数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.
B题一 洁具流水时间设计 我国是个淡水资源相当贫乏的国家,人均可利用淡水量不到世界平均数的四分之一。特别是近几年来,由于环境污染导致降水量减少,不少省市出现大面积的干旱。许多城市为了节能,纷纷采取提高水价、电价的方式来抑制能源消费。而另一方面,据有关资料报道,我国目前生产的各类洁具消耗的能源(主要是指用水量)比其它发达国家的同类产品要高出60%以上。 某洁具生产厂家打算开发一种男性用的全自动洁具,它的单位时间内流水量为常数v,为达到节能的目的,现有以下两个控制放水时间的设计方案供采用。 方案一:使用者开始使用洁具时,受感应洁具以均匀水流开始放水,持续时间为T,然后自动停止放水。若使用时间不超过T-5秒,则只放水一次,否则,为保持清洁,在使用者离开后再放水一次,持续时间为10秒。 方案二:使用者开始使用洁具时,受感应洁具以均匀水流开始放水,持续时间为T,然后自动停止放水。若使用时间不超过T-5秒,则只放水一次,否则,为保持清洁,到2T时刻再开始第二次放水,持续时间也为T。但若使用时间超过2T-5秒,则到4T时刻再开始第三次放水,持续时间也是T……在设计时,为了使洁具的寿命尽可能延长,一般希望对每位使用者放水次数不超过2次。 该厂家随机调查了100人次男性从开始使用到离开洁具为止的时间(单位:秒)见下表: 时间(秒) 12 13 14 15 16 17 18 人次 1 5 12 60 13 6 3 (1)请你根据以上数据,比较这两种设计方案从节约能源的角度来看,哪一种更好?并为该厂家提供设计参数T(秒)的最优值,使这种洁具在相应设计方案下能达到最大限度节约水、电的目的; (2)从既能保持清洁又能节约能源出发,你是否能提出更好的设计方案,请通过建立数学模型与前面的方案进行比较。 其实,家庭中的其他生活用水一样可以用来冲洗马桶,比方说经过最后一次漂洗,衣服洗干净了,从洗衣机排出的水看上去还比较干净,直接流进下水管还真有点可惜。还有像洗完脸、洗过菜的水,如果能再次利用就好了。业余发明家吴汉平研制了一套生活用水回用装置,获得了国家专利。他将厨房的洗涤槽、卫生间的面盆和坐便器水箱连接到一个储水箱上。洗涤槽、面盆流出来的比较干净的水进入储水箱,供冲厕使用。 现在我来教你省水小秘方1.要用省水形马桶,般审型马桶加装2段式冲水配件。2.水箱底下浮饼拆下 即成无段式控制出水。 3.小便池自动冲水器冲水时间调短。 4.用米水、洗衣水、洗碗水及洗澡水等清水来浇花、洗车,及擦洗地板。5.清理地毯法由湿式或蒸汽式改成乾燥粉沫式。6.将除湿机收集的水,及纯水机、蒸馏水机等净水设备的废水回收再利用。 现在我说完了6项省水秘方,你是否想到比我更好的省水方法呢?你是否在省水呢?我想你应该在省水吧! 长期以来,人们普遍认为水是“取之不尽,用之不竭”的,不知道爱惜,而浪费挥霍。事实上,水资源日益紧缺,而我市的城市供水工作更是在严重缺水的边缘艰难度日,自来水来之不易。 人不可一日无水,水是生命之源,珍惜水就是珍惜自己的生命!在此,我们介绍一些日常生活中的节水常识: 刷牙 浪费:不间断放水,30秒,用水约6升。 节水:口杯接水,3口杯,用水0.6升。三口之家每日两次,每月可节水486升。 洗衣 浪费:洗衣机不间断地边注水边冲洗、排水的洗衣方式,每次需用水约165升。 节水:洗衣机采用洗涤—脱水—注水—脱水—注水—脱水方式洗涤,每次用水110升,每次可节水55升,每月洗4次,可节水220升。 另外,衣物集中洗涤,可减少洗衣次数;小件、少量衣物提倡手洗,可节约大量水;洗涤剂过量投放将浪费大量水。 洗浴 浪费:过长时间不间断放水冲淋,会浪费大量水。 盆浴时放水过多,以至溢出,或盆浴时一边打开水塞,一边注水,浪费将十分惊人。 节水:间断放水淋浴(比如脚踏式、感应式等)。搓洗时应及时关水。避免过长时间冲淋。 盆浴后的水可用于洗衣、洗车、冲洗厕所、拖地等。 炊事 浪费:水龙头大开,长时间冲洗。烧开水时间过长,水蒸汽大量蒸发。用自来水冲淋蔬菜、水果。 节水:炊具食具上的油污,先用纸擦除,再洗涤,可节水。 控制水龙头流量,改不间断冲洗为间断冲洗。 洗车 浪费:用水管冲洗,20分钟,用水约240升。 节水:用水桶盛水洗车,需3桶水,用水约30升。使用洗涤水、洗衣水洗车。使用节水喷雾水枪冲洗。利用机械自动洗车,洗车水处理循环使用。 节水小方法: 节约用水,利在当代,功在千秋,这是经过讨论同学们一起研究出一些生活节水小方法: 一、淘米水洗菜,再用清水清洗,不仅节约了水,还有效地清除了蔬菜上的残存农药; 二、洗衣水洗拖帕、帚地板、再冲厕所。第二道清洗衣物的洗衣水擦门窗及家具、洗鞋袜等; 三、大、小便后冲洗厕所,尽量不开大水管冲洗,而充分利用使用过的“脏水”; 四、夏天给室内外地面洒水降温,尽量不用清水,而用洗衣之后的洗衣水; 五、自行车、家用小轿车清洁时,不用水冲,改用湿布擦,太脏的地方,也宜用洗衣物过后的余水冲洗; 六、冲厕所:如果您使用节水型设备,每次可节水4一5kg; 七、家庭浇花,宜用淘米水、茶水、洗衣水等; 八、家庭洗涤手巾、小对象、瓜果等少量用水。