卷积、功率谱平衡与几何平均值滤波等,这些方法都是非常经典的图像复原方法。但是需要有关于原始图像、降质算子较多的先验信息和噪声平衡性的假设只适合于不变系统及噪声于信号不相关的情形,特别是降质算子病态的情况下,图像复原结果还不太理想。由于图像复原技术在图像处理中占有重要的地位,已经形成了一些经典的常用图像复原算法,如无约束最小二乘法、有约束最小二乘方法、逆滤波、维纳、最大熵复原等,至今还被广泛使用。但这些复原算法都是假设系统的点扩散函数PSF(即系统对图像中点的脉冲响应,是导致图像退化的原因)为已知,实际情况是系统的点扩散函数由于大气扰动、光学系统的相差、相机和对象之间的相对运动等多种因素的影响,往往是未知的。这就需要人们用某种先验知识在系统的点扩散函数未知时进行估计,然而这种先验知识并不容易取得也不够精确,这就需要我们在对己模糊图像分析和处理的基础之上估计最逼近的PSF。在运动模糊方向的鉴别方面,由于匀速直线运动的点扩散函数是矩形函数,其模糊图像对应的频域上有周期性的零值条纹,运动方向与零值条纹方向相垂直,本文就是借用此法获取模糊图像的PSF参数。本文主要针对运动模糊图像的复原进行研究,讨论分析了匀速直线运动模糊的退化模型,研究了运动方向和模糊尺度的估计,介绍了常用的几种图像复原方法。对模糊图像用几种复原算法分别进行了复原,根据复原结果,讨论分析了各算法的优缺点及适用的恢复环境。第1章 绪论 研究背景图像复原是数字图像处理中的一个重要课题。它的主要目的是改善给定的图像质量并尽可能恢复原图像。图像在形成、传输和记录过程中,受多种因素的影响,图像的质量都会有不同程度的下降,典型的表现有图像模糊、失真、有噪声等,这一质量下降的过程称为图像的退化。图像复原的目的就是尽可能恢复被退化图像的本来面目。在成像系统中,引起图像退化的原因很多。例如,成像系统的散焦,成像设备与物体的相对运动,成像器材的固有缺陷以及外部干扰等。成像目标物体的运动,在摄像后所形成的运动模糊。当人们拍摄照片时,由于手持照相机的抖动,结果像片上的景物是一个模糊的图像。由于成像系统的光散射而导致图像的模糊。又如传感器特性的非线性,光学系统的像差,以致在成像后与原来景物发生了不一致的现象,称为畸变。再加上多种环境因素,在成像后造成噪声干扰。人类的视觉系统对于噪声的敏感程度要高于听觉系统,在声音传播中的噪声虽然降低了质量,但时常是感觉不到的。但景物图像的噪声即使很小都很容易被敏锐的视觉系统所感知。图像复原的过程就是为了还原图像的本来面目,即由退化了的图像恢复到能够真实反映景物的图像。在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊图像复原技术来尽可能地去除失真,恢复图像的原来面目。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 相关领域的研究现状及存在的问题图像恢复是数字图像处理中的一个重要分支,它研究的是如何从所得的退化图像中以最大的保真度复原出真实图像。成像系统的缺陷,传播媒介中的杂质,以及图像记录装置与目标之间的相对运动等因素,都不可避免地造成了图像的某些失真和不同程度的降质。然而在众多的应用领域中,又需要清晰的、高质量的图像,因此,图像恢复问题具有重要的意义。与图像增强相似,图像复原的目的也是改善图像的质量。图像复原可以看作图像退化的逆过程,是将图像退化的过程加以估计,建立退化的数学模型后,补偿退化过程造成的失真,以便获得未经干扰退化的原始图像或图像的最优估计值,从而改善图像质量。图像复原是建立在退化的数学模型基础上的,且图像复原是寻求在一定优化准则下的原始图像的最优估计,因此,不同的优化准则会获得不同的图像复原,图像复原结果的好坏通常是按照一个规定的客观准则来评价的。运动模糊图像的恢复是图像恢复中的重要课题之一,随着科学技术的不断发展,它在各个领域中的应用越来越多,要求也越来越高,可广泛应用于天文、军事、道路交通、医学图像、工业控制及侦破领域,具有重要的现实意义。图像复原作为图像处理的一个重要领域,对于该问题国内外展开了诸多关键技术的研究。实际上,图像复原涉及三个方面的内容:退化图像的成像模型,图像复原算法和复原图像的评价标准。不同的成像模型、问题空间、优化规则和方法都会导致不同的图像复原算法。适用于不同的应用领域。现有的复原方法概括为以下几个类型:去卷积复原算法、线性代数复原、图像盲反卷积算法等,其他复原方法多是这三类的衍生和改进。其中,去卷积方法包括维纳去卷积、功率谱平衡与几何平均值滤波等,这些方法都是非常经典的图像复原方法。但是需要有关于原始图像、降质算子较多的先验信息和噪声平衡性的假设只适合于不变系统及噪声于信号不相关的情形,特别是降质算子病态的情况下,图像复原结果还不太理想。线性代数复原技术是基于已知降质算子和噪声的统计特征,从而利用线性代数原理的复原技术,它为复原滤波器的数值提供了一个统一的设计思路和较透彻的解释。但是当降质函数有接近零的特征值时,复原的结果对噪声特别敏感,且该方法是把整幅图像一并处理,计算量大,同时也没有考虑纹理、边界等高频信号与噪声的区别,这将使纹理、边界等重要特征在图像复原过程中被破坏。