数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。
数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.
全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。 论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2009年3月16日修订数学建模论文一般结构1摘要 (单独成页)主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3。2、问题重述和分析3、问题假设假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。作假设的两个原则:① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。② 贴近原则:贴近实际。以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。4、符号说明 (可以合并)5、模型建立与求解(重要程度 :60%以上)6、模型检验(误差一般指均方误差)7、结果分析 (可以合并)8、模型的进一步讨论 或 模型的推广9、模型优缺点10、参考文件11、附件(结果千万不能放在附件中)论文最佳页面数:15-21页 论文结构一题目摘要1.问题的重述2.合理假设3.符号约定4.问题的分析5.模型的建立与求解6.模型的评价与推广1、误差分析2、模型的改进与推广对XXXX切实可行的建议和意见:1.……2.…………7.参考文献8.附录 数学建模论文一般格式 摘要(主要理解、主要方法、主要结果、主要特点)或(背景、目标、方法、结果、结论、建议) 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点优秀论文要点:1. 语言精练、有逻辑性、书写有条理2. 文字与图形相结合,使内容直观、清晰、明了、容易理解3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章4. 对论文中所引用或用到的知识、软件要清晰地予以说明。5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去各步骤解释摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3问题重述与分析: 一向导、对题意的理解、 建模的创造性创造性是灵魂,文章要有闪光点。好创意、好想法应当既在人意料之外,又在人意料之中。新颖性(独特性)与合理性皆备。误区之一:数学用得越高深,越有创造性。解决问题是第一原则,最合适的方法是最好的方法。误区之二:创造性主要体现在建模与求解上。创造性可以体现在建模的各个环节上,并且可以有多种表现形式。误区之三:好创意来自于灵感,可遇不可求。好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。 表达的清晰性好的文章 = 好的内容 + 好的表达 替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。 写好摘要,包括:建模主要方法、主要结果,模型主要优点。 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。 适当采用图表,增加可读性。
在统计学中,统计模型是指当有些过程无法用理论分析 方法 导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计法求得各变量之间的函数关系。下文是我为大家整理的关于统计模型论文的 范文 ,欢迎大家阅读参考!
统计套利模型的理论综述与应用分析
【摘要】统计套利模型是基于数量经济学和统计学建立起来的,在对历史数据分析的基础之上,估计相关变量的概率分布,并结合基本面数据对未来收益进行预测,发现套利机会进行交易。统计套利这种分析时间序列的统计学特性,使其具有很大的理论意义和实践意义。在实践方面广泛应用于个对冲基金获取收益,理论方面主要表现在资本有效性检验以及开放式基金评级,本文就统计套利的基本原理、交易策略、应用方向进行介绍。
【关键词】统计套利 成对交易 应用分析
一、统计套利模型的原理简介
统计套利模型是基于两个或两个以上具有较高相关性的股票或者其他证券,通过一定的方法验证股价波动在一段时间内保持这种良好的相关性,那么一旦两者之间出现了背离的走势,而且这种价格的背离在未来预计会得到纠正,从而可以产生套利机会。在统计套利实践中,当两者之间出现背离,那么可以买进表现价格被低估的、卖出价格高估的股票,在未来两者之间的价格背离得到纠正时,进行相反的平仓操作。统计套利原理得以实现的前提是均值回复,即存在均值区间(在实践中一般表现为资产价格的时间序列是平稳的,且其序列图波动在一定的范围之内),价格的背离是短期的,随着实践的推移,资产价格将会回复到它的均值区间。如果时间序列是平稳的,则可以构造统计套利交易的信号发现机制,该信号机制将会显示是否资产价格已经偏离了长期均值从而存在套利的机会 在某种意义上存在着共同点的两个证券(比如同行业的股票), 其市场价格之间存在着良好的相关性,价格往往表现为同向变化,从而价格的差值或价格的比值往往围绕着某一固定值进行波动。
二、统计套利模型交易策略与数据的处理
统计套利具 体操 作策略有很多,一般来说主要有成对/一篮子交易,多因素模型等,目前应用比较广泛的策略主要是成对交易策略。成对策略,通常也叫利差交易,即通过对同一行业的或者股价具有长期稳定均衡关系的股票的一个多头头寸和一个空头头寸进行匹配,使交易者维持对市场的中性头寸。这种策略比较适合主动管理的基金。
