首页

> 论文发表知识库

首页 论文发表知识库 问题

人脸检测技术分析毕业论文

发布时间:

人脸检测技术分析毕业论文

大数据人脸分析案例

大数据人脸分析案例,随着社会科技的不断发展,人工技能,人脸识别技术也不断普及到各个领域。人脸识别技术可以在大数据的环境下,极大发挥其强大的作用。下文分享有关大数据人脸分析的内容。

基于特征的方法和基于图像的方法

1、基于特征的方法

技术:基于特征的方法试图找到人脸的不变特征进行检测。其基本思想是基于人类视觉可以毫不费力地检测不同姿势和光照条件下的人脸的观察,因此必须有尽管存在这些变化的属性或特征是一致的。当前已经提出了广泛的方法来检测面部特征,然后推断面部的存在。

示例:边缘检测器通常会提取人脸特征,例如眼睛、鼻子、嘴巴、眉毛、肤色和发际线。基于提取的特征,建立统计模型来描述它们之间的关系并验证人脸在图像中的存在。

优点:易于实施,传统方法

缺点:基于特征的算法的一个主要问题是图像特征可能会由于光照、噪声和遮挡而严重损坏。此外,人脸的特征边界会被弱化,阴影会导致强边缘,这使得感知分组算法无用。

2、基于图像的方法

技术:基于图像的方法尝试从图像中的示例中学习模板。因此,基于外观的方法依靠机器学习和统计分析技术来找到“人脸”和“非人脸”图像的相关特征。学习的特征是以分布模型或判别函数的形式应用于人脸检测任务。

示例:基于图像的方法包括神经网络 (CNN)、支持向量机 (SVMi) 或 Adaboost。

优点:性能好,效率更高

缺点:难以实施。 为了计算效率和检测效率,通常需要降维。这意味着通过获得一组主要特征来考虑降低特征空间的维数,保留原始数据的有意义的属性。

人脸检测方法

已经引入了多种人脸检测技术。

1、开始阶段:人脸检测自 90 年代出现以来一直是一个具有挑战性的研究领域。

2000 年之前,尽管有很多研究,但直到 Viola 和 Jones 提出里程碑式的工作,人脸识别的实际性能还远不能令人满意。 从 Viola—Jones 的开创性工作(Viola and Jones 2004)开始,人脸检测取得了长足的进步。

Viola and Jones 开创性地使用 Haar 特征和 AdaBoost 来训练一个有希望的准确度和效率的人脸检测器(Viola and Jones 2004),这启发了之后有几种不同的方法。 然而,它有几个严重的缺点。首先,它的特征尺寸比较大。另外,它不能有效地处理非正面人脸和框外人脸。

2、早期阶段——机器学习:早期的方法主要集中在与计算机视觉领域的专家一起提取不同类型的手工特征,并训练有效的分类器以使用传统的机器学习算法进行检测。

这些方法的局限性在于它们通常需要计算机视觉专家来制作有效的特征,并且每个单独的组件都单独优化,使得整个检测流程往往不是最佳的。

为了解决第一个问题,人们付出了很多努力来提出更复杂的特征,如 HOG(定向梯度直方图)、SIFT(尺度不变特征变换)、sURF(加速鲁棒特征)和 ACF(聚合通道特征)。检测的鲁棒性,已经开发了针对不同视图或姿势分别训练的多个检测器的组合。然而,此类模型的训练和测试通常更耗时,并且检测性能的提升相对有限。3

3、最新技术 — 深度学习:近年来,使用深度学习方法,尤其是深度卷积神经网络 (CNN) 的人脸识别取得了显着进展,在各种计算机视觉任务中取得了显显著的成功。

与传统的计算机视觉方法相比,深度学习方法避免了手工设计的不足,并主导了许多著名的基准评估,例如 lmageNet大规模视觉识别挑战 (ILSVRC)。

最近,研究人员应用了 Faster R—CNN,这是最先进的通用对象检测器之一,并取得了可喜的成果。此外,CNN 级联、区域提议网络(RPN)和 Faster R—CNN 联合训练实现了端到端的优化,以及人脸检测基准,如 FDDB(人脸数据库)等。

主要挑战

人脸检测面临的困难是降低人脸识别准确率和检测率的原因。

这些挑战是复杂的背景、图像中的人脸过多、奇怪的表情、光照、分辨率较低、人脸遮挡、肤色、距离和方向等。

不寻常的面部表情:图像中的人脸可能会显示出意外或奇怪的面部表情。

照明度:某些图像部分可能具有非常高或非常低的照明度或阴影。

皮肤类型:检测不同人脸颜色的人脸检测具有挑战性,需要更广泛的训练图像多样性。

距离:如果到相机的距离太远,物体尺寸(人脸尺寸)可能太小。

朝向:人脸方向和相机的角度会影响人脸检测率。

复杂的背景: 场景中的大量对象会降低检测的准确性和速度。

一张图像中有很多人脸:一张包含大量人脸的图像对于准确检测率来说非常具有挑战性。

人脸遮挡:人脸可能会被眼镜、围巾、手、头发、帽子等物体部分遮挡,影响检测率。

低分辨率:低分辨率图像或图像噪声会对检测率产生负面影响。

人脸检测应用场景

人群监控:人脸检测用于检测经常光顾的公共或私人区域的人群。

人机交互: 多个基于人机交互的系统使用面部识别来检测人类的存在。

摄影:最近的一些数码相机使用面部检测进行自动对焦等等。

面部特征提取:可以从图像中提取鼻子、眼睛、嘴巴、肤色等面部特征。 、

性别分类: 通过人脸检测方法检测性别信息。

人脸识别:从数字图像或视频帧中识别和验证一个人。

营销:人脸检测对于营销、分析客户行为或定向广告变得越来越重要。

出勤:面部识别用于检测人类的出勤情况, 它通常与生物识别检测结合用于访问管理,如智能门禁。

2014年前后,随着大数据和深度学习的发展,神经网络备受瞩目,深度学习的出现使人脸识别技术取得了突破性进展。深度学习是机器学习的一种,其概念源于人工神经网络的研究,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

区别于传统的浅层学习,深度学习的不同在于一方面通常有5层以上的'多层隐层节点,模型结构深度大;另一方面利用大数据来学习特征,明确了特征学习的重要性。

随着深度卷积神经网络和大规模数据集的最新发展,深度人脸识别取得了显著进展,基于深度学习的人脸识别技术可以通过网络自动学习人脸面部特征,从而提高人脸检测效率。

从人脸表达模型来看,可细分为2D人脸识别和3D人脸识别。基于2D的人脸识别通过2D摄像头拍摄平面成像,研究时间相对较长,在多个领域都有使用,但由于2D信息存在深度数据丢失的局限性,收集的信息有限,安全级别不够高,在实际应用中存在不足。

早在2019年,就有小学生手举照片“攻破”了快递柜的人脸识别系统。基于3D的人脸识别系统通过3D摄像头立体成像,由两个摄像头、一个红外线补光探头和一个可见光探头相互配合形成3D图像,能够准确分辨出照片、视频、面具等逼真的攻击手段。

根据使用摄像头成像原理,目前3D人脸识别主要有三种主流方案,分别是3D结构光方案(Structured Light)、时差测距技术3D方案(Time Of Flight,TOF)和双目立体成像方案(Stereo System)。基于3D结构光的人脸识别已在一些智能手机上实际应用,比如HUAWEI Mate 20 Pro、iPhone X。

2009年微软推出的Kinect(Xbox 360体感周边外设)则采用了TOF方式获取3D数据,颠覆了游戏的单一操作,为人机体感交互提供了有益探索。双目立体成像方案基于视差原理,通过多幅图像恢复物体的三维信息,由于对相机焦距、两个摄像头平面位置等要求较高,应用范围相对于3D结构光和TOF方案较窄。

除了能够准确识人,精准判断捕捉到的人脸是真实的也至关重要。活体检测技术能够在系统摄像头正确识别人脸的同时,验证用户是本人而不是照片、视频等常见攻击手段。目前活体检测分为三种,分别是配合式活体检测、静默活体检测和双目活体防伪检测。

其中,配合式活体检测最为常见,比如在银行“刷脸”办理业务、在手机端完成身份认证等应用场景,通常需要根据文字提示完成左看右看、点头、眨眨眼等动作,通过人脸关键点定位和人脸追踪等技术,验证用户是否为真实活体本人。

人脸与人体的其他生物特征(如指纹、虹膜等)一样与生俱来,它的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提。随着大数据和深度学习的不断发展,人脸识别效率显著提升,为远程办理业务的身份认证环节提供了可靠保障。

但与此同时,人脸信息保护、隐私安全等问题也应引起重视。随着《个人信息保护法》《数据安全法》及相关司法解释的出台,国家相关部门以及各种机构对个人信息安全问题的重视,有利于引导人脸识别技术的发展方向,为促进行业高质量发展、创造高品质数字生活提供有力支撑。

人脸识别的应用场景在大范围扩展:

金融领域:远程银行开户、身份核验、保险理赔和刷脸支付等。人脸识别技术的接入,能有效提高资金交易安全的保障,也提高了金融业务中的便捷性。

智慧安防领域则是为了视频结构化、人物检索、人脸布控、人群统计等软硬件一体形态产品提供基础支撑,重点应用于犯罪人员的识别追踪、失踪儿童寻找、反恐行动助力等场景。实现重点人员的识别及跟踪,在公安应用场景中达到事前预警、事中跟踪、事后快速处置的目的。