针对这些问题,国外主要在改进算法的效率上做了许多工作,如全局最小二乘法、约束总体最小二乘法和正则化约束总体最小二乘法。图像盲反卷积是图像复原的另一个重要的手段,它针对没有或少有关于降质函数和真实信号灯先验知识的复原问题,直接根据退化图像来估计降质函数和真实信号。目前有以下几种算法:零叶面分离法、预先确定降质函数法、三次相关法、迭代盲反卷积法等。这些算法在先验信息不足的情况下对降质图像进行复原,由于原始图像以及点扩展函的先验知识只是部分已知的,造成图像复原的解往往不唯一,而且解的好坏与初始条件的选择以及附加的图像假设等直接有关。同时,由于加性噪声的影响使得图像的盲目复原成病态。即若对点扩展函数直接求逆进行复原,通常会带来高频噪声放大的问题导致算法性能的恶化,所以当图像的信噪比水平较低时获得的结果往往不太理想。正则化方法作为一种解决病态反问题的常用方法,通常用图像的平滑性作为约束条件,但是这种正则化策略通常导致复原图像的边缘模糊。为了克服边缘退化问题,最近几年,不少学者对各种“边缘保持”的正则化方法进行了比较深入的研究,提出了一些减少边缘退化的正则化策略,这些策略通常需要引入非二次正则化泛函,从而使问题的求解成为一个非线性问题。沿着这一思路,Geman和Yang提出了“半二次正则化”的概念来解决这种策略中出现的非线性优化问题。其后,Charbonni等人在此基础上研究了一种新的半二次正则化方法。从而可以利用确定性算法来得到问题的最优解。另一个较新的发展使Vogel等人提出的基于全变差模型的图像复原算法。尽管这些算法都在一定意义上提高了复原图像的质量,但边缘模糊的问题并未得到理想的解决。另外,近年来小波的理论得到迅速发展,并光法应用于图像复原中。基于小波变换的迭代正则化图像复原算法,兼顾抑制噪声的增长和保留图像的重要边界。具有噪声估计能力的图像恢复正则化方法。Belge等人以广义高斯模型作为小波系数的先验分布,提出了一种小波域边缘保持正则化的方法。同时给出了小波域图像复原的一般框架,但其复原方法相对于传统复原方法提高的并不显著,赵书斌等人以混合高斯模型逼近小波系数的分布,并引入小波域隐马尔可夫模型作为自然图像的先验概率模型对图像超分辨率复原问题进行正则化,复原效果不错,但该方法还是不能避免计算量过大的缺点。从图像复原的Bayesian框架出发,小波域局部高斯模型的线性图像复原方法,该方法较好的再现了图像的各种边缘信息,取得不错的复原效果。2 逆滤波复原图5-1逆滤波复原过程图,图(a)是选取的原始图像,图(b)是利用MATLAB对原始图像进行运动模糊和加噪声仿真而生成的仿真图像,模糊长度为10个像素。经过逆滤波复原图像为图(c)。(a)原图像 (b)模糊加噪图像(c)复原图像图5-1 逆滤波复原过程从恢复出来的图5-1(c)可以看出复原效果不理想,出现较大的振铃现象。从理论分析上看是由于一般情况下,逆滤波复原不能正确估计退化函数的零点,因此必须采用一个折中的方法进行解决。实际上,逆滤波不用,而是采用另外一个关于的函数。函数称为转移函数。改进方法为(5-1)式中K和d均为小于1的常数。采用逆滤波对运动模糊加噪图像进行复原。在噪声相同情况下,参数K分别选取、、、、和。图中(a)-(f)为对应参数下的复原图像。通过转移函数替代原退化模型得到图5-2逆滤波减小振铃现象复原图像。(a)k= (b) k=(c)k= (d) k=(e) k= (f) k=图5-2 逆滤波减小振铃现象复原图像图从复原结果图5-2可以看出随着K值的增大复原效果逐渐变差,K=到之间复原效果较好。从理论上分析,逆滤波方法不能正确估计退化函数的零点。采用一个折衷的方法加以解决。一般情况,可以将图像的退化过程视为一个具有一定带宽的带通滤波器,随着频率的升高,该滤波器的带通特性很快下降,即的幅度随着平面原点的距离的增加而迅速下降,而噪声项的幅度变化是比较平缓的。在远离平面的的值就会变得很大,而对于大多数图像来说,却变小,在这种情况下,噪声反而占优势,自然无法满意的恢复出原图像。这一规律说明,应用逆滤波时仅在原点领域采用方能有效。 有约束最小二乘方复原的实现通过MATLAB仿真来实现有约束的最小二乘方复原,图5-3是有约束的最小二乘方复原图。分别取参数为0、1、、、、对应图5-3里面的(a)-(f)。图5-3 有约束最小二乘方在不同参数下的恢复情况图 维纳滤波复原的实现图(a)是选取的原始图像,图(b)是利用MATLAB对原始图像进行运动模糊和加噪声仿真而生成的仿真图像,模糊长度为5个像素。采用维纳滤波恢复算法对模糊图像进行恢复,在加噪声的情况下,参数k分别选取0.0001、0.001、0.005、0.01、和1。各种图中(c)-(h)为对应参数下的恢复图像。图5-4有噪声下维纳滤波在不同参数下的恢复情况。(a)原始图像 (b)含噪声运动模糊图像d=5,v=(c) K= (d) K=(e) K= (f) K=(g) K= (h) K=1图5-4 有噪声下维纳滤波在不同参数下的恢复情况可以看出,恢复图像还是都有一定的振铃现象。K=时,图像振铃效应比较小,但其噪声很大。