成对交易策略的实施主要有两个步骤:一是对股票对的选取。海通证券分析师周健在绝对收益策略研究―统计套利一文中指出,应当结合基本面与行业进行选股,这样才能保证策略收益,有效降低风险。比如银行,房地产,煤电行业等。理论上可以通过统计学中的聚类分析方法进行分类,然后在进行协整检验,这样的成功的几率会大一些。第二是对股票价格序列自身及相互之间的相关性进行检验。目前常用的就是协整理论以及随机游走模型。
运用协整理论判定股票价格序列存在的相关性,需要首先对股票价格序列进行平稳性检验,常用的检验方法是图示法和单位根检验法,图示法即对所选各个时间序列变量及一阶差分作时序图,从图中观察变量的时序图出现一定的趋势册可能是非平稳性序列,而经过一阶差分后的时序图表现出随机性,则序列可能是平稳的。但是图示法判断序列是否存在具有很大的主观性。理论上检验序列平稳性及阶输通过单位根检验来确定,单位根检验的方法很多,一般有DF,ADF检验和Phillips的非参数检验(PP检验)一般用的较多的方法是ADF检验。
检验后如果序列本身或者一阶差分后是平稳的,我们就可以对不同的股票序列进行协整检验,协整检验的方法主要有EG两步法,即首先对需要检验的变量进行普通的线性回归,得到一阶残差,再对残差序列进行单位根检验,如果存在单位根,那么变量是不具有协整关系的,如果不存在单位根,则序列是平稳的。EG检验比较适合两个序列之间的协整检验。除EG检验法之外,还有Johansen检验,Gregory hansan法,自回归滞后模型法等。其中johansen检验比较适合三个以上序列之间协整关系的检验。通过协整检验,可以判定股票价格序列之间的相关性,从而进行成对交易。
Christian L. Dunis和Gianluigi Giorgioni(2010)用高频数据代替日交易数据进行套利,并同时比较了具有协整关系的股票对和没有协整关系股票对进行套利的立即收益率,结果显示,股票间价格协整关系越高,进行统计套利的机会越多,潜在收益率也越高。
根据随机游走模型我们可以检验股票价格波动是否具有“记忆性”,也就是说是否存在可预测的成分。一般可以分为两种情况:短期可预测性分析及长期可预测性分析。在短期可预测性分析中,检验标准主要针对的是随机游走过程的第三种情况,即不相关增量的研究,可以采用的检验工具是自相关检验和方差比检验。在序列自相关检验中,常用到的统计量是自相关系数和鲍克斯-皮尔斯 Q统计量,当这两个统计量在一定的置信度下,显著大于其临界水平时,说明该序列自相关,也就是存在一定的可预测性。方差比检验遵循的事实是:随机游走的股价对数收益的方差随着时期线性增长,这些期间内增量是可以度量的。这样,在k期内计算的收益方差应该近似等于k倍的单期收益的方差,如果股价的波动是随机游走的,则方差比接近于1;当存在正的自相关时,方差比大于1;当存在负的自相关是,方差比小于1。进行长期可预测性分析,由于时间跨度较大的时候,采用方差比进行检验的作用不是很明显,所以可以采用R/S分析,用Hurst指数度量其长期可预测性,Hurst指数是通过下列方程的回归系数估计得到的:
Ln[(R/S)N]=C+H*LnN
R/S 是重标极差,N为观察次数,H为Hurst指数,C为常数。当H>时说,说明这些股票可能具有长期记忆性,但是还不能判定这个序列是随机游走或者是具有持续性的分形时间序列,还需要对其进行显著性检验。
无论是采用协整检验还是通过随机游走判断,其目的都是要找到一种短期或者长期内的一种均衡关系,这样我们的统计套利策略才能够得到有效的实施。
进行统计套利的数据一般是采用交易日收盘价数据,但是最近研究发现,采用高频数据(如5分钟,10分钟,15分钟,20分钟收盘价交易数据)市场中存在更多的统计套利机会。日交易数据我们选择前复权收盘价,而且如果两只股票价格价差比较大,需要先进性对数化处理。Christian L. Dunis和Gianluigi Giorgioni(2010)分别使用15分钟收盘价,20分钟收盘价,30分以及一个小时收盘价为样本进行统计套利分析,结果显示,使用高频数据进行统计套利所取得收益更高。而且海通证券金融分析师在绝对收益策略系列研究中,用沪深300指数为样本作为统计套利 配对 交易的标的股票池,使用高频数据计算累计收益率比使用日交易数据高将近5个百分点。
三、统计套利模型的应用的拓展―检验资本市场的有效性
Fama(1969)提出的有效市场假说,其经济含义是:市场能够对信息作出迅速合理的反应,使得市场价格能够充分反映所有可以获得的信息,从而使资产的价格不可用当前的信息进行预测,以至于任何人都无法持续地获得超额利润.通过检验统计套利机会存在与否就可以验证资本市场是有效的的,弱有效的,或者是无效的市场。徐玉莲(2005)通过运用统计套利对中国资本市场效率进行实证研究,首先得出结论:统计套利机会的存在与资本市场效率是不相容的。以此为理论依据,对中国股票市场中的价格惯性、价格反转及价值反转投资策略是否存在统计套利机会进行检验,结果发现我国股票市场尚未达到弱有效性。吴振翔,陈敏(2007)曾经利用这种方法对我国A股市场的弱有效性加以检验,采用惯性和反转两种投资策略发现我国A股若有效性不成立。另外我国学者吴振翔,魏先华等通过对Hogan的统计套利模型进行修正,提出了基于统计套利模型对开放式基金评级的方法。
四、结论
统计套利模型的应用目前主要表现在两个方面:1.作为一种有效的交易策略,进行套利。2.通过检测统计套利机会的存在,验证资本市场或者某个市场的有效性。由于统计套利策略的实施有赖于做空机制的建立,随着我股指期货和融资融券业务的推出和完善,相信在我国会有比较广泛的应用与发展。
参考文献
[1] . Burgess:A computational Methodolology for Modelling the Dynamics of statistical arbitrage, London business school,PhD Thesis,1999.