交通领域主要包括1:1人脸验证和1:N人脸辨识,目前利用人脸核验验证技术的刷脸安检已进入普遍应用阶段,在高铁站、普通火车站和机场皆已大面积推广。

而应用1:N人脸比对技术的刷脸支付主要落地在地铁公交等市内交通,这种技术能够极大提高通勤人员的出行效率,释放大量的人力资源,提升出行体验。同时,人脸识别可以对交通站点进行人流监测,根据人员出行规律预测人流高峰,提前做好疏导预案。

民生政务方面,人脸识别在政务系统的落地,提升了民众的办事效率,公民可以不用窗口排队,实现自助办事,节省了因人工效率低下产生的耗时。部分政务还可以通过在线人脸识别验证,在移动端线上办理,减轻了“办事来回跑、办事地点远、办事点分散”的困扰。

智能家居方面,主要应用在安全解锁和个性化家居服务两个场景。

在线教育领域则是通过人脸识别查验学员身份,避免一账号多个人使用,给网校造成损失,另一用途是帮助在线课堂老师了解学生学习状态,弥补网络授课相较于传统授课在师生交流环节上的不足。

商业领域,利用人脸识别功能实现各种极具创意的互动营销活动。

凡事都有两面。即便拥有以上优势,因人脸暴露度较高,相比对其他生物特征数据更容易实现被动采集,这也意味着人脸信息的数据更容易被窃取,不仅可能侵犯个人隐私,还会带来财产损失。大规模的数据库泄露还会对一个族群或国家带来安全风险。

在南方都市报个人信息保护研究中心发布的《人脸识别应用公众调研报告(2020)》中,其对两万份调研报告进行统计,问卷中就“便捷性”与“安全性”设置了量表题,请受访者分别依据前述10大类场景中的使用感受进行打分。

1分为最低分,5分为最高分。结果显示,在安全性感受方面,受访者给出的分数则明显偏低,体现出他们对安全风险的忧虑态度。

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

只要开人脸识别功能就行了 人脸识别其实很简单,相机处理器对拍到的物体进行长宽比例的分析,分析出的数值接近人脸的比例就会自动锁定,其实就是数学上的计算和比例,也许大家认为人脸差别很大,其实都是遵循着固定的比率的,只要不是畸形,不管胖瘦脸部的比例都是人脸特有的那个值,所以即使是素描画,相机一样认为他是人脸,只要他的比例是对的

=IF(OR(P9=""),"",Q9&"."&R9&""&LEFT(S9,2)&"") 意思是当P9为空,就显示空,否则显示Q9为整数部份,&"."为加上一个小数点,小数部份为R9和S9的前两位阵列成.这个公式里的OR和后&""是多余的,写成这样就行=IF(P9="","",Q9&"."&R9&""&LEFT(S9,2)) Q9=30 R9=32 S9=在后面的单元格显示,如果是当S9整数小于2位,就在前面添0,大于2位就显示几位整,那么输入 =Q9&"."&R9&IF(LEN(ROUNDDOWN(S9,0))<2,0&ROUNDDOWN(S9,0),ROUNDDOWN(S9,0))

适合啊,我同学做的就跟你一点差别,她是人脸识别,没有表情。

据说,苹果新品手机可以“在一百万张脸中识别出你的肥脸”,还可以通过人脸识别解锁手机,以及订制动态3D Animojis 表情。 苹果iPhoneX人脸识别是怎么实现的呢? 这是一个复杂的技术问题......人脸识别主要包括人脸检测、特征提取、人脸分类三个过程。 简单地说,就是通过人脸检测,对五官进行一些关键点的定位,然后提取计算机能够识别的人脸特征,最后进行一个相似度的比对,从而得到一个人脸识别的结果,也就是判断“刷脸”的是不是你本人。 让人最为激动还是苹果在取消home键后,替代Touch ID的Face ID功能。有了人脸识别技术加持,抬手秒解锁iPhone的过程真的是更简单也更迅速。 不仅如此,苹果人脸识别解锁的安全性、可靠性也非常高。运用3D结构光技术,iPhone X 能够快速对“人脸3D建模”。即使使用者改变发型,戴上眼镜帽子,或者在晚上,iPhone X都能成功解锁。 人脸识别技术这么牛,那它是万能的吗?只要是人脸都可以识别、辨认出来么?其实,在进行人脸识别的时候,也存在一些难题,比如人的姿态、光照、遮挡等都会对人脸识别造成影响。

首先是面部捕捉。它根据人的头部的部位进行判定,首先确定头部,然后判断眼睛和嘴巴等头部特征,通过特征库的比对,确认是面部,完成面部捕捉,ai可以这样做。 不过个人以为这个技术并不好用,特别是在有不止一个人的场景上,比如大合照,对焦点经常乱跑,所以偶的相机基本还是放在中央对焦上,毕竟cpu再聪明,还是人脑更靠谱。。。

Mate9 Pro会支援人脸解锁/识别功能,正在努力适配中。版本具体的更新资讯,请您关注花粉论坛官方通知。感谢您对华为产品的一贯支援。

你可以使用opencv库提供的人脸识别模组,这样子会比较快

具体操作方法: 1、首先你需要一个连线Windows10电脑和Kinect的介面卡; 2、然后还需要给系统做一个小手术以获取Kinect Beta驱动更新: - 按Win+R开启执行,输入regedit回车开启登录档编辑器; - 导航至HKLM\Sofare\Microsoft\ - 建立子键\DriverFlighting\Partner\ 3、在\Partner子键中新建名为“TargetRing”的专案,将其值设定为“Drivers”。 不需要重启电脑,之后你就可以在Windows Update或装置管理器中更新Kinect Beta驱动了。 以上就是Windows10用Kinect实现人脸识别功能的方法了,这样一来只要给连线一个Kinect就可以使用Windows10人脸识别功能,而不用更换电脑了。

是的,比如云脉人脸识别中的人脸检测技术就是采用三维定向,对人脸三维朝向,做精准到“度”的判断,以及对人脸特征点进行“画素级”定位,轻松判断眼睛开合状态,还可通过技术对现有人脸识别做技术上的补充和完善,进而达到识别的创新性和严谨性。

操作方法: 1、首先你需要一个连线Windows10电脑和Kinect的介面卡; 2、然后还需要给系统做一个小手术以获取Kinect Beta驱动更新: - 按Win+R开启执行,输入regedit回车开启登录档编辑器; - 导航至HKLM\Sofare\Microsoft\ - 建立子键\DriverFlighting\Partner\ 3、在\Partner子键中新建名为“TargetRing”的专案,将其值设定为“Drivers”。 不需要重启电脑,之后你就可以在Windows Update或装置管理器中更新Kinect Beta驱动了。 以上就是Windows10用Kinect实现人脸识别功能的方法了,这样一来只要给连线一个Kinect就可以使用Windows10人脸识别功能,而不用更换电脑了。