k=相对前一幅恢复图像振铃效应明显一点,但噪声有所减少。k=和k=的恢复效果也是看起来区别不明显,虽然它们的噪声都减少了,但图像整体都相对前面有明显的模糊,且振铃效应明显。K=的模糊程度比较大,而k=1时,图像最模糊,且亮度很暗。总的看来,主观评价认为k=时的恢复效果最清楚,恢复质量最好。K=时次之,k=1时的效果最差。利用公式(5-1)与(5-2)计算出平均平方误差,如表5-1所示:表5- 1平均平方误差客观评价方法得分参数k 1平均平方误差(M) 2861 6463 6937 6576 2861 2513从表5-1可以看出,采用平均平方误差准则时K=的平均平方误差和K=一样,但是其对应的图像很模糊。对于非迭代方法的维纳滤波恢复法,k值的选取对图像恢复质量有很重要的影响。从上面实验结果可以看出,虽然对于每幅特定图像的评价得分不尽相同,但基本上当k值在[,]的范围取值时,恢复图像质量最好。从理论上分析,维纳滤波复原的图像,在图像的频率特征和附加噪声已知的情况下,采用维纳滤波去卷积比较有效。维纳滤波复原法不存在极点,即当很小或变为零时,分母至少为K,而且的零点也转换成了维纳滤波器的零点,抑制了噪声,所以它在一定程度上克服了逆滤波复原方法的缺点。 Richardson-Lucy复原的实现图(a)是原始图像,图(b)是对原图进行运动模糊仿真而生成的仿真图像,模糊长度为10个像素,模糊方向为水平方向。采用Richardson-Lucy恢复算法对模糊图像进行恢复,迭代次数参数分别选取20次、50次、100次、150次、200次和300次。所有图的(c-h)为对应迭代次数下的复原图像。(a) 原图像 (b) 水平运动10像素加噪声图像(c) 迭代20次 (d) 迭代50次(e) 迭代100次 (f) 迭代150次(g) 迭代200次 (h) 迭代300次图5-5 R-L算法在不同参数下的复原图像从图5-5可以看出,恢复的图像整体差别不大。从图像人物、背景等分辨,质量随着迭代次数增大而提高。迭代100次以后恢复效果区别不大,仔细辨认,迭代200次和300次更好一些.所以主观评价认为200次或300次时复原质量最好。本文通过MATLAB编程,利用公式(5-1)、(5-2)计算出图5-5:(c)-(h)各恢复图像的平均平方误差。通过计算平均平方误差的倒数(M)来做客观分析。客观分析如表5-2:表5- 2复原图像与原图像的平均平方误差迭代次数 20 50 100 150 200 300平均平方误差(M) 4348 4762 5000 5263 5263 5263从表5-2可以看出,采用均方误差准则评价时,平均平方误差差别不大。总体上随着迭代次数增加分数增大,迭代次数为150次后平均平方误差一样。上述分析表明,在R-L恢复算法下,对于这幅图像,传播波方程客观评价准则和平均平方误差准则的评价结果基本一致,并和主观评价结果吻合。从理论上分析,Richardson-Lucy算法能够按照泊松噪声统计标准求出与给定PSF卷积后,最有可能成为输入模糊图像的图像。PSF已知但是图像噪声信息未知时,也可以使用这个函数进行有效的工作。随着复原迭代的次数增加,可以提高复原图像的似然性,最终将会收敛在具有最大似然性处。结论与展望图像复原是图像处理领域一个具有现实意义的课题。运动模糊图像的研究越来越受到关注,这种模糊是成像过程中普遍存在的问题,其复原在许多领域都有广泛的应用。图像复原需要根据相应的退化模型知识重建或恢复原始的图像。也就是说,图像复原技术就是要将图像退化的过程模型化,并由此采取相反的过程以得到原始图像。运动模糊是由于在拍摄过程中相机与景物之间相对运动而产生,因此对于匀速直线运动造成的运动模糊图像来说,图像退化模型的两个重要参数相对运动的方向和运动模糊尺度的估计就成了图像复原的关键问题。本文以匀速直线运动造成的模糊图像为基础,研究退化函数的参数估计方法,所做的工作及创新之处总结如下:论文的工作总结(1)论文研究了模糊图像尤其是水平方向运动模糊图像的退化模型,任意方向的匀速直线运动模糊图像只需要通过坐标旋转至水平方向,其图像特征的描述可由水平匀速直线运动模糊图像类推得出。(2)论文研究了运动方向和模糊尺度的估计,通过对运动模糊图像的频域幅度图的黑带条纹(即图像零点个数)分析来估算出运动模糊PSF的参数运动模糊方向和运动模糊长度)的,同时通过查阅文献获得另一种对模糊尺度的估算即对模糊图像进行一阶微分,然后进行自相关运算,可得到一条鉴别曲线,曲线上会出现对称的相关峰,峰值为负,两相关峰之间的距离等于运动模糊长度。(3)对于运动模糊图像的恢复,介绍分析了逆滤波、有约束的最小二乘方、维纳滤波和Richardson-Lucy四种常用的恢复方法。并且采用Richardson-Lucy迭代算法和维纳滤波方法在选取不同参数的情况下对运动模糊图像进行了恢复。利用逆滤波方法进行恢复时,复原图像的效果整体不是很好,存在着较明显的振铃效应,加噪情况下复原图像的噪声也比较严重。本文通过理论分析及仿真,探索出减小振铃现象的一些方法,但还不够完善,今后还需要继续深入研究如何改进算法、减少振铃效应和噪声,以提高复原图像的质量。