[2]方昊.统计套利的理论模式及应用分析―基于中国封闭式基金市场的检验.统计与决策,2005,6月(下).
[3]马理,卢烨婷.沪深 300 股指期货期现套利的可行性研究―基于统计套利模型的实证.财贸研究,2011,1.
[4]吴桥林.基于沪深 300 股指期货的套利策略研究[D].中国优秀硕士学位论文.2009.
[5]吴振翔,陈敏.中国股票市场弱有效性的统计套利检验[J].系统工程理论与实践.2007,2月.
关于半参统计模型的估计研究
【摘要】随着数据模型技术的迅速发展,现有的数据模型已经无法满足实践中遇到的一些测量问题,严重的限制了现代科学技术在数据模型上应用和发展,所以基于这种背景之下,学者们针对数据模型测量实验提出了新的理论和方法,并研制出了半参数模型数据应用。半参数模型数据是基于参数模型和非参数模型之上的一种新的测量数据模型,因此它具备参数模型和非参数模型很多共同点。本文将结合数据模型技术,对半参统计模型进行详细的探究与讨论。
【关键词】半参数模型 完善误差 测量值 纵向数据
本文以半参数模型为例,对参数、非参数分量的估计值和观测值等内容进行讨论,并运用三次样条函数插值法得出非参数分量的推估表达式。另外,为了解决纵向数据下半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。另外,本文初步讨论了平衡参数的选取问题,并充分说明了泛最小二乘估计方法以及相关结论,同时对半参数模型的迭代法进行了相关讨论和研究。
一、概论
在日常生活当中,人们所采用的参数数据模型构造相对简单,所以操作起来比较容易;但在测量数据的实际使用过程中存在着相关大的误差,例如在测量相对微小的物体,或者是对动态物体进行测量时。而建立半参数数据模型可以很好的解决和缓解这一问题:它不但能够消除或是降低测量中出现的误差,同时也不会将无法实现参数化的系统误差进行勾和。系统误差非常影响观测值的各种信息,如果能改善,就能使其实现更快、更及时、更准确的误差识别和提取过程;这样不仅可以提高参数估计的精确度,也对相关科学研究进行了有效补充。
举例来说,在模拟算例及坐标变换GPS定位重力测量等实际应用方面,体现了这种模型具有一定成功性及实用性;这主要是因为半参数数据模型同当前所使用的数据模型存在着一致性,可以很好的满足现在的实际需要。而新建立的半参数模型以及它的参数部分和非参数部分的估计,也可以解决一些污染数据的估计问题。这种半参数模型,不仅研究了纵向数据下其自身的t型估计,同时对一些含光滑项的半参数数据模型进行了详细的阐述。另外,基于对称和不对称这两种情况,可以在一个线性约束条件下对参数估计以及假设进行检验,这主要是因为对观测值产生影响的因素除了包含这个线性关系以外,还受到某种特定因素的干扰,所以不能将其归入误差行列。另外,基于自变量测量存在一定误差,经常会导致在计算过程汇总,丢失很多重要信息。
二、半参数回归模型及其估计方法
这种模型是由西方著名学者Stone在上世纪70年代所提出的,在80年代逐渐发展并成熟起来。目前,这种参数模型已经在医学以及生物学还有经济学等诸多领域中广泛使用开来。
半参数回归模型介于非参数回归模型和参数回归模型之间,其内容不仅囊括了线性部分,同时包含一些非参数部分,应该说这种模型成功的将两者的优点结合在一起。这种模型所涉及到的参数部分,主要是函数关系,也就是我们常说的对变量所呈现出来的大势走向进行有效把握和解释;而非参数部分则主要是值函数关系中不明确的那一部分,换句话就是对变量进行局部调整。因此,该模型能够很好的利用数据中所呈现出来的信息,这一点是参数回归模型还有非参数归回模型所无法比拟的优势,所以说半参数模型往往拥有更强、更准确的解释能力。
从其用途上来说,这种回归模型是当前经常使用的一种统计模型。其形式为:
三、纵向数据、线性函数和光滑性函数的作用
纵向数据其优点就是可以提供许多条件,从而引起人们的高度重视。当前纵向数据例子也非常多。但从其本质上讲,纵向数据其实是指对同一个个体,在不同时间以及不同地点之上,在重复观察之下所得到一种序列数据。但由于个体间都存在着一定的差别,从而导致在对纵向数据进行求方差时会出现一定偏差。在对纵向数据进行观察时,其观察值是相对独立的,因此其特点就是可以能够将截然不同两种数据和时间序列有效的结合在一起。即可以分析出来在个体上随着时间变化而发生的趋势,同时又能看出总体的变化形势。在当前很多纵向数据的研究中,不仅保留了其优点,并在此基础之上进行发展,实现了纵向数据中的局部线性拟合。这主要是人们希望可以建立输出变量和协变量以及时间效应的关系。可由于时间效应相对比较复杂,所以很难进行参数化的建模。