人脸检测技术论文

人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,晓电晓受晓受晓晓晓多晓电晓米晓受晓联晓受晓零晓电晓受晓米晓多晓晓e少量惠量量e米惠d量晓晓受晓晓晓晓米晓晓多晓少米受在一定程度上有泛滥成“灾”之嫌。为了更好地对人脸识别研究的历史和现状进行介绍,本文将AFR的研究历史按照研究内容、技术芳珐等方面的特点大体划分为三个时间阶段,如表受所示。该表格概括了人脸识别研究的发展简史及其每个历史阶段代表性的研究工作及其技术特点。下面对三个阶段的研究进展情况作简单介绍: 第一阶段(受惠米联年~受惠惠零年) 这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometricfeature based)的芳珐。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也一度曾经被研究人员用于人脸识别问题中。较早从事AFR研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。金出武雄于受惠少晓年在京都大学完成了第一篇AFR方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。他所在的研究组也是人脸识别领域的一支重要力量。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。 第二阶段(受惠惠受年~受惠惠少年) 这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的FERET人脸识别算法测试,并出现了若干伤业化运作的人脸识别系统,比如最为著名的Visionics(现为Identix)的FaceIt系统。 美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特兰德(Pentland)提出的“特征脸”芳珐无疑是这一时期内最负盛名的人脸识别芳珐。其后的很多人脸识别技术都或多或少与特征脸有关系,现在特征脸已经与归一化的协相关量(NormalizedCorrelation)芳珐一道成为人脸识别的性能测试基准算法。 这一时期的另一个重要工作是麻省理工学院人工智能实验室的布鲁内里(Brunelli)和波基奥(Poggio)于受惠惠电年左右做的一个对比实验,他们对比了基于结构特征的芳珐与基于模板匹配的芳珐的识别性能,并给出了一个比较确定的结论:模板匹配的芳珐优于基于特征的芳珐。这一导向性的结论与特征脸共同作用,基本中止了纯粹的基于结构特征的人脸识别芳珐研究,并在很大程度上促进了基于表观(Appearance-based)的线性子空间建模和基于统计模式识别技术的人脸识别芳珐的发展,使其逐渐成为主流的人脸识别技术。 贝尔胡米尔(Belhumeur)等提出的Fisherface人脸识别芳珐是这一时期的另一重要成果。该芳珐首先采用主成分分析(PrincipalComponent Analysis,PCA,亦即特征脸)对图像表观特征进行降维。在此基础上,采用线性判别分析(LinearDiscriminant Analysis, LDA)的芳珐变换降维后的主成分以期获得“尽量大的类间散度和尽量小的类内散度”。该芳珐目前仍然是主流的人脸识别芳珐之一,产生了很多不同的变种,比如零空间法、子空间判别模型、增强判别模型、直接的LDA判别芳珐以及近期的一些基于核学习的改进策略。 麻省理工学院的马哈丹(Moghaddam)则在特征脸的基础上,提出了基于双子空间进行贝叶斯概率估计的人脸识别芳珐。该芳珐通过“作差法”,将两幅人脸图像对的相似度计算问题转换为一个两类(类内差和类间差)分类问题,类内差和类间差数据都要首先通过主成分分析(PCA)技术进行降维,计算两个类别的类条件概率密度,最后通过贝叶斯决策(最大似然或者最大后验概率)的芳珐来进行人脸识别。 人脸识别中的另一种重要芳珐——弹性图匹配技术(Elastic GraphMatching,EGM) 也是在这一阶段提出的。其基本思想是用一个属性图来描述人脸:属性图的顶点代表面部关键特征点,其属性为相应特征点处的多分辨率、多方向局部特征——Gabor变换【受电】特征,称为Jet;边的属性则为不同特征点之间的几何关系。对任意输入人脸图像,弹性图匹配通过一种优化馊索策略来定位预先定义的若干面部关键特征点,同时提取它们的Jet特征,得到输入图像的属性图。最后通过计算其与已知人脸属性图的相似度来完成识别过程。该芳珐的优点是既保留了面部的全局结构特征,也对人脸的关键局部特征进行了建模。近来还出现了一些对该芳珐的扩展。 局部特征分析技术是由洛克菲勒大学(RockefellerUniversity)的艾提克(Atick)等人提出的。LFA在本质上是一种基于统计的低维对象描述芳珐,与只能提取全局特征而且不能保留局部拓扑结构的PCA相比,LFA在全局PCA描述的基础上提取的特征是局部的,并能够同时保留全局拓扑信息,从而具有更佳的描述和判别能力。LFA技术已伤业化为著名的FaceIt系统,因此后期没有发表新的学术进展。 由美国国防部反技术发展计划办公室资助的FERET项目无疑是该阶段内的一个至关重要的事件。FERET项目的目标是要开发能够为安全、情报和执法部门使用的AFR技术。该项目包括三部分内容:资助若干项人脸识别研究、创建FERET人脸图像数据库、组织FERET人脸识别性能评测。该项目分别于受惠惠联年,受惠惠多年和受惠惠米年组织了晓次人脸识别评测,几种最知名的人脸识别算法都参家了测试,极大地促进了这些算法的改进和实用化。该测试的另一个重要贡献是给出了人脸识别的进一步发展方向:光照、姿态等非理想采集条件下的人脸识别问题逐渐成为热点的研究方向。 柔性模型(Flexible Models)——包括主动形状模型(ASM)和主动表观模型(AAM)是这一时期内在人脸建模方面的一个重要贡献。ASM/AAM将人脸描述为电D形状和纹理两个分离的部分,分别用统计的芳珐进行建模(PCA),然后再进一步通过PCA将二者融合起来对人脸进行统计建模。柔性模型具有良好的人脸合成能力,可以采用基于合成的图像分析技术来对人脸图像进行特征提取与建模。柔性模型目前已被广泛用于人脸特征对准(FaceAlignment)和识别中,并出现了很多的改进模型。 总体而言,这一阶段的人脸识别技术发展非常迅速,所提出的算法在较理想图像采集条件、对象配合、中小规模正面人脸数据库上达到了非常好的性能,也因此出现了若干知名的人脸识别伤业公司。从技术方案上看, 电D人脸图像线性子空间判别分析、统计表观模型、统计模式识别芳珐是这一阶段内的主流技术。 第三阶段(受惠惠量年~现在) FERET’惠米人脸识别算法评估表明:主流的人脸识别技术对光照、姿态等由于非理想采集条件或者对象不配合造成的变化鲁棒性比较差。因此,光照、姿态问题逐渐成为研究热点。与此同时,人脸识别的伤业系统进一步发展。为此,美国军方在FERET测试的基础上分别于电零零零年和电零零电年组织了两次伤业系统评测。 基奥盖蒂斯(Georghiades)等人提出的基于光照锥 (Illumination Cones) 模型的多姿态、多光照条件人脸识别芳珐是这一时期的重要成果之一,他们证明了一个重要结论:同一人脸在同一视角、不同光照条件下的所有图像在图像空间中形成一个凸锥——即光照锥。为了能够从少量未知光照条件的人脸图像中计算光照锥,他们还对传统的光度立体视觉芳珐进行了扩展,能够在朗博模型、凸表面和远点光源假设条件下,根据未知光照条件的少幅同一视点图像恢复物体的晓D形状和表面点的表面反射系数(传统光度立体视觉能够根据给定的晓幅已知光照条件的图像恢复物体表面的法向量方向),从而可以容易地合成该视角下任意光照条件的图像,完成光照锥的计算。识别则通过计算输入图像到每个光照锥的距离来完成。 以支持向量机为代表的统计学习理论也在这一时期内被应用到了人脸识别与确认中来。支持向量机是一个两类分类器,而人脸识别则是一个多类问题。通常有三种策略解决这个问题,即:类内差/类间差法、一对多法(one-to-rest)和一对一法(one-to-one)。 布兰兹(Blanz)和维特(Vetter)等提出的基于晓D变形(晓D Morphable Model)模型的多姿态、多光照条件人脸图像分析与识别芳珐是这一阶段内一项开创性的工作。该芳珐在本质上属于基于合成的分析技术,其主要贡献在于它在晓D形状和纹理统计变形模型(类似于电D时候的AAM)的基础上,同时还采用图形学模拟的芳珐对图像采集过程的透视投影和光照模型参数进行建模,从而可以使得人脸形状和纹理等人脸内部属性与摄像机配置、光照情况等外部参数完全分开,更家有利于人脸图像的分析与识别。Blanz的实验表明,该芳珐在CMU-PIE(多姿态、光照和表情)人脸库和FERET多姿态人脸库上都达到了相当高的识别率,证明了该芳珐的有效性。 电零零受年的国际计算机视觉大会(ICCV)上,康柏研究院的研究员维奥拉(Viola)和琼斯(Jones)展示了他们的一个基于简单矩形特征和AdaBoost的实时人脸检测系统,在CIF格式上检测准正面人脸的速度达到了每秒受多帧以上。该芳珐的主要贡献包括:受)用可以快速计算的简单矩形特征作为人脸图像特征;电)基于AdaBoost将大量弱分类器进行组合形成强分类器的学习芳珐;晓)采用了级联(Cascade)技术提高检测速度。目前,基于这种人脸/非人脸学习的策略已经能够实现准实时的多姿态人脸检测与跟踪。这为后端的人脸识别提供了良好的基础。 沙苏哈(Shashua)等于电零零受年提出了一种基于伤图像【受晓】的人脸图像识别与绘制技术。该技术是一种基于特定对象类图像集合学习的绘制技术,能够根据训练集合中的少量不同光照的图像,合成任意输入人脸图像在各种光照条件下的合成图像。基于此,沙苏哈等还给出了对各种光照条件不变的人脸签名(Signature)图像的定义,可以用于光照不变的人脸识别,实验表明了其有效性。 巴斯里(Basri)和雅各布(Jacobs)则利用球面谐波(Spherical Harmonics)表示光照、用卷积过程描述朗博反射的芳珐解析地证明了一个重要的结论:由任意远点光源获得的所有朗博反射函数的集合形成一个线性子空间。这意味着一个凸的朗博表面物体在各种光照条件下的图像集合可以用一个低维的线性子空间来近似。这不仅与先前的光照统计建模芳珐的经验实验结果相吻合,更进一步从理论上促进了线性子空间对象识别芳珐的发展。而且,这使得用凸优化芳珐来强制光照函数非负成为可能,为光照问题的解决提供了重要思路。 FERET项目之后,涌现了若干人脸识别伤业系统。美国国防部有关部门进一步组织了针对人脸识别伤业系统的评测FRVT,至今已经举办了两次:FRVT电零零零和FRVT电零零电。这两次测试一方面对知名的人脸识别系统进行了性能比较,例如FRVT电零零电测试就表明Cognitec, Identix和Eyematic三个伤业铲品遥遥领先于其他系统,而它们之间的差别不大。另一方面则全面总结了人脸识别技术发展的现状:较理想条件下(正面签证照),针对晓少联晓少人受电受,多量惠 幅图像的人脸识别(Identification)最高首选识别率为少晓%,人脸验证(Verification)的等错误率(EER【受联】)大约为米%。FRVT测试的另一个重要贡献是还进一步指出了目前的人脸识别算法亟待解决的若干问题。例如,FRVT电零零电测试就表明:目前的人脸识别伤业系统的性能仍然对于室内外光照变化、姿态、时间跨度等变化条件非常敏感,大规模人脸库上的有效识别问题也很严重,这些问题都仍然需要进一步的努力。 总体而言,目前非理想成像条件下(尤其是光照和姿态)、对象不配合、大规模人脸数据库上的人脸识别问题逐渐成为研究的热点问题。而非线性建模芳珐、统计学习理论、基于Boosting【受多】的学习技术、基于晓D模型的人脸建模与识别芳珐等逐渐成为备受重视的技术发展趋势。 总而言之, 人脸识别是一项既有科学研究价值,又有广泛应用前景的研究课题。国际上大量研究人员几十年的研究取得了丰硕的研究成果,自动人脸识别技术已经在某些限定条件下得到了成功应用。这些成果更家深了我们对于自动人脸识别这个问题的理解,尤其是对其挑战性的认识。尽管在海量人脸数据比对速度甚至精度方面,现有的自动人脸识别系统可能已经超过了人类,但对于复杂变化条件下的一般人脸识别问题,自动人脸识别系统的鲁棒性和准确度还远不及人类。这种差距产生的本质原因现在还不得而知,毕竟我们对于人类自身的视觉系统的认识还十分肤浅。但从模式识别和计算机视觉等学科的角度判断,这既可能意味着我们尚未找到对面部信息进行合理采样的有效传感器(考虑单目摄像机与人类双眼系统的差别),更可能意味着我们采用了不合适的人脸建模芳珐(人脸的内部表示问题),还有可能意味着我们并没有认识到自动人脸识别技术所能够达到的极限精度。但无论如何,赋予计算设备与人类似的人脸识别能力是众多该领域研究人员的梦想。相信随着研究的继续深入,我们的认识应该能够更家准确地逼近这些问题的正确答案。