针对有约束的最小二乘方、维纳滤波复原方法,本文主要通过参数变化来控制复原效果,最终选出最优准则。Richardson-Lucy迭代算法从理论上看是迭代次数越大,复原效果越好。考虑到程序的有效性,本文采用了最大为迭代300次。从主客观评价对复原图像的评价来看迭代次数超过150次以后效果就基本一样。展望由于本人的能力有限,对图像复原技术的研究还不够系统、不够深入,无论在理论上,还是在工程应用中,还需要做大量深入、细致的研究工作。因此在这方面的研究还只是个开始,很多地方都需要改进与提高,例如:(1)运动模糊图像的复原大多是对整幅图像进行全局的复原,然而在实际应用中并非完全如此。例如,由于物体运动而产生的相对运动,其运动模糊只出现在物体运动的轨迹上,而背景是清晰的。在这种情况下就不能对全局进行处理,应首先分割出运动模糊区域,然后再进行参数估计,图像复原。如何分割运动模糊区域,分割的依据如何等将成为以后研究工作的一部分。(2)本文研究的运动模糊图像参数估计算法仅限于匀速直线运动造成的模糊,而缺乏对非匀速的、轨迹为曲线的运动模糊研究,且得到的参数还具有一定的误差。参考文献[1] 杨帆,等.数字图像处理与分析(第二版)[M].北京:航空航天大学出版社,2007.[2] 黄爱民,等.数字图像处理分析基础[M].北京:中国水利水电出版社,2005.[3] 孙兆林.MATLAB 图像处理[M].北京:科学出版社,2003.[4] 贾永红.计算机图像处理与分析[M].武汉:武汉大学出版社,2001.[5] 姚敏.数字图像处理[M].北京:机械工业出版社,2006.[6] 孟永定,马佳.基于MATLAB实现数字图像恢复[J].电脑学习,2007,1(1),30-32.[7] 刘红岩,徐志鹏.基于MATLAB的数字图像恢复[J].科技信息(学术研究).2008,3(12),23-26.[8] 孟昕,张燕平.运动模糊图像恢复的算法研究与分析[J].计算机技术与发展,2007,17(8):74-76.[9] 孟昕,周琛琛,郝志廷.运动模糊图像恢复算法相关研究发展概述[J].安徽电子信息职业技术学院学报,2008,7(6),38-41.[10] 曾志高,谭骏珊.匀速直线运动模糊图像的恢复技术研究[J].陕西理工学院学报(自然科学版),2006,22(2),36-38.[11] 李云浩,王建设.匀速直线运动模糊图像的退化数学模型试验研究[J].江西理工大学学报,2006,27(4),28-30.[12] 谢伟,秦前清.基于倒频谱的运动模糊图像PSF参数估计[J].武汉大学学报(信息科学版).2008,5(02),30-32.[13] Banham Mark M,Katsaggelos A image restoration. IEEE Signal Processing Magazine . 1997.[14] Mccallum B deconvolution by simulated annealing. Optics Communitions . 1990.[15] Hardie C and Boncelet C filters: A class rank order based filters for smoothing and sharpening. IEEE Transactions on Signal Processing . 1993.附录C 主要源程序(1)模糊图像的傅里叶频谱获取j=imread('车牌.jpg');figure(1);imshow(j);title('原图像');len=20;theta=30;psf=fspecial('motion',len,theta);j1=imfilter(j,psf,'circular','conv');figure,imshow(j1);title('PSF模糊图像');J=rgb2gray(j);K=fft2(J); %傅里叶变换M=fftshift(K); %直流分量移到频谱中心N=abs(M); %计算频谱幅值P=(N-min(min(N)))/(max(max(N))-min(min(N)))*225;%归一化Figure;imshow(P);title('原图像的傅里叶变换频谱');J1=rgb2gray(j1);K1=fft2(J1); %傅里叶变换M1=fftshift(K1); %直流分量移到频谱中心N1=abs(M1);%计算频谱幅值P1=(N1-min(min(N1)))/(max(max(N1))-min(min(N1)))*225;%归一化Figure;imshow(P1);title('模糊图像的傅里叶变换频谱');(2)模糊长度获取程序f1=rgb2gray(j1);f1=im2double(f1);h = fspecial('Sobel'); %Sobel算子J = conv2(f1,h,'same'); %Sobel算子微分IP=abs(fft2(J)); %图像能量谱密度S=fftshift(real(ifft2(IP)));figure,plot(S);title