另外,虽然线性模型的估计已经取得大量的成果,但半参数模型估计至今为止还是空白页。线性模型的估计不仅仅是为了解决秩亏或病态的问题,还能在百病态的矩阵时,提供了处理线性、非线性及半参数模型等方法。首先,对观测条件较为接近的两个观测数据作为对照,可以削弱非参数的影响。从而将半参数模型变成线性模型,然后,按线性模型处理,得到参数的估计。而多数的情况下其线性系数将随着另一个变量而变化,但是这种线性系数随着时间的变化而变化,根本求不出在同一个模型中,所有时间段上的样本,亦很难使用一个或几个实函数来进行相关描述。在对测量数据处理时,如果将它看作为随机变量,往往只能达到估计的作用,要想在经典的线性模型中引入另一个变量的非线性函数,即模型中含有本质的非线性部分,就必须使用半参数线性模型。
另外就是指由各个部分组成的形态,研究对象是非线性系统中产生的不光滑和不可微的几何形体,对应的定量参数是维数,分形上统计模型的研究是当前国际非线性研究的重大前沿课题之一。因此,第一种途径是将非参数分量参数化的估计方法,也称之为参数化估计法,是关于半参数模型的早期工作,就是对函数空间附施加一定的限制,主要指光滑性。一些研究者认为半参数模型中的非参数分量也是非线性的,而且在大多数情形下所表现出来的往往是不光滑和不可微的。所以同样的数据,同样的检验方法,也可以使用立方光滑样条函数来研究半参数模型。
四、线性模型的泛最小二乘法与最小二乘法的抗差
(一)最小二乘法出现于18世纪末期
在当时科学研究中常常提出这样的问题:怎样从多个未知参数观测值集合中求出参数的最佳估值。尽管当时对于整体误差的范数,泛最小二乘法不如最小二乘法,但是当时使用最多的还是最小二乘法,其目的也就是为了估计参数。最小二乘法,在经过一段时间的研究和应用之后,逐步发展成为一整套比较完善的理论体系。现阶段不仅可以清楚地知道数据所服从的模型,同时在纵向数据半参数建模中,辅助以迭代加权法。这对补偿最小二乘法对非参数分量估计是非常有效,而且只要观测值很精确,那么该法对非参数分量估计更为可靠。例如在物理大地测量时,很早就使用用最小二乘配置法,并得到重力异常最佳估计值。不过在使用补偿最小二乘法来研究重力异常时,我们还应在兼顾着整体误差比较小的同时,考虑参数估计量的真实性。并在比较了迭代加权偏样条的基础上,研究最小二乘法在当前使用过程中存在的一些不足。应该说,该方法只强调了整体误差要实现最小,而忽略了对参数分量估计时出现的误差。所以在实际操作过程中,需要特别注意。
(二)半参模型在GPS定位中的应用和差分
半参模型在GPS相位观测中,其系统误差是影响高精度定位的主要因素,由于在解算之前模型存在一定误差,所以需及时观测误差中的粗差。GPS使用中,通过广播卫星来计算目标点在实际地理坐标系中具体坐标。这样就可以在操作过程中,发现并恢复整周未知数,由于观测值在卫星和观测站之间,是通过求双差来削弱或者是减少对卫星和接收机等系统误差的影响,因此难于用参数表达。但是在平差计算中,差分法虽然可以将观测方程的数目明显减少,但由于种种原因,依然无法取得令人满意的结果。但是如果选择使用半参数模型中的参数来表达系统误差,则能得到较好的效果。这主要是因为半参数模型是一种广义的线性回归模型,对于有着光滑项的半参数模型,在既定附加的条件之下,能够提供一个线性函数的估计方法,从而将测值中的粗差消除掉。
另外这种方法除了在GPS测量中使用之外,还可应用于光波测距仪以及变形监测等一些参数模型当中。在重力测量中的应用在很多情形下,尤其是数学界的理论研究,我们总是假定S是随机变量实际上,这种假设是合理的,近几年,我们对这种线性模型的研究取得了一些不错的成果,而且因其形式相对简洁,又有较高适用性,所以这种模型在诸多领域中发挥着重要作用。
通过模拟的算例及坐标变换GPS定位重力测量等实际应用,说明了该法的成功性及实用性,从理论上说明了流行的自然样条估计方法,其实质是补偿最小二乘方法的特例,在今后将会有广阔的发展空间。另外 文章 中提到的分形理论的研究对象应是非线性系统中产生的不光滑和不可微的几何形体,而且分形已经在断裂力学、地震学等中有着广泛的应用,因此应被推广使用到研究半参数模型中来,不仅能够更及时,更加准确的进行误差的识别和提取,同时可以提高参数估计的精确度,是对当前半参数模型研究的有力补充。
五、 总结
文章所讲的半参数模型包括了参数、非参数分量的估计值和观测值等内容,并且用了三次样条函数插值法得到了非参数分量的推估表达式。另外,为了解决纵向数据前提下,半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。同时介绍了最小二乘估计法。另外初步讨论了平衡参数的选取问题,还充分说明了泛最小二乘估计方法以及有关结论。在对半参数模型的迭代法进行了相关讨论和研究的基础之上,为迭代法提供了详细的理论说明,为实际应用提供了理论依据。
参考文献
[1]胡宏昌.误差为AR(1)情形的半参数回归模型拟极大似然估计的存在性[J].湖北师范学院学报(自然科学版),2009(03).