URL: 论文pdf Google出品。亚毫秒级的移动端人脸检测算法。移动端可达200~1000+FPS速度。主要以下改进: 在深度可分离卷积中,计算量主要为point-wise部分,增加depth-wise部分卷积核大小并不会明显增加成本。因此本文在depth-wise部分采用了5x5的卷积核,已获得更大的感受野,故此可以降低在层数上的需求。 此外,启发于mobilenetV2,本文设计了一个先升后降的double BlazeBlock。BlazeBlock适用于浅层,double BlazeBlock适用于深层。 16x16的anchor是一样的,但本文将8x8,4x4和2x2的2个anchor替换到8x8的6个anchor。此外强制限制人脸的长宽为1:1。 由于最后一层feature map较大(相对于ssd),导致预测结果会较多,在连续帧预测过程中,nms会变导致人脸框变得更加抖动。本文在原始边界框的回归参数估计变为其与重叠概率的加权平均。这基本没有带来预测时间上的消耗,但在提升了10%的性能。 效果好速度快的方法想不想要?

每个人都有一张脸,而且是一个人最重要的外貌特征。这种技术最热门的应用领域有三个方面:第一,身份认证与安全防护。在这个世界上,只要有门的地方几乎都带有一把锁。当然,在许多安全级别要求较高的区域,例如金融机构、机关办公大楼、运动场馆、甚至重要设施的工地,都需要对大量的人员进行基于身份认证的门禁管理。手机、笔记本电脑等个人电子用品,在开机和使用中经常要用到身份验证功能。第二,媒体与娱乐。人们的许多娱乐活动都是跟脸部有关的。最著名的娱乐节目之一就是川剧的变脸。在网络虚拟世界里,通过人脸的变化,可以产生大量的娱乐节目和效果。手机、数码相机等消费电子产品中,基于人脸的娱乐项目越来越丰富。QQ、MSN等即时通信工具以及虚拟化身网络游戏也是人脸合成技术的广阔市场。第三,图像搜索。传统搜索引擎的图像搜索其实还是文字搜索。基于人脸图像识别技术的搜索引擎将会具有广泛的应用前景。而且大部分以图片作为输入的搜索引擎,例如tineye(2008年上线)、搜狗识图(2011年上线)等,本质上是进行图片近似拷贝检测,即搜索看起来几乎完全一样的图片。2010年推出的百度识图也是如此,在经历两年多的沉寂之后,百度识图开始向另一个方向探索。与之前的区别在于,如果用户给出一张图片,百度识图会判断里面是否出现人脸,如果有,百度识图在相似图片搜索之外,同时会全网寻找出现过的类似人像。新增加的技术简而言之,首先是人脸检测并提取出特征表达,随后再据此进行数据库对比,最后按照相似度排序返回结果。其实,人脸检测并不是新技术,相关研究已有三十年历史,然而直到去年底,百度才决定推动这一技术付诸实施。全球60亿人口,人脸相关技术应用前景不可限量!