关于医学影像的论文范文

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。下面,我为大家分享关于医学影像的论文,希望对大家有所帮助!

前 言

数字图像处理技术以当前数字化发展为基础, 逐渐衍生出的一项网络处理技术, 数字图像处理技术可实现对画面更加真实的展示。 在医学中,随着数字图像处理技术的渗透,数字图像将相关的病症呈现出来, 并通过处理技术对画面上相关数据进行处理,这种医疗手段,可大幅提升相关病症的治愈率,实现更加精准治疗的疗效。 在医学中医学影像广泛用于以下几方面之中,其中包括 CT(计算机 X 线断层扫描)、PET(正电子发射断层成像)、MRI(核磁共振影像)以及 UI(超声波影像)。 数字图像处理技术在技术发展基础上,其应用的范围将会在逐渐得到扩展,应用成效将会进一步得到提升。

1 关键技术在数字图像处理中的应用

医学影像中对于数字图像的处理, 通常是将数字图像转化成为相关数据,并针对相关数据呈现的结果,对患者病症进行分析,在对数字图像处理中,存在一定的关键技术,这些关键技术直接影响着整个医疗治疗与检查。

图像获取

图像获取顾名思义将医患的相关数据进行整理, 在进行数字图像检测时,得出的相关图像,在获取相关图像后,经过计算机的转变,将图像以数据的形式进行处理,最后将处理结果呈现出来。 在计算机摄取图像中,通过光电的转换,以数字化的形式展现出来, 数字图像处理技术还可实现将分析的结果作为医疗诊断的依据,进行保存[1].

图像处理

在运用数字图像获取相关图像后,需对图像进行处理,如压缩处理、编码处理,将所有运行的数据进行整理,将有关的数据进行压缩,并将相关编码进行处理,如模型基编码处理、神经网络编码处理等。

图像识别与重建

在经过图像复原后,将图像进行变换,在进行图片分析后分割相关图像,测量图像的区域特征,最后实现图像设备与呈现,在重建图像后,进行图像配准。

2 医学影像中数字图像处理技术

数字图像处理技术的辅助治疗

当前医学图像其中包括计算机 X 线断层扫描、 正电子发射断层成像、核磁共振影像以及超声波影像,在医疗治疗中,可根据相关数据的组建,进而实现几何模式的呈现,如 3D,还原机体的各项组织中,对于细小部位可实现放大观察,可实现医生定量认识,更加细致的观察病变处,为接下来的医疗治疗提供帮助。 例如在核磁共振影像治疗中, 首先设定一定的磁场,通过无线电射频脉冲激发的'方式,对机体中氢原子核进行刺激,在运行过程中产生共振,促进机体吸收能力,帮助查找病症所在[2].