[2]钱伟民,李静茹.纵向污染数据半参数回归模型中的强相合估计[J].同济大学学报(自然科学版),2009(08).
[3]樊明智,王芬玲,郭辉.纵向数据半参数回归模型的最小二乘局部线性估计[J].数理统计与管理,2009(02).
[4]崔恒建,王强.变系数结构关系EV模型的参数估计[J].北京师范大学学报(自然科学版).2005(06).
[5]钱伟民,柴根象.纵向数据混合效应模型的统计分析[J].数学年刊A辑(中文版).2009(04)
[6]孙孝前,尤进红.纵向数据半参数建模中的迭代加权偏样条最小二乘估计[J].中国科学(A辑:数学),2009(05).
[7]张三国,陈希孺.EV多项式模型的估计[J].中国科学(A辑),2009(10).
[8]任哲,陈明华.污染数据回归分析中参数的最小一乘估计[J].应用概率统计,2009(03).
[9]张三国,陈希孺.有重复观测时EV模型修正极大似然估计的相合性[J].中国科学(A辑).2009(06).
[10]崔恒建,李勇,秦怀振.非线性半参数EV四归模型的估计理论[J].科学通报,2009(23).
[11]罗中明.响应变量随机缺失下变系数模型的统计推断[D].中南大学,2011.
[12]刘超男.两参数指数威布尔分布的参数Bayes估计及可靠性分析[D].中南大学,2008.
[13]郭艳.湖南省税收收入预测模型及其实证检验与经济分析[D].中南大学,2009.
[14]桑红芳.几类分布的参数估计的损失函数和风险函数的Bayes推断[D].中南大学,2009.
[15]朱琳.服从几类可靠性分布的无失效数据的bayes分析[D].中南大学,2009.
[16]黄芙蓉.指数族非线性模型和具有AR(1)误差线性模型的统计分析[D].南京理工大学,2009.
猜你喜欢:
1. 统计学分析论文
2. 统计方面论文优秀范文参考
3. 统计优秀论文范文
4. 统计学的论文参考范例
本科生毕业论文查重模型你可以用paperrater论文查重软件去查重看paperrater论文查重精准度蛮高的 在检测中查重精准度是最高的 而且安全性也高 自主检测进行查重相似率
不可以。1、如果你在别人建好的论文模型上增加某个变量(略微修改),其结果比原模型要好,那这个就是你的成果。2、如果你与他人的模型一样,但是你代入了自己的数据,不管答案一样不一样,这就会被算作抄袭,因此论文模型是不可以一样的。
如果整个文字超过30%就算。
论文定稿上传都是需要查重的,只要你自己在网上查重没问题,跟同学的相似度部分不会查到的,你就放心吧。
浅谈成分分析法与层次分析法论文
摘 要 :传统句法分析法“成分分析法”,将句子的成分分为主、谓、宾、定、状、补。不得不说在语文教学方面,成分分析法的功劳是不能小觑的。但是,我们发现,汉语中有一些句法结构并不能用成分分析法有效的解决。于是,语言学家把美国结构主义描写学派的层次分析法引入到汉语句法分析中,取得了不菲的成绩。层次分析法解决了成分分析法无法解决的问题,但是,层次分析法自身也存在一些问题。本文将做较为详细的解释,在进行汉语结构分析的时候应该根据情况正确选择。
关键词: 成分分析法;层次分析法;优缺点;句法结构;歧义句
汉语中存在很多有趣的现象。譬如说,“咬死了猎人的狗”、“我没有考过”、“两个学校的领导”这一类的歧义句。再者,“台上坐着主席团”、“台上唱着戏”[1]这两个句子的成分和序列完全一样,均为“名1+动词+着+名2”但为什么“戏唱在台上”不符合正确的语法规范,而我们却可以说“主席团坐在台上”?进一步思考,我们会有一种明显的感觉,“台上坐着主席团”是静态的,“台上唱着戏”是动态的。那么,我们的这种直觉正确吗?再比如说,①“实习的学生”,②“实习的学校”均为偏正结构中的定中结构。定语都是“实习的”,但是我们会发现①中的“学生”在特定的语境中可以省略。比如说“我是实习的”。但是②中的“学校”在任何情况下都不可以省略,否则就会影响正常交流。“这是我实习的学校”绝不可以省略成“这是我实习的…”
为了更好地解决这些问题,我们必须找到一些行之有效的分析方法。以句法为出发点,解释说明各种的语言现象的`分析方法,我们一般称之为“句法分析法”与之相关的理论称之为“句法分析理论”研究一种句法结构或者说句式的特征,基本上有两种思路。一是,分析句式或句法结构的内部结构的构造特点。二是观察了解这一个句式和句法结构和其他的句式或句法结构之间的关系。我们所了解到的层次分析法和语义特征分析法属于前者。本文将主要探讨层次分析法和成分分析法。
首先,我们来看成分分析法。句子成分分析法又称“中心词分析法”,成分分析法是传统的句法分析方法。也是我们最早接触到的。早在小学的时候我们已经懂得基本的主谓宾。下面我们来实际运用一下成分分析法。
“勤劳的工人在最短时间里修好了一座简易的桥。”
按照成分分析法,句子中的主语是“工人”,谓语是“修”。而“工人”和“修”就是我们在分析时首先要找出来的全句的中心词。再来看,“修”是及物动词,后面可以接名词,比如说“修房子”所以,名词“桥”就是句子的另一个中心词,宾语。
从上面的例子中我们可以看出来成分分析法有自身的优点。采取成分分析法,容易把握出句子的整体脉络。用它来分析长单句,这种优势就更加明显了。比如说,