分析检测技术论文

在现代技术中,理化检验是指借助一些测量工具进行物理、化学方面的测试和检验,因而又称“器具检验”。下面是我精心推荐的一些理化检验技术论文,希望能对大家有所帮助!理化检验技术论文篇一:《试谈理化检验质量控制考核中有关技术》 【摘要】 随着最近几年国家科学技术的飞速发展,各项科研工作也不断扩大。理化检验是我国进行科学研究检测的重要组成部分,尤其是在卫生监督管理方面。而理化研究由于其高要求的精密性而要求在检测的过程中必须提高检测的准确率,质量控制是一种提高准确率非常行之有效的方式,对于不同的检测,质控控制的技术也不一样。 【关键词】 理化检验;质量控制;技术分析;物理;化学 理化检验就是借助一些测量工具进行物理、化学方面的测试和检验,因而又称“器具检验”,这种测量工具或器具都是非常精密,比如说一般常用的测量工具有千分尺、千分表、验规、显微镜等等。随着我国对于卫生行业的改革和对卫生监督管理的加强,卫生部门在进行检测的时候就提出了更高的要求,而理化检验是卫生检测的一种重要手段,它为监督执法提供更加精确的检测数据,在劳动卫生监督管理工作中具有重要作用。 1 理化检验质量控制考核中有关技术 根据多年来众多研究者不断的探索发现和 总结 ,理化检验质控考核主要可以分为以下几个方面。 滤膜上沉着的金属含量分析 这种技术就是运用化学 方法 ,通过添加相关化学剂使其沉淀然后过滤,对过滤金属进行类型、含量多少等分析。滤膜沉着的金属样品的稳定性比较高,在正常环境下不会随着自然环境的变化而发生损失,在进行滤膜上沉着的金属含量分析的过程中需要注意防止灰尘的污染,提取考核样品的时候应注意对工具的消毒、干燥处理,以免发生污染,致使考核结果数据不准确。考核完成后要将样品放入洁净的干燥器中。 固体盐中金属含量分析 顾名思义,这中理化检验考核技术就是通过对固体盐类中的金属含量和类型进行考核,同滤膜沉着的金属样品一样,固体盐中金属样品也具有较好的稳定性。在提取样品的时候应注意样品量不宜过多,在提取样品前一定要对其进行干燥处理,干燥的时间至少在一个小时以上,考核完成后要将样品放入洁净的干燥器中。 活性炭管吸附有机毒物含量分析 这种技术考核原理是化学亲和力的作用,因为活性炭管的吸附有机会具有很强的吸附能力,如果运用物理办法则不容易对其进行分离,用化学亲和力将其分离和样品考核分析。在日常的样品保存中要注意防尘和防潮。因而,活性炭管吸附有机毒物样品不适宜保存在冰箱里。 水溶液中毒物含量分析 水溶液中待检测的毒物考核样品很多,比如:水溶液中氯化氢含量、水溶液中三氧化铬含量等,水溶液中待检测的毒物考核样品的稳定性比较差,在正常自然状态下会随着环境的变化而发生变化,比如当环境温度升高了,就会增大样品水分的自然蒸发,在样品保存的时候,如果水溶液瓶盖密闭不严也会导致水分蒸发。所以,考核水溶液样品的保存非常重要,在保存的时候要注意放在温度不会发生变化的环境里,冰箱或者冷藏箱就是很好的方式,同时还要注意样品瓶是否密封好。 2 样品考核过程中应注意的问题 样品考核流程要严格按照规范标准 对于理化检验的质量考核,国家出台了相关的流程规范标准。因此,在实际的操作中要严格按照规范标准,以防出现错误或者测试不准。在考核前应将操作分析的计划详细书写清楚,按照相关指标和标准配置试剂,同时要取少量的考核样品先试验分析,主要是检测其浓度,以决定分析所用考核样品的取样量。在实际的考核过程中,首先做好标准曲线,包括空白点共五个点,每点做六份,计算变异系数小于百分之二,列出回归方程,计算回归系数。为了提高考核的准确率,应该取考核样品3份按标准曲线同样的方法进行操作,然后计算这三次测定的平均值作为最终测定结果,注意还要计算其相对标准值,标准值应小于百分之五,否则就说明误差过大,数据不能作为测定结果。注意书写过程中各种格式及单位等要严格按照标准格式。 考核过程中各器具及试剂运用的注意事项 首先是实验所用的吸液管,要求必须使用取得计量认证的单位生产的标准计量器具,或者是经过了考核人员本人的校正,因为吸液管的指标参数也会影响着测试的准确性。整个分析考核样品的过程中,要特别注意吸取标准试剂和考核样品溶液的剂量。其次是对实验所用的蒸馏水的注意,样品分析过程中,蒸馏水的质量会深深影响着化学分析铅的空白值,最终影响着分析结果。而分析试剂的纯度也会对分析结果造成很大的影响。因此,在实际考核中,为了保证考核样品结果的准确性,应使用重蒸馏水和分析纯以上试剂,气相色谱的考核用GR级色谱纯试剂。 3 结 语 理化检验质量控制考核并非一项复杂的工程,但是由于其检测结果的重要性就要求了检测结果必须更加的精确,因此在考核过程中必须要保证各项操作严格按照标准规范进行,保护样品不受污染,检测结果 报告 一定按照相关格式要求,全面、准确。通过各方面的规范操作来加强理化检验的质量控制。 参考文献 [1] 黄家钿,李诚,杜宏,张茵,方辰.卫生检验与检疫技术专业实践教学新模式的构建[A].浙江省医学会.2012年浙江省医学 教育 学学术年会论文集[C].浙江省医学会,. [2] 关于举办全国材料理化测试与产品质量控制学术研讨会暨《理化检验》创刊40年庆典活动的征文通知(第一号)[J].理化检验(物理分册),2012,02:92. [3] 张云霞,蔡望伟,周代锋.以素质教育为导向,深化医学院生物化学实验教学改革[J].海南医学,2011,15:135-137. [4] 张秀丽,廖兴广,张蒙,高葆真.2010年河南省食品卫生微生物检验质量控制考核结果的评价与分析[J].中国卫生检验杂志,2011,07:856-857. 理化检验技术论文篇二:《浅谈茶叶理化检验样品制备技术》 摘要:本文初步分析研究了茶叶理化检验样品的制备技术,并且从挑选与加工新鲜叶子、预处理与磨碎毛茶、均匀混合与分装磨碎样品、检验样品的均匀稳定性、检测特性数值等方面对茶叶理化检验样品制备技术进行了分析,最终提出了对标准化样品进行定值时,可以把定值根据转向实验室所提供的检测相关数据等发展建议,希望可以为我国的茶叶质检事业发展添砖加瓦并且奉献自己的力量。 关键词:茶叶 理化检验 制备样品 全球三大饮料之一便是茶叶,与 其它 饮料相比茶叶更加的实惠和经济,因此茶叶的饮用范围也在逐渐的扩大,拥有越来越大的消费人群,并且已经成为了21世界健康饮品的首先选择对象。可是,伴随着迅速发展壮大的商品经济,日益激烈的市场竞争环境,出现了各种各样的伪劣产品,茶叶也不能被排除之外。为了能够满足商品市场的要求,对各种形式的假茶叶进行严厉打击,有效整顿非常混乱的茶叶市场,迫切需要对茶叶进行理化检验。 一、茶叶理化检验标准化样品概述 对茶叶进行检测的内容包含了检验茶叶的品质、理化标准以及卫生标准等。其中,理化检验程序重点是对出物水浸、水分、茶多酚、咖啡碱等指标进行检验;卫生检验则是对存在于茶叶中的六六六成分等各种残留农药实施检测,以及重金属与微生物等项目的科学检验。 标准化样品具体是指一种或是各种均匀充足以及特点价值已经确定了的物质材料,主要用途是对设备仪器、评测方式以及材料具有的赋值进行校准。当前,通过国家生态环境科学研究院等有关单位研究制作、并且由我国标准物质机构特定销售的是存在于茶叶中的具备赋值特点的无机元素的茶叶标准样品。其它能够对茶叶理化各个指标体现的赋值标准化样品始终没有地方购买。为了可以有效提升全国检测茶叶机构的工作能力,加强检测机构对数据进行测定的可靠性,势必要设计针对茶叶理化各个指标所产生复制标准化样品,这也成为了各个检测单位对实验室检测茶叶项目技术水平客观了解的事实根据。 二、茶叶理化检验标准化样品制备技术 (一)挑选与加工新鲜叶子 影响茶叶理化指标数值的因素主要包括茶树的种类、产茶的时间、原材料的鲜嫩程度以及加工环节等。要想从根本上对原材料整体质量进行控制就需要挑选相同的种类、相同的茶园、根据一致的采摘要求对鲜叶实施采摘。并且在相同的步骤下加工生产等级相同的毛茶样品。需要关注两个方面:一方面是对毛茶所含水平有效控制。保证茶叶品质的重要因素就是茶叶所含的水分,毛茶样品要想成为标准化的茶叶样品,其含有的水分应当在以下。另一方面是对原材料的鲜嫩程度进行合理控制。加工茶叶使用鲜嫩程度良好的茶叶,不仅消耗较高的成本,同时出现较多的绒毛也对制备均匀样品非常不利。制作茶叶标准化样品,最好选择一芽的对夹叶或者三四叶的新鲜叶子作为原材料,使用二级或者二级以下作为毛茶的原材料。曾经根据以上的要求制作了一些茶叶的相关样品,已经被实验室国家认可组织作为了验证茶叶能力的标准化样品。不但具有较低的成本,并且在开始就已经对其均匀性获得了保障。 (二)预处理与磨碎毛茶 刚刚加工出来的毛茶通常会包含一些杂物。为了能够确保整批毛茶统一的质量标准,迫切需要挑剔全部茶叶,同时除去茶梗与石粒等,可以避免这些杂物对指标 产生的影响。国际相关标准对茶叶理化检验样品进行了规定必须使用磨碎之后的茶叶,因此,在预处理的前提条件下,必须磨碎处理毛茶的样品。磨碎之前,首先要清理干净磨碎设备,其次放入一小部分样品实施磨碎,并且清理掉这些磨碎样品。最后开始对样品正式进行磨碎,选择孔径在毫米到1毫米之间的筛子对磨碎样品进行筛选并且将其作为制备样品。 (三)均匀混合与分装磨碎样品 制备标准化的样品与平常检测使用的样品不同。制备一次样品的数量比较大,为了能够确保样品具有较高的均匀性,必须在进行分装操作之前充分混合均匀筛选后的磨碎样品。样品在混合均匀之后分别盛放在干燥清洁的设备中,盖紧瓶盖,为保存茶叶样品提供一个密闭、干燥、避免阳光照射的环境。 (四)检验样品的均匀稳定性 随机在整体样品中选择超过10个样品后检验其均匀性。检验均匀性可以使用待测项目,选择具有代表性或者对不均匀样品产生敏感的项目。对每一个抽取的样品,通过相同的检测人员在不变的环境条件下测试2次以上。应用单因子方差对检验结果进行分析,充分验证样品之间不会存在显著的差异性,只有这样才能证明其是均匀的样品。在验证茶叶能力所需样品的均匀性检验工作中,选择了总灰分和粗纤维等相关项目检验均匀性。由于前期制备均匀样品工作操作正确,应用单因子方差对上述检验均匀性结果进行验证表明其具有均匀性。上述茶叶项目在密闭与干燥的环境中状态稳定,因此,上述项目应用的样品可以不进行稳定试验。 (五)检测特性数值 检测某一个特性数值,通过需要具备检测茶叶能力的几十家实验室,根据国家规定的检测方法,应用各个实验室之间的联合检测方法,联合定值对应的特质数值。也就是根据相关准则规定的方法,统计和计算各个实验室获得检测结果,最终确定标准化样品各个特性数值体现出的测量的不确定性。 三、茶叶理化检验样品的发展 我国当前正在努力对各种能力开展计划验证,在验证茶叶能力的各项活动中,参与单位具有极高的积极性,参加个别项目的实验室超过了百家。开展工作的过程中,工作人员深刻的意识到制备大量样品非常不容易,在制备样品过程中,怎样保证样品具有均匀性以及对其进行有效检验等工作耗费了较多的财力与精力。因此,相关工作人员认为可以凭借验证茶叶能力这个机会,增加制备验证样品的数量。由于每一次验证茶叶能力之后剩余的样品都已经通过了均匀性检验,同时在验证能力过程中进一步获得确认;通过验证能力又可以产生一些具有较高技术水平的优秀实验室。所以,对标准化样品进行定值时,可以把定值根据转向这些实验室提供的检测相关数据。比如:可以将某种样品相关项目所需的标准数值规定为各个实验室得出的测定数值中的中位值,把标准化的IQR定义为标准偏差。假如能够科学有效的应用这些资源,不但能够大量减少制备与验证茶叶标准化样品所需的成本,同时也促使定值的结果更加无限接近真实数值,符合了各个质检单位对茶叶理化检验标准样品产生的要求。 结束语 目前,在制备茶叶标准样品工作上,茶叶工作者具备了丰富专业的茶叶背景优势,可是要想将验证茶叶能力提升为茶叶的标准化样品,还要对相关的研究程序作出进一步的分析理解,以便可以制备出具有稳定结果、准确定值、均匀样品同时充分发挥法律效力的茶叶标准化样品,也为我国发展茶叶质检工作贡献自己的力量。 参考文献: [1]GB/T8303―2002.茶磨碎试样的制备及其干物质含量测定[M].中华人民共和国国家标准,2009. [2]CNAS-GL03.能力验证样品均匀性和稳定性评价指南[M].中国合格评定国家认可委员会2008. 理化检验技术论文篇三:基于工作过程的《食品理化检验技术》课程教学过程设计 食品理化检验技术作为食品营养与检测专业的一门重要的核心课程之一,该课程的教学会直接影响到学生的培养质[]量,因此,需要对课程进行教学过程的设计,来培养学生学习的积极性、主动性和创造性,调动学生的学习兴趣,从而提高教学的课堂效果,教学过程是知识、 经验 、方法、能力的整体综合体现,教学过程既要体现做事的方式方法,又要重视知识的掌握和应用[1-2]。为了搞好该课程的教学工作,本文对《食品理化检验技术》课程进行教学过程设计,通过教学过程设计来保证课堂的教学效果,达到合乎企业要求的人才培养目标。 一、食品理化检验技术课程开发 食品理化检验技术课程的开发是以企业的理化检验的工作过程为导向进行的,将理化检验的工作过程设计成企业岗位需要的工作任务,并以该工作任务为载体设计学习情境,确定开发的流程,具体为首先对食品营养与检测专业进行调研,写出 调研报告 ,分析企业理化检验工作岗位所要求的职业能力和工作能力,根据职业能力和工作能力的要求,分析食品理化检验技术的课程结构,优化出该课程的课程体系,从而分析出课程的教学内容,制定出课程标准和实验实训指导书,然后进行教学设计。 二、教学内容的选择和课程内容结构 在食品理化检验技术课程的教学内容选取上,根据国家和地方食品企业行业发展以及高职食品营养与检测专业的培养目标,按照食品理化检验的工作岗位对学生知识、能力、素质的要求,根据“够用、必需”原则来选取教学内容,按照职业性、实践性的原则选取食品理化实训教学项目。 三、食品理化检验技术教学过程的设计 食品理化检验技术课程的教学过程采用具体的工作任务来引领学生学习的整个过程,按照食品理化检验工作岗位的流程进行设计该课程的教学过程,从工作岗位所需的工作任务来选择理化检验项目,检验项目选择完成后,学生根据检验项目查找资料进行方案设计,方案设计确定出来后,需要教师和学生共同进行反复讨论、修改,通过后才能实施,根据确定的方案,学生在教师的指导下完成实验实训的各项准备工作,然后开始进行实训操作,操作完成,对实训的结果进行分析,再广泛收集教师和学生们的意见,最后教师把问题反馈给学生,避免学生下次出现同类错误。《食品理化检验技术》课程的教学过程设计见图1。 图1 食品理化检验技术教学过程的设计 四、推行基于工作过程的项目导向、任务驱动教学法