提升放射治疗的疗效

在医疗中, 运用数字图像处理技术即可实现对患病处的观察,也可实现对病患处的治疗,这种治疗方式常见于肿瘤或癌症病变的放射性治疗。 在进行治疗前, 首先定位于病患方位,在准确定位后,借助数字图像处理技术,全方位的计划治疗方案,并在此基础上对病患处进行治疗。 例如在治疗肿瘤癌症等病变之处,利用数字图像排查病变以外机体状况,降低手术风险。

加深对脑组织以其功能认识

脑组织是人体机能运转的核心, 在脑组织中存在众多复杂的结构,因此想要实现对脑组织的功能认识,必须对脑组织进行全方位的观测,深层探析其各项组织结构。 近些年随着医疗技术的提升,数字图像处理技术被运用到医学之中,数字图像处理技术可实现透过大脑皮层对脑组织进行全方位观测,最后立体的呈现出脑组织中各项机构的运作状况[3]. 例如功能性磁共振成像即 FMRI,这种成像可对机体大脑皮层的活动状况进行检测, 还可实时跟踪信号的改变, 其高清的时间分辨率,为当代医疗提供了众多帮助。

实现了数字解剖功能

数字解剖即虚拟解剖, 这种解剖行为需以高科技为依托从力学、视觉等各方面,通过虚拟人资源得建立,透析机体各项组织结构,实现对虚拟人的解剖,增加对机体的认识,真实的还原解剖学相关知识,这种手段对于医疗教学、解剖研究具有重要的影响作用。

3 结 论

综上所述, 数字图像处理技术在医学影像中具有重要的应用价值,其技术的发展为医疗技术提供了进步的平台,也为数字图像处理技术的发展提供了应用空间, 这种结合的方式既是社会发展的要求,也是时代进步的趋势。

参考文献:

[1]张瑞兰,华 晶,安巍力,刘迎九。数字图像处理在医学影像方面的应用[J].医学信息,2012,03:400~401.

[2]刘 磊,JINChen-Lie.计算机图像处理技术在医学影像学上的应用[J].中国老年学杂志,2012,24:5642~5643.

[3]李 杨,李兴山,何常豫,孟利军。数字图像处理技术在腐蚀科学中的应用研究[J].价值工程,2015,02:51~52.

张玉君

(地质矿产部航空物探遥感中心研究所北京)

摘要:本文介绍一种独特的航放数据图像复原方法。该方法的主要技术关键是:提出航放数据图像复原原理和理论基础;建立航放数据图像复原处理流程;制定重建数据网格文件的途径;进行航放数据图像复原效果及误差评价。

关键词:航放数据,大气本底,图像处理,图像复原技术。

一、引言

自20世纪70年代初期方柱形NaI晶体进入机载综合航空站以来,航放测量的灵敏度和有效性显著提高,地质及地球物理勘探界对于航空放射性测量的需求产生了根本变化。

在近20年的应用实际中,大气氡本底(简称大气本底)的改正很难准确,它始终是困扰该方法应用效果的主要难点;其后果是在图面上造成条带现象,从而严重地影响着图件的可用性及方法的效果。其原因[1]可概括为:空中所测放射性不仅仅来源于地下,而且受飞机硬件环境、宇宙射线、大气中氡及其子体的影响。后者称之为大气本底干扰,它又受气候、风力、风向、温度、季节及一天中何时测量等因素的影响。大气本底干扰的主要表现形式是架次与架次间本底水平不同。受干扰最大的是铀道,钾道次之,钍道和总道虽较小,但也不可忽视,(见彩版附图7中的图3、图4)。由于这种噪声的存在,来源于地质体的信息常常淹没于噪声之中。图3a(彩版附图7)为哈密土墩测区K(红)、Th(绿)、U(蓝)三元素复原图像,图3b为该测区航放原始数据合成图像,图4a(彩版附图7)表示各架次早、晚校准读数,图4b为总道原始数据图像。条带噪声的存在,可以形象地比喻为挂在有用信息图像前面的彩条窗帘,条带的严重性使得该工区原始航放数据无法绘制等值线图。

航放图面条带问题是一个“世界性”的问题[2]。解决得较好的是加拿大,靠星罗棋布的湖泊河流等水域上空测量结果改正本底,取得较好的效果,而且不使用向上探头[1]。美国Geometrics公司及其他航空物探公司则是靠向上探头测量,作为本底改正的依据[3]。1986年Grasty[4]提出当测区内没有湖泊时,可用测线上无异常区的平均值代替本底。