我国首次升空的“神州—3号”模拟载人飞船经过264个小时在太空运行之后按原先预定的时间安全、准确的返回原先计算好的我国西北部的某地区的地面。
按照成分分析法,这个句子的基本脉络就是“神州—3号”飞船返回地面。在处理这一类句中有很多修饰限定的成分的长单句时,利用成分分析法可以快速的找出句子的整体脉络。在语文教学中,具有很大的实践意义。
但是,在利用成分分析法进行句法分析的时候也会出现一些问题。下面我们一一的进行分析。
1、成分分析法不能有效的分析某些存在歧义的句子,不能挖掘出句子内在的规律。
上文中提到了“两个学校的领导”我们就以这个为例。
“今天,两个学校的领导都来了。”按照成分分析法,“领导”和“来”是全句的中心词,分别作为句子的主语和谓语。所以,这个句子的基本脉络就是“领导来了”但是,这个句子明显是一个歧义句。所以,采用成分分析法解释歧义句的时候就会出现问题。
“她的头发剪短了点儿。”我们再来看这句话,按照成分分析法,“头发”和“短”是句子的中心词,非别为主语和谓语。所以,句子的脉络就是“头发短”。但是,对这个句子进行内部的分析,我们会发现这个句子具有两方面的含义。
①减了之后,她的头发比之前短。(达到了理想中的效果)
②她的头发剪得太短了。(没有实现理想的效果)
2、分析出来的句子脉络不成立。
比如:她爱好古筝。(她爱好。)
陋习必须改掉。(陋习改掉。)
3、分析出来的句子脉络在语法上虽然成立,却和原句的意义不同了。
比如:老奶奶哭瞎了双眼。(老奶奶瞎。)
便利店方便了周围的居民。(便利店方便)
通过上面的分析,我们不难看出以下几点:
1、成分分析法分析的对象只能单句,对复杂句是无能无力的。
2、在分析过程中,我们首先找出句子的中心词,也就是作为句子主语和谓语的部分。
谓语和主语的关系是陈述和被陈述的关系。其次,在确定其他的成分,而且,其他的成分依附于中心词。
3、从理论上讲,能做句子成分的只能是词。
为什么成分分析法会存在这样的问题?主要原因就在于成分分析法的重点在于句式或句法结构的各个成分。并没有关注句式或句法结构中的层次性。那么,问题来了,什么是层次性?按照朱德熙先生在语法问
Title: "Understanding the Analytic Hierarchy Process Mathematical Model (层次分析法数学模型)"I. Introduction (300-500 words)A. Background information on the Analytic Hierarchy Process (AHP) (100-150 words)B. Importance of AHP in decision-making (100-150 words)C. Purpose of the research paper (50-100 words)D. Research question (50-100 words)II. Literature Review (800-1000 words)A. Overview of AHP (100-150 words)B. Mathematical foundation of AHP (200-300 words)C. Applications of AHP in various fields (300-400 words)D. Critiques of AHP (150-200 words)III. Methodology (400-600 words)A. Research design (100-150 words)B. Data collection methods (150-200 words)C. Data analysis techniques (150-200 words)IV. Results and Findings (800-1000 words)A. Overview of results (100-150 words)B. Analysis of findings (300-400 words)C. Discussion of findings (300-400 words)V. Conclusion and Implications (400-600 words)A. Summary of research findings (100-150 words)B. Contributions to existing literature (150-200 words)C. Implications for decision-making (100-150 words)D. Limitations of the study and future research directions (50-100 words)VI. References (100-150 words)
比如说层次分析法的背景、原理、具体的求解步骤、以及现实中的应用(你可以举个具体的例子来说明问题,比如说这个方法可以用在选拔干部等方面),最后你可以谈一下它的优缺点及改进方法等!前一段时间,我在做2008年国际ICM数学建模大赛题目的时候,还用到这种方法了,有很多关于这个方法的资料,如果你需要,可以把邮箱留下,我抽空给你发过去!