汽车检测是指为了确定汽车技术状况是否达到标准或工作能力是否正常而进行的检查和测量。下面是我为大家精心推荐的汽车检测技术论文,希望能够对您有所帮助。

国内汽车检测技术概况

[摘 要]本文通过了解我国国内汽车检测技术的概念及其分类,介绍了我国一些先进前沿的汽车检测技术,阐述了我国汽车检测技术的发展概况,针对我国汽车检测技术中的不足之处,结合我国汽车检测技术的具体发展形势,提出了我国汽车检测技术的发展方向,这对我国汽车检测技术的发展具有一定的现实指导意义。

[关键词]汽车检测;检测技术;国内现状;发展概况

中图分类号: 文献标识码:A 文章 编号:1009-914X(2015)03-0056-01

1.汽车检测的概念

汽车检测是指为了确定汽车技术状况是否达到标准或工作能力是否正常而进行的检查和测量。汽车检测技术则是指在汽车检测这一过程中所有与之相关的检测硬件和检测软件的研发和使用技术。

2.汽车检测技术的分类

安全环保检测

安全环保检测主要是针对汽车的安全运行和环境保护方面的检测,这种检测又分为定期检测和不定期检测。该检测的目的是为了确定车辆是否具备符合要求的外观容貌以及良好的安全性能,同时对汽车的环境污染程度进行有效控制。在汽车不解体的情况下,对汽车建立安全监控体系,确保汽车能高效、安全和低污染的运行。

综合性能检测

综合性能检测是指对汽车的综合性能实行定期或者不定期的检测。该检测的目的是为了确定汽车是否具有良好的动力性、可靠性、安全性、噪声污染性以及排气净化性。该检测主要针对汽车的故障及其原因或隐患部位实行质量监督和检测,从而建立汽车质量监控体系,来达到该检测技术的目的。

3.国内汽车检测技术的发展情况

国内汽车检测技术的发展历程

(1)20世纪60年代,我国汽车检测技术处于起步阶段。我国开始研究汽车检测技术开始于20世纪60年代,为了满足当时的汽车维修需要,我国交通部门研究和开发了发动机汽缸漏气量检测仪以及点火正时灯等一些基本的检测仪器。

(2)20世纪70年代,我国汽车检测技术进入发力发展阶段。随着我国汽车生产技术以及人们汽车使用率的飞速增长,我国交通部门开始进入大力发展汽车检测技术的阶段。汽车检测的仪器设备增多,检测项目增多,检测标准和规则也得到进一步的完善,建立了汽车性能综合检验台。

(3)20世纪80年代,我国汽车检测技术进入快速发展阶段。随着我国科学技术和国民经济的飞速发展,我国汽车制造业和交通运输业也得到了飞速发展。因此,对汽车检测技术和设备的需求也日益增涨。我国汽车检测技术因此进入其发展的蓬勃向上时期。

(4)20世纪90年代至今,我国汽车检测技术已经发展相对成熟。迈入90年代后,我国汽车检测技术从其设备的研制、开发以及生产都有了自身的一套运作体系。90年代是我国汽车检测技术的发展高潮时期。虽然目前我国的汽车检测技术与外国仍存在一定的差距,其发展的过程中也存在有一些问题和不足,但我国汽车检测技术也在不断的吸收借鉴完善自己,保证自身良好的发展态势,努力为其创造广阔的发展前景。

目前国内具有代表性的先进前沿的汽车检测技术

(1)虚拟仪器检测技术

虚拟仪器检测技术是指通过自由增减测试系统配置,利用系统配置单元器件,按照每一个项目测试的要求标准,可以直观和有效的得出监测结果,从而提高测试技术的效率。

(2)将GPS技术与车辆检测相结合

该技术主要是利用了能够接受卫星定位信号的GPS系统,将其与汽车检测技术系统相结合,从而达到快捷有效的检测过程。

(3)利用汽车四轮定位进行检测

四轮定位仪主要是依据车轮定位得到检测数据,它利用图像显示并记录汽车四轮的运作情况,与汽车检测数据结果分析相结合,从而达到检测目的。

4.国内汽车检测技术发展过程中存在的问题

国内汽车检测站的经营管理过程中存在行政干预问题

在我国,安全检测是由公安部门来建立管理的。因此我国的综合性能检测站都由交通部门直接建立并管理或者由地方企业建立但仍由交通部门管理。这种行政管理形式,往往造成了检测结果的不真实、检测过程的不规范或者检测项目不完善的情况,甚至是伪造一些监测数据。

我国汽车检测存在重复检测的问题

目前,我国有权对汽车进行检测的机构至少有三种,即安检站、机动车尾气排放检测站以及汽车综合性能检测站。这三个机构又分别归隶属于公安、环保、和交通管理部门。这些部门从各自的职能要求出发对车辆进行必要的检查和监测,容易造成车辆的重复检查,在加大汽车检测工作量的同时,给车主也带来不便。

检测技术有待进一步完善

目前,我国的进口汽车检测标准体系主要依赖于外国检测标准,因此针对我国汽车具体发展情况,我国的汽车检测技术有待进一步提高和完善。例如,我国目前的技术可以对车辆的正面、侧面、追尾等事故进行检测,但对侧面碰撞、追尾碰撞等事故却缺乏相关的检测标准。这也急需我国汽车检测技术的提高和完善。

我国汽车检测人员的整体专业能力和专业素质有待提高

一方面,我国的汽车检测人员的专业检测能力有待提高。一些检测人员本身缺乏基本的汽车知识,检测操作不规范,对检测结果的分析能力不够,不能很好的判断汽车是否达到检测标准。另一方面,我国汽车检测人员的自身素质不够,一些检测人员故意抬高检测收费标准,为了个人利益不顾集体利益,甚至为一些没有达到标准的车辆伪造数据。这些都是造成安全隐患的个人因素,也不利于我国检测技术的研发和推广。

5.解决国内汽车检测技术发展过程中的问题的有效 措施

汽车检测技术基础实现规范化

在我国汽车检测技术的发展过程中,汽车检测的硬件技术一直以来都比汽车检测技术中的软件技术更受重视。这种想法往往会导致对一些基础性技术研究的忽略。因此,我国汽车检测技术的发展方向应该注重与硬件配套的软件检测技术的完善和提高。这方面主要做到三点:一,制定并完善汽车检测项目的限值标准和检测 方法 ;二,完善汽车技术状况检测的评定细则,将全国各地的检测要求和具 体操 作技术进行统一和规范化;三,严格执行综合性能检测站对大型检测设备的认证规则,确保综合性能检测站有能力胜任并履行其检测职责。

汽车检测设备实现智能化

虽然目前我国的汽车检测技术以及检测设备的智能化与国外的检测存在一定的差距,但是我国汽车检测设备正积极学习并通过进口一些外国先进检测设备来提高并完善我国汽车检测设备的智能化。检测设备的智能化使检测设备具有专家检测和诊断系统以及智能化的功能,可以在较短时间较快较准确的对汽车状况进行检测,并诊断出汽车发生故障的部位以及故障原因,从而让维修人员能够迅速解除故障。节约了劳动成本,提高了劳动效率。

汽车检测管理实现网络化

随着计算机和 网络技术 的飞速发展,我国各个行业都在逐步实现其管理的网络化,汽车检测行业也不例外。目前,虽然我国的部分汽车综合性能检测站已经实现了计算机管理系统检测,但计算机监控系统并不完善,而且各个检测站之间采用的计算机检测方式也都一致。为了逐步实现我国汽车检测管理的一致性和有效性,我国汽车检测应该积极推进其管理的网络化。

6. 总结

随着我国经济和社会的进步以及汽车工业的发展,我国汽车检测技术也必须不断的提高和完善。为了使汽车维修人员的工作越来越轻松,提高汽车检测结果准确性,我国汽车检测技术的发展越来越趋向于自动化、网络化和智能化。汽车检测技术的完善和提高有利于我国交通事业以及环保事业的发展,从而为我国经济和社会的发展提供良好的外在环境。

参考文献

[1] 初君浩;浅析汽车检测技术的发展[J];科技致富向导;2014(08)25.