本文介绍的方法与国际上已采用的各种方法全然不同,该方法在数字图像处理学中可称之为航放图像复原技术。图像复原技术的主要目的,是要改善给定的图像。复原是一个过程,它试图利用蜕化现象的某种先验知识,把已经蜕化了的图像加以重建或恢复。因此,复原技术是把蜕化模型化,并运用相反的过程在某种程度上恢复原来的图像。

Cannon博士[5]研究了一种图像复原技术或称图案去除技术,它适用于:从规则图案(如纺织品)上提取指纹图形,改善散焦图像,消除卫片图像探测器与探测器间的噪声,使在曝光过程中相机或物体平移造成模糊的图像清晰化等。Srinivasan也报道了这类研究[6]。张玉君等研究了深海锰结核照片光照不均匀等蜕化现象的图像复原问题[7]。航放数据图像复原处理是数字图像复原技术在地学界成功应用的又一实例,但航放数据图像所存在的蜕化问题与上述各例均不相同。该方法研究成功后,曾在6个测区得到验证。

二、航放数据图像复原技术原理和理论基础

航放所测到的是一幅蜕化了的图像G(x,y)它可视为由真实图像F(x,y)与干扰图像η(x,y)叠加而成,简化了的蜕化过程,见图1。航放图像蜕化现象的先验知识来自对航放测量过程及原始图像的分析。在测量过程中,来自地质体的有用信息是不随时间为转移的。而干扰在本质上是随时间变化的,但在图像上干扰已变为(x,y)的函数,因为:

张玉君地质勘查新方法研究论文集

图1航放数据图像蜕化示意图

η的变化可分为架次之间的跳变及架次之内的渐变,见图4(彩版附图7),在每一测线上此干扰大致为一个常数,如果将x(即图像上的列)表示垂直测线的方向,则η(x,y)简化为η(x),则有

张玉君地质勘查新方法研究论文集

航放图像复原的目的,就在于设法近似地求出η(x),从而近似地得到F(x,y)。为此,沿测线方向对原始图像进行多次单列

多行窄长窗口褶积:

张玉君地质勘查新方法研究论文集

式中W为褶积模板,是由加权因子组成的矩阵。褶积过程是一种线性运算,其算子H不随空间变化。因为算子为线性的,则两个输入之和的响应等于两个响应之和。

张玉君地质勘查新方法研究论文集

由于假定了η仅与x有关,又由于褶积窗口为单列,则有:

张玉君地质勘查新方法研究论文集

现在分析HF(x,y)的性质,由于沿y方向的多次滑动平均,局部异常“淹没”于近区域特征之中,这种近区域特征表现为沿测线方向的低缓变化;如果用f(x,y)表示局部异常,用L(x,y)表示近区域场,于是:

张玉君地质勘查新方法研究论文集

再经如下处理

张玉君地质勘查新方法研究论文集

由(9)式可见,从原始图像中减去噪声图像后,所得复原图像f(x,y),它从局部异常角度是接近真实图像的,误差取决于所减去的“近区域背景值”在测线方向起伏变化的幅度。

三、航放数据图像复原处理过程

航放数据图像复原技术的研究是以多元统计为理论基础,以图像处理为工具来完成的,并体现了图像处理快速直观的特点,其流程如图2所示。

图2航放数据图像复原处理流程

此方法假定航放噪声本底沿测线方向不变或呈线性变化。通过沿测线方向的多次滑动平均,使局部异常逐渐淹没在噪声本底之中,得出一幅与噪声本底线性相关的噪声图像。噪声图像尚需进行边缘影响补偿;对去除噪声后的图像,经中值滤波和空间变量反差增强,达到最终复原的效果。这一复原过程集中表示于图2的左半部。

图2的右半部为数据网格文件的重建过程,它是实际应用所必不可少的。经过分类分区,求得各类别在复原前后的均值向量,经最小二乘拟合求出复原图像的元素含量或计数率值,重新建立为在主计算机上绘制等值线图用的网格文件。

本研究曾试验通过沿测线方向取平均值做为噪声水平,结果不及上述方法理想。

四、效果及误差评价

1.航放数据图像复原的效果

(1)图面直观效果的改善。

可以形象地说,航放图像复原好比揭去一层条带窗帘,使原来透过此窗帘隐约可见的图像显示出了真面目,见图3a(彩版附图7)。图面直观效果的改善还表现在由于定位问题所引起的岩体边界上的锯齿状噪声得以消除,见图5(彩版附图7)。图5为总道对比图像,5a为原始数据,5b表示噪声图像,5c为去噪声后的图像,5d为复原图像。