游戏美术3D建模,在我们公司的岗位上,有四个岗位,在学习的时候也分四个专业,分别是手绘3D角色低模,手绘3D场景低模,次世代角色高模,次世代场景高模。
目前我们公司有400多人的游戏美术外包团队,主要为腾讯、网易、西山居、盛趣游戏等大型游戏公司做项目外包服务。旗下有自己的人才培养基地,根据公司对人才的需求,进行培养。目前需求量比较大的就是次世代高模的新人。
今天为大家分析一下什么样的次世代课程设置是比较合理的,符合项目要求的呢?
首先第一部分:既然是游戏美术,那么要有一定的美术基础和软件基础
我们为零基础的学员安排了预科班:美术基础和软件基础的学习;
次世代核心的技术是ZB高模雕刻,对美术基础的空间造型能力和结构把控能力比较高,而对色彩,光影的要求降低了,所以在美术基础方面,我们开发了特色的课程油泥雕刻来辅助美术造型能力的练习。美术基础也不是一朝一夕可以做好的,需要在整个学习过程中长期坚持,所以我们整个学习过程的家庭作业和周末作业都安排了美术基础部分的练习。
预科班美术基础练习、油泥雕刻、再配合ZB雕刻的学习,三者相得益彰,相信你在预科班里就能收获颇丰。。。而且预科班都是全免费赠送的哟。
第二部分:次世代制作全流程讲解:次世代高模雕刻和PBR材质
3个月次世代制作流程学习,这个阶段非常重要,而且从一开始就要按照项目的要求和标准进行全流程的学习。
次世代制作流程:3Dmax/maya建中模,ZB雕刻高模,maya拓扑低模,mayaUV拆分,toolbag或者SP烘焙贴图,SP绘制材质,toolbag渲染;
第三部分:3个月项目实战训练
通过第二阶段的练习,你已经掌握了整个次世代制作的流程和方法,但是我们还缺乏一些大型装备、人物、建筑的练习和作品。特别是外包公司,各种各样的项目都会遇到,项目风格多样化,常见的项目风格老师会带着同学们制作,让同学们掌握各种项目制作的技法。
在这个阶段,学生会分为两个组,次世代角色组,次世代场景组,学生可以根据自己的能力和兴趣选择加入哪一组,专精制作一个方向,以便在项目上更对口地就业。这个时候老师和学生的角色会发生转变,老师是项目经理,学生是组员,在老师的带领下,同学们一起来完成一个装备、人物、建筑等大型的项目制作。
第四部分:实训/作品整理/就业辅导/就业推荐
100%推荐就业保障,就业推荐三步走:
第一步:优秀的同学推荐到盛趣游戏美术中心或者灵绘公司的腾讯、网易等外包项目组参与实训,实训通过后,可以直接入职实训项目组;
第二步:没有参加实训的同学,继续在培训基地学习,整理毕业作品,制作出影视级次世代作品,老师辅导大家测试,达到就业标准的同学再推荐到成都其他大中型游戏公司就业。
第三步:没有达到就业标准的同学,你将留级到下一期继续学习,直到你达到就业标准再推荐就业;
作为知名游戏公司的一员,可以告知你我们公司新人训练营学习的流程,这套流程学了合格率很高,可有参考一下
其实对于初学者来说,不用担心基础如何,只要选择正确的学习方式和老师,一般全日制学6-10个月就可以学出来了,三个阶段搞定
一、基础阶段
学习周期3个月,重点学美术基础、软件基础(美术功底非常重要,软件只是手中的一只笔,做的好不好,笔不是最重要的,美术基础才是重之重,所以前期3个月老湿们都在让大家死磕美术基础)
二、流程制作阶段
学习周期6个月,PBR全制作流程完整的次世代游戏制作流程包括:3Dmax建中模,ZB雕刻高模,maya拓扑低模,mayaUV拆分,toolbag或SP烘焙贴图,SP绘制材质,八猴渲染等等,全程严格按照项目要求和制作流程去训练,为项目实战做准备。
三、项目实战训练。
流程课结束后可到公司的研发项目组上进行实训一个月左右,在项目导师一对一的带领下,逐渐去适应项目的节奏,效率,工作要求和标准,那基本就可以入职公司了哟
目前有真实研发项目实战机会的,只有游戏公司开设的培训有,西山居、完美世界等都有训练营、希望能帮助到你