[2] 王洪亮;汽车检测技术的若干问题的思考[J];无线互联科技;2013(12)15.

作者简介

张彦(1975-)女,汉族,山东菏泽人,助理工程师,大学学历, 毕业 于山东省委党校经济管理专业,研究方向为车辆检测、维修。

点击下页还有更多>>>汽车检测技术论文

传感器与检测技术属于自动化专业、电气工程及其自动化专业及过程装备与控制专业的技术基础课程,下面我给大家分享一些检测与传感技术论文,大家快来跟我一起欣赏吧。

传感器与检测技术课程教学探索

摘 要:传感器与检测技术属于自动化专业、电气工程及其自动化专业及过程装备与控制专业的技术基础课程,对学生综合运用所专业学知识有着关键的作用,文中针对课程的特点及现存的问题,对该课程的教学内容调整与 教学 方法 改进进行了有益的探讨,以期获得更好的教学质量与效果。

关键词:传感器与检测技术;教学改革;教学方法

中图分类号:G71 文献标识码:A

文章 编号:1009-0118(2012)05-0132-02

传感器与检测技术是自动化专业、电气工程及其自动化专业及过程装备与控制专业的技术基础课程,主要研究自动检测系统中的信息提取、信息转换及信息处理的理论与技术为主要内容的一门应用技术课程。传感技术是自动检测系统,更是控制系统的前哨,它广泛的应用于各个领域,在在促进生产发展和现代科技进步方面发挥着重要作用。学生学好这门课程不仅能为后续课程打下好的基础,也对学生综合运用所专业学知识有着关键的作用,自从2005年课程教学大纲调整以后,在教学中出现了一些新的问题,原有的传统教学模式很难获得良好的教学质量与效果。

一、课程教学现存的问题

自2005年起我校重新制定了自动化专业的教学大纲,其中将传感器与检测技术由考试课调整为考查课,并将课时由64学时更改为32课时,通过几年的 教学 总结 出该课程在教学中存在的一些困难:

(一)教学内容多而散

课程内容多且散,涉及知识面广,有物理学,化学,电子学,力学等等,属于多学科渗透的一门课程,学生学习有难度,特别是对于一些基础不太好的同学更是有困难。

(二)典型应用性

传感器与检测技术属于典型的应用课程,要学习各种传感器的原理,并掌握它的使用,在此基础上掌握搭建检测系统的方法,单靠理论的学习必定是有差距的。而实验课时不充裕,实验条件也有限。

(三)学时越来越少

学校目前对学生的定位是“培养优秀的工程应用型人才”,为了加大实践环节的因此对课程设置与课时作了调整,本课程课时被缩减至32课时。

(四)学生的学习主动性差

由于本课程被定为考查课,所以有相当一部份同学从 学习态度 上不太重视,没有投入必要的精力和时间,学习主动性差,直接影响教学效果。

二、教学内容与教学方法的探索

(一)教学内容的调整

目前大部分的传感器与检测技术的教材多侧重于传感器的工作原理、测量线路及信息处理等方面,而对具体应用涉及较少,针对课程的内容多课时少的情况,教学时无法做到面面俱到,教学内容必须做适当调整。根据学校对工科本科生工程应用型人才的定位,教学内容的调整遵循以下原则:

1、避免繁琐的理论推导过程,以避繁就简的方式向学生讲解传感器的工作原理。例如:用幻灯片演示使用酒精灯分别燃烧热电偶的两端,在两端存在温差的时候两电极间即出现电势差,无温差时电势差消失,通过这个实例讲解电势差之所以存在的原因,可以配以大家能够理解的简单的公式推导,而不把重心放在构成热电偶的温差电动势和接触电动势形成的公式推导上。

2、重点讲述传感器的实物应用。增加实际案例是学生能够对传感器的应用有更感性的认识。

3、适当补充传感器与系统互联的方法。在先期几种传感器的应用中加入传感器接入控制器的方式介绍,使其思考所学课程之间的关联,对所学专业课程之间的联系能更加深入的认识,建立起系统的概念。

(二)教学方法的改革

为了克服课程教学中客观存在的困难,获得良好的教学效果,在课堂教学使用多种教学方法和手段,力求将教学内容讲解得更加生动、具体。

1、采用多媒体技术,使用现代化的教学手段来提升教学效果和教学质量

采用多媒体课件教学,一方面可以省去教师用于黑板板书的大量时间,克服课时减少的问题;另一方面,以动画的形式生动形象的演示传感器的工作原理,展示所学传感器的各种照片、复杂检测系统的原理图或线路图,使学生能够直观地认识传感器,更容易理解传感器的工作原理和应用。例如,学习光栅传感器时,使用传统的教学手段,很难使同学们理解莫尔条文的形成及其移动过程,使用对媒体课件就可以以动画的形式使同学们直观的明暗相间的莫尔条纹是什么样子,还可以以不同的速度使指示光栅在标尺光栅上进行移动,清晰的看出条纹移动的方向与光栅夹角及指示光栅移动方向的关系。学习增量式光电编码器时,很多同学很难理解编码器的辨向问题,通过使用幻灯片展示编码器的内部结构,直接了解光栏板上刻缝、码盘及光电元件的位置关系后,同学们就能更容易的理解辨向码道、增量码道与零位码道形成脉冲的相位关系,佐以简单的辨向电路就可以使同学们更高效的学习该传感器的工作原理及应用方法。

总而言之,利用多媒体技术使学生能够获取更多的信息,增强学习的趣味性和生动性。

2、重视绪论,提升学生的学习主动性

很多教材的绪论写的比较简略,但我个人认为这不代表它不重要,特别是面对学生主观上不重视课程的情况下,更要下大力气上好绪论这第一次课,吸引学生的注意力,激发学习兴趣,使学生认识到这门课程的实用价值。通过幻灯片演示传感器与检测技术在国民经济中的地位和作用,使同学们了解到小到日常生活,大到航空航天、海洋预测等方面都有着传感器与检测技术的应用,更根据各种行业背景中需要检测的物理量,自动控制理论在实现过程中传感器与检测技术的关键作用,使学生认识该课程的重要性。另一方面,我校长年开展本科生科研实训项目,在开设本课程时已有部分同学成功申请实训课题,一般本专业的同学还是围绕专业应用领域申请课题,其中大部分会涉及传感器与检测技术的内容,所以也就他们正在进行的课题中使用传感器解决的具体问题进行讨论,更加直接的体会到本课程的关键作用,从而提升学生学习的兴趣,增强主动性,克服考查课为本课程教学带来的部分阴影。

3、加大案例教学比重、侧重应用

根据培养工程应用型人才的目标,本课程教学的首要目的是使学生能够合理选择传感器,对传感器技术问题有一定的分析和处理能力,知晓传感器的工程设计方法和实验研究方法。所以在教学中注意分析各类传感器的区别与联系,利用大量的具体案例分析传感器的应用特点。

例如,教材中在介绍电阻应变式传感器是,主要是从传感器的结构、工作原理及测量电路几个方面进行分析介绍的,缺乏实际应用案例。在教学中用幻灯片展示不同应用的实物图,譬如轮辐式的地中衡的称重传感器,日常生活中常见的悬臂梁式的电子秤、人体称、扭力扳手等。用生动的动画显示不同应用下的传感器的反应,例如,进行常用传感器热电偶的学习时,展示各种类型热电偶的实物照片,补充热电偶安装的方式,以换热站控制系统为案例,分析热电偶在温度测量上的应用,重点讲解传感器的输出信号及与控制系统互连问题。在介绍光电池传感器时补充用于控制的干手器、用于检测的光电式数字转速表及照度表的应用案例,通过案例是同学们对传感器应用的认识更加深入。

4、利用学校的科研实训提升学生的学习兴趣、加强学生的实践能力

我校学生自二年级起可以开始申请科研实训项目,指导老师指导,学生负责,本课程在学生三年级第一学期开设,在此之前已有部分同学参加了科研实训项目,在这些项目中,譬如智能车项目、数据采集系统实现等实训项目中都包含传感器与检测技术的应用,上课前教师了解这些项目,就可以就实际问题提出问题,让学生带着问题来学习,提升学习的兴趣。另外可以在学习的同时启发同学们集思广益,与实验中心老师联系,联合二年级同学进行传感器的设计制作,或者进入专业实验室进行传感器应用方面的实训实验,鼓励同学申报的科研实训项目,提高学生的实践能力。

三、结束语

通过几年的教学与总结,对教学内容、教学方法进行了分析研究,作了适当的改革。调整的教学内容重点更突出,侧重应用,补充了丰富的案例,激发了学生的学习兴趣,多媒体的教学方法增强了教学的生动性,与科研实训的相结合,对课堂教学进行拓展,加强了学习的主动性,提升了实践能力。从近几年的网上评教结果来看,所做的教学调整与改革受学生的欢迎和好评,取得了较好的教学效果。

参考文献:

[1]袁向荣.“传感器与检测技术”课程教学方法探索与实践[J].中国电力 教育 ,2010,(21):85-86.