(2)用复原数据所做等值线图真实可信。

以哈密土墩测区为例,原始资料由于条带干扰,在主计算机上,钾、钍、铀道都无法绘等值线图,仅提供了平剖图;只有总道提供了等值线图,但仍可看到条带的影响。

经图像复原、重建网格文件,反馈回主计算机后绘制了TC、K、Th和U等值线图,现以K道经复原后数据等值线图为例示于图6(彩版附图7),与地质图对比,表明异常和地质体对应良好,各类岩性的放射性趋势也都吻合,证实这些等值线图的可靠性。利用复原图像所做分类图也证实了这一点,见图7(彩版附图7),图7中数字分别为:①超基性岩;②基性岩;③花岗岩;④闪长岩;⑤变质岩;⑥混合岩;⑦第四纪沉积;⑧第三、四纪沉积;⑨第三纪沉积。

(3)有用信息增加。

本研究利用多元统计的方法,对航放图像复原的效果给出定量评价。可用一幅图像有用信息构成的变异值的大小来对它做定量评价。为此应计算全图面总变异对于一个象素的平均值,即平均变异值。用C、C´和C"分别表示原始图像中有用信息平均变异值、原始图像中干扰信息平均变异值和最终复原图像有用信息平均变异值。统计时以G´(x,y)近似代表η(x);以[G(x,y)-G´(x,y)]近似代表F(x,y);以P(x,y)表示最终复原图像,并假定它已无干扰存在。

张玉君地质勘查新方法研究论文集

式中,字母上加“—”表示平均值;M、N为图像的行、列数。

表1为哈密土墩测区航放数据图像按上述各式所做定量评价的统计结果。

表1

从表1可见,K、Th、U、TC经图像复原后,有用信息都有十分显著的增长;就此工区而论,TC和K原始图像相对质量较好,Th和U较差。

2.复原图像的准确度及误差评价

复原图像的主要误差来源是“近区域背景值”L(x,y),它是在多次滑动平均时形成的。通过对干扰图像剖面数据的统计,得到以下准确度评价:

K±(绝对含量);Th+ pp m;

U± ppm;TC±计数。

五、结论

(1)本文介绍的方法是在国内外首次提出的方法独特的航放数据图像的复原技术,并在多个工区验证了其可靠性和实用性。

(2)本技术可以基本上消除由于大气本底及阈值变动所造成的图面条带现象,基本复原航放图像的真面目,为进一步图像处理(诸如:求导、增强、分类、逻辑运算等)做了准备,因此本技术也是一种快速预处理方法。

(3)本方法改善了由于飞行往返定位位移所引起的某些地质体边缘呈锯齿状的图像噪声问题。

(4)本研究建立了“有用信息平均变异值”做为定量评价航放数据图像复原效果的尺度。还讨论了图像复原做为一种预处理过程,对于元素含量值可能导入的绝对误差或称为方法的准确度。

参考文献

[1]Grasty, ., Gamma ray spectrometric methods in uranium exploration—Thcory and operational procedures, Geophysics and Geochemistry in the Search for Metallic Ores,GSC,Ottawa,147-162,1977.

[2]Creen, airborne gamma-radiation data using between-channel correlation information,Geophysics,52,1557-1562,1987.

[3]Foote, ., Improvement in airborne gamma-radiation data analysis by removal of environmental and pedologic radiation changes, in the Use of Nuclear Techniques in Prospecting and Developmcnt of Mineral Resources: Energy Agency Mtg.,Buenos Aires,187-196,1968.

[4]Grasty, system for computing on-line atmospheric backgrounds,GSC paper,1-52,1987.

[5]Cannon,M.,Lehar, Preston,F.,Background pattern removal by power spectral filtering,Applied Optics,22,777-779,1983.

[6]Srinivasan,R.,Software image restoration techniques,Digital Design, 16,4,27-34, 1986.

[7]张玉君,史鉴文.深海多金属结核照片的图像复原和图像处理技术研究.物探与化探,1989,(13):435~441.

致谢林振民同志对本文提出了宝贵的意见,史鉴文同志参加了重复工区试验,张志民和谢欣同志分别编制了网格文件转换和最小二乘拟合程序,杨星虹同志拍摄了屏幕图片,水恩海同志搜集了试验工区校准资料,在此一并致谢。

A STUDY ON IMAGE RESTORATION TECHNIQUES FOR AERORADIOMETRIC DATA

Zhang Yu jun

(Research Institute, Center of Aero-Gcophysics and Remote Sensing,Ministry of Geology and Mineral Resources, Beijing)

Abstract

This paper represents a specific methodfor restoration of images of airborne radiometric main technical keys involved in this study are;the advancementof the principles and theory;the establishment of the flow-diagram for processing;the formulation of the means for reestablishment of the gridded data file;the evaluation of the restoration results and the errors, involved by the restoration processing.

Key words Aeroradiometric data, Atmospheric background, Image processing, Image restoration techniques.

原载《地球物理学报》,1990,。

相关百科

热门百科

首页
发表服务