3D建模是一个总称,在我们公司的项目上,分为3D低模手绘(场景/角色),次世代高模(场景/角色)。
传统网页游戏和手机游戏,基本都是低模,面数比较低,主要靠贴图表现效果。
次世代技术主要是客户端游戏,主机游戏,VR游戏,现在随着手机硬件的发展,有些手游也开始用次世代的技术进行开发。
他们的区别如下:
一、传统3D手绘,只用制作低模,用最少的面表现出最好的效果。
制作流程:3Dmax制作低模,拆分UV,BP或者PS手绘贴图,而且贴图是纯手绘上去的光影和结构。对美术设计师的美术功底要求较高。
请参考下图:
二、次世代是利用高模烘焙的法线贴图回帖到低模上,让低模在游戏引擎里可以及时显示高模的视觉效果。
制作流程:1. 根据二维原画设定制作中模;2. 导进ZB进行高模雕刻;3. 拓补低模(即在游戏中的模型);4. 展分UV;5. 烘焙(将高模细节烘焙到低模上面);6. 绘制贴图;7. 引擎中调整。
请参考下图:
如还是不清楚的话,可以百度一下次世代的一些制作的教程,或者关注我的微博@盛绘艺点。
我想很多接触游戏开发引擎的小伙伴们应该对“次世代建模”这个词都很熟悉,也有可能你是第一次接触这个词,觉得这是一门很复杂的技术,其实只要你用对方法去学习,就会没有那么复杂了。本文在这里和大家分享一下次时代游戏的制作流程以及游戏美术需要掌握哪些基本软件。一般情况下,次时代游戏的制作流程
次世代建模一、初模制作角色初模的制作一般分两种,一种是在ZB中直接用Z球创建第二种是在3DMax或者MAYA中创建大型网格,这一步主要是确认角色大型体,同时模型的布线应该尽量做到平均,也要尽量避免3角面,一定不要出现多边面(5边。5边以上的面),尽量用4边面。
次世代建模二、高模制作如果设计师用Z球创建初模,则直接细分模型在ZB中进行雕刻如果用 MAYA软件创建的触摸则要倒入到ZB等雕刻软件中进行高模雕刻这个步骤也是这个角色制作最耗时耗力的步骤遇到需要对角色添加子物体时候,可以将模型导出到3D软件中添加
次世代建模三、拓补低模ZBrush雕刻后的模型精度太高,面数也是很多,如果我们直接用高模导入游戏引擎的话电脑会崩溃,所以我们需要将高模拓补一个同高模表皮大致一样结构的低模。拓补的方法有很多,3DMax和MAYA有新加入的拓补插件,ZBrush也有拓补的模块,但是在这里我习惯用Topogun这个软件进行拓补,根据自己的习惯选择相应的方法。
次世代建模四、拆分UV在Topogun拓补低模后,要将低模网格倒入3d软件进行UV拆分,我们可以用3DMax和MAYA的UV编辑器,也可以用专业的UV查分工具拆UV,比如UVlayout。五、贴图的烘焙这一步是法线贴图和AO贴图的制作,简单的说这一步是要将高模上的凹凸细节以贴图的形式赋予到低模上,这样低模就能显示出高模的凹凸细节和环境光细节,贴图的烘焙可以用3D软件自带的烘焙工具,也可以用专业的烘焙软件比如xnormal
次世代建模
六、贴图绘制
这里就是将拆分的UV面板渲染出来,回到PS中绘制纹理细节,一般我们主要绘制底色加上一些特殊的纹理,最后叠加AO贴图完成贴图绘制
不可以。1、如果你在别人建好的论文模型上增加某个变量(略微修改),其结果比原模型要好,那这个就是你的成果。2、如果你与他人的模型一样,但是你代入了自己的数据,不管答案一样不一样,这就会被算作抄袭,因此论文模型是不可以一样的。
现在的论文都是需要上网查重的。查重的意思就是看看有没有相同的部分。你与同学的论文相似部分肯定会被查出来的,只要相同重复部分不多就可以了,不能超过一定的比例的。望采纳。
检测的话是查不出来的,检测只是检查文字描述是否一致。但是学术上不知是否算抄袭
不影响。两篇论文只是框架相似,内容不相似,论文查重之后重复率不会很高,不会受影响。论文的查重率又称为重复率类似率,是论文经过专业的论文查重检测系统进行查重检测所得出来的一个数据,以量化的形式来体现这篇文章的原创度。