[2]陈静.感器与检测技术教学改革探索[J].现代教育装备,2011,(15):94-95.

[3]周祥才,孟飞.检测技术课程教学改革研究[J].常州工学院学报,2010,(12):91-92.

[4]张齐,华亮,吴晓.“传感器与检测技术”课程教学改革研究[J].中国教育技术装备,2009,(27):42-43.

点击下页还有更多>>>检测与传感技术论文

人脸识别与人脸检测毕业论文

计算机软件毕业论文的题目都好写啊

网络、网站,或管理系统都可以的

==你是本科还是硕士啊论文的话应该主要是算法的研究和改进吧……问题比如:你采用了哪种人脸识别算法你对这种算法的改进在哪里(你不只要说明改进在哪里可能还需要做一些实验收集下数据来对比说明算法在改进后对性能有了提升)新算法比其他算法好在哪里(还是通过实验收集数据对比一下)分析下算法的复杂度(时间复杂度和空间复杂度可能都会要求毕竟图像分析很占空间)然后是怎样进行优化的实验采用的样本是哪些(我们当时用的UCIrvineMachineLearningRepository下面会有CMUFaceImages大家一般都用这个库来作为样本)怎样对实验结果进行量化比较的(标准是什么)如果是模式识别的话还可能关心怎样选的特征值和特征空间(计算量大的话是怎样减少计算量的)训练样本采用的什么算法实验的识别率是多少算法的性能是不是稳定……==我想到的都是本科的问题如果是研究生的话可能还会问的更难

1 KM-1 键混器的设计 1 Sw3204V监控器的设计 1 基于射频遥控型(单片机)交通灯的设计1 Sw802V视频切换器的设计 1 无线数控多相位灯从机的设计1 基于RS232遥控型交通灯的设计1 Sw802A音频切换器的设计1 Sw6408V监控器的设计 1 KM-3键混器的设计1 无线数控多相位灯主机的设计1 SW162V数字视频切换器的设计1 基于RS232监控切换器1 SW401V 数字视频切换器的设计1 基于单片机的多路数据采集系统1 RS485转RS232的模块设计1 基于LCD显示的波形发生器的设计1 4-20mA转RS-485模块的设计 1 基于RS232流量计的设计 1 基于PTR2000的交通灯控制器主机的设计1 基于RS485量水仪的设计1 压力采集控制器的设计 1 数字量转4-20mA模拟量输出的模块设计1 正弦波形发生器的设计1 基于PTR2000的交通灯控制器从机的设计1 基于RS485视频切换器的设计1 LCD车速里程表电路设计1 LED车速里程表电路设计1 MSK通信系统的仿真设计1 员工信息管理系统 1 计算机文化基础考试系统的设计和开发1 人事工资管理系统1 员工信息管理系统设计1 超市进销存管理系统的VB实现1 基于单片机的多波形发生器的应用1 基于单片机电动自行车控制器设计1 个人理财管理系统1 基于CAN总线火灾监控系统的研究1 基于DSP平台的FIR滤波器设计1 于Matlab的FIR数字滤波器设计与仿真1 基于TMS320VC5402-DSP的最小系统硬件设计1 基于单片机的热水控制器 1 基于单片机的路灯控制系统的设计1 于单片机远程控制家用电器系统的设计1 基于液晶显示的乘法口诀测试仪的设计1 实验室设备管理系统毕业设计开题报告1 用AT89C51做 洗衣机全自动控制.doc1 数显频率计的设计.doc1 数控车间温度湿度控制系统设计.doc1 三角波斜率测试仪设计.doc1 人脸几何特征提取1 全自动洗衣机的控制程序设计.doc1 乞丐论文.doc1 教学楼毕业设计.doc1 建立海上风电场的技术要求分析与探讨.doc1 基于凌阳61A的数字式温湿度检测仪.doc1 基于几何匹配和分合算法的人脸识别.doc1 基于单片机数字钟的设计.doc1 基于单片机数据通用采集器的设计.doc1 基于单片机数据采集器.doc1 基于单片机的自动报警器的设计.doc1 基于单片机的终端设计.doc1 基于单片机的路灯控制系统控制系统的设计.doc1 基于单片机的交通灯的设计.doc1 基于单片机的简易计算器的设计.doc1 基于单片机的家用安保系统的设计.doc1 基于VHDL的数字频率计.doc1 基于SystemView的OFDM系统仿真设计.doc1 基于SystemView的OFDM系统仿真设计 基于PLC的烧结配料控制系统设计.doc1 基于MSP430的温度检测系统设计 基于MATLAB工具箱的数字滤波器设计.doc1 基于MATLAB的扩频通信系统仿真研究.doc1 基于GSM短信息通信方式的路灯无线监控系统.doc1 基于FPGA的信号源设计.doc1 基于EPP协议的AVR与PC并行通信系统的设计 单片机交通灯.doc1 单片机多点温度巡回检测系统的设计.doc1 单片机的温湿度检测系统 单路口交通信号PLC控制系统的设计.doc1 城市路口多相位自寻优交通信号控制设计.doc1 陈洁(螺旋瓶盖的设计).doc1 八路竞赛抢答器.doc1 matlab信号与系统.doc1 GSM系统的研究与SystemView仿真.doc1 蒯申红智能语音报站系统设计 MT8888在家庭安全电话报警系统中的应用设计1 基于FPGA的频率与功率因数在线测量1 基于FPGA的误码测试仪如果需要定做的话系 Q 273546756

图像检测技术分析毕业论文

数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

基于图像处理的轴类零件尺寸检测技术研究及其精度分析黄杰贤 【摘要】: 据不完全统计,我国年产轴类零件的总量在10亿件左右,需要测量尺寸的约占70%。就目前国内许多制造业对零件的尺寸检测而言,其检测工作还停留在单纯人工视觉或人工视觉与机械量具、光学仪器相结合对产品进行人工抽检的阶段[1]。人工检测往往存在:效率低、可靠性差、检测精度不高、成本高、容易出错等弊端。它已经不适合现代工业企业发展的要求。采用基于图像检测的尺寸检测方法,不仅可以避免人工检测的缺点,而且能实现对加工零件在线、快速、准确和非接触的自动化检测,而目前基于CCD对轴类零件检测的研究工作中,还存在着检测精度不高。检测数据不够稳定等问题。 本研究课题结合学科发展趋势和实际应用需求,在参考大量文献和剖析工业领域的CCD数据采集系统的基础上,着眼于研究基于图象处理的轴类零件尺寸高精度检测技术,本文主要进行以下几个方面的工作: (1)采用Prewitt算子完成对图像边缘初步定位,在此基础上,通过对图像边缘灰度变化的离散值作最小二乘曲线拟合,并对该拟合曲线求极值,得到边缘的精确位置 (2)为了减少干扰对测量值的影响,采用误差数据处理方法筛选出有一定精度的检测数据,然后对这些检测数据求平均值,获得稳定的检测数据。 (3)针对线阵CCD在高精度检测的过程中,因镜头畸变等原因产生误差的问题,提出了用已知的多尺寸轴类零件为参照物,建立误差畸变校正模型,对检测值进行畸变校正,实现高精度检测 【关键词】:线阵CCD 图像处理 最小二乘曲线拟合 误差理论 畸变校正 【学位授予单位】:广东工业大学【学位级别】:硕士【学位授予年份】:2008【分类号】:【DOI】:CNKI:CDMD:【目录】: 摘要4-5Abstract5-6目录6-9Content9-12第一章 绪论 课题研究的意义 测量技术的重要性 国内测量技术的现状及其弊端 本课题研究的意义 基于图像处理的轴类零件尺寸检测技术的研究现状及其发展趋势 国内情况 国外情况 国内外基于CCD尺寸检测技术发展的趋势 论文的主要研究内容 本章小结15-16第二章 图像测量系统硬件设计 系统组成 精密机械位移扫描控制系统 线阵CCD摄像机 光学照明系统 图像采集系统 装夹工作台的设计 计算机及处理软件 本章小结21-22第三章 基于图象处理的轴类零件边缘的精确定位 图像处理原理 数字图像处理的目的 数字图像处理主要研究的内容 数字图像处理的优点 轴类零件边缘的边缘检测 零件边缘的精确定位 最小二乘曲线拟合的概念 用多项式进行最小二乘曲线拟合 基于曲线拟合的边缘精确定位 本章小节33-34第四章 误差数据处理 一维正态分布 偶然误差的规律性 偶然误差 偶然误差的分析 边缘检测数据误差处理 本章小结41-42第五章 畸变校正 畸变的产生 畸变校正的基本原理 畸变校正的具体方法 检测参照物图像的边缘 畸变补偿函数的建立 检验畸变校正函数 检验实验结果 本章小节48-49第六章 软件设计 软件设计 界面设计与功能说明 本章小结51-52第七章 尺寸检测实验结果与数据分析 多阶梯轴测量结果 测量数据 测量结果分析 误差与精度分析 本章小结55-56总结与展望56-58参考文献58-61攻读学位期间发表的论文61-62致谢62 下载全文 更多同类文献 CAJ格式全文 (如何获取全文? 欢迎:购买知网卡、在线咨询) CAJViewer阅读器支持CAJ,PDF文件格式

相关百科

热门百科

首页
发表服务