宜用盆子盛水而不宜开水龙头放水冲洗; 九、洗地板:用拖把擦洗,可比用水龙头冲洗每次每户可节水200kg以上; 十、水龙头使用时间长有漏水现象,可用装青霉素的小药瓶的橡胶盖剪一个与原来一样的垫圈放进去,可以保证滴水不漏; 十一、将卫生间里水箱的浮球向下调整2厘米,每次冲洗可节省水近3kg;按家庭每天使用四次算,一年可节药水4380kg。 十二、洗菜:一盆一盆地洗,不要开着水龙头冲,一餐饭可节省50kg; 十三、淋浴:如果您关掉龙头擦香皂,洗一次澡可节水60kg; 十四、手洗衣服:如果用洗衣盆洗、清衣服则每次洗、清衣比开着水龙头节省水200kg; 十五、用洗衣机洗衣服:建议您满桶再洗,若分开两次洗,则多耗水120kg; 十六、洗车:用抹布擦洗比用水龙头冲洗,至少每次可节水400kg;
论文首页的三要素:1.标题:基于xx模型的xx问题研究2.摘要:针对每一个问题分别阐述问题、方法、结果3.关键词:…、…、建模论文题目形式一般采用以下两种:Ø 基于xx模型/方法(主要的、特色的)Ø 赛题所给题目/研究的问题
无忧在线有很多数学建模论文,你去搜一下就行
取数学建模论文题目取法如下:
首先看论文首页的三要素:
1.标题:基于xx模型的xx问题研究
2.摘要:针对每一个问题分别阐述问题、方法、结果
3.关键词
其次看论文题目基本要求:
简短精练、高度概括、准确得体、恰如其分;既要准确表达论文内容,恰当反映所研究的范围和深度;又要尽可能概括、精练,力求题目的字数较少。
最后论文题目的字数一般不要超过20个字;当希望题目字数少与恰当反映论文内容发生冲突,可多用几个字表达准确。
基于旅行商规划模型(方法)的碎纸片拼接复原问题(问题)研究
基于利润最大化的奥运商业网点分布微观经济模型
基于力学分析的系泊系统设计
奥运场馆中临时商业网点设计中的数学模型化方法
CT 系统参数标定及反投影重建成像
拓展
参加数学建模比赛的意义
有利于培关学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整5论文,于大多数学生决说,款是第一次,已可么想高学生如何的数学知识用到实呀生活中的能力,提高学生合理利用网络道淘资料物能力,超是高学生的新意识和团队协作能力等,很名参委学生事后感收到团以合作能力对于建模比赛很重要,这对街后参加工作也会有很好的帮助。
2有利干促迸高职数学课程的改革
大多数学校的高职数学课还是采用软师在上面讲,学生在下面听的方法,殊不和对于高职生历言,他们不但听不懂,而目也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,吉师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。
1、小学低年级数学游戏教学方法的案例研究。
2、以学习为中心的小学数学教学过程研究。
3、激发小学生数学学习兴趣的实践研究。
4、农村小学与初中数学教学衔接问题的研究。
5、小学低年级学生数学学习兴趣的培养。
6、游戏化教学在小学数学教学中的应用与研究。
7、激发兴趣对小学生数学探究能力影响的研究。
8、小学数学教学中信息技术应用策略研究。
9、《几何画板》在小学平面图形上的教学应用研究。
注意。
1、选题能决定论文的阅读价值。导师在某一方面的知识面是很广的,研究也是有深度的,所以如果对新的有价值的选题肯定特别有兴趣。
2、选题能够规划文章的方向、角度和规模,弥补知识储备的不足。对于所搜集的资料进行整理,加固积累,加深理解,对于分散的思想进行选择、鉴别和几种,最后对文章进行整体轮廓的勾勒。
3、合适的选题可以保证写作的顺利进行,提高研究能力。选题是论文实践的第一步,需要积极思考,适当的选题能够使论文写作过程进行得比较顺利。
4、考虑写作过程。在确定选题的时候虽然有些新颖的观点固然可以吸引到是的眼球,但是有的学生提出的新观点水平太高,可是学生的知识储备不够,语言表达得也不精练、准确、专业,结果弄巧成拙。也有的学生提出的观点自己在论证时就感觉到不是很可信。
论文首页的三要素:1.标题:基于xx模型的xx问题研究2.摘要:针对每一个问题分别阐述问题、方法、结果3.关键词:…、…、建模论文题目形式一般采用以下两种:Ø 基于xx模型/方法(主要的、特色的)Ø 赛题所给题目/研究的问题
数学建模论文题 目 生活中的数学建模问题学 院 专业班级 学生姓名 成 绩 年 月 日摘要 钢铁、煤炭、水电等生活物资从若干供应点运送到一些需求点,怎样安排输送 方案使利润最大?各种类型的货物装箱,由于受体积、重量等的限制,如何相互搭配装载,使获利最高?若干项任务分给一些候选人来完成,因为每个人的专长不同,他们完成任务的效益就不一样,如何分派使获得的总效益最大?本文将通过以下的例子讨论用数学建模解决这些问题的方法。关键词:获利最多,0-1变量一. 自来水输送问题问题 某市有甲、乙、丙、丁四个居民区,自来水由A,B,C三个水库供应。四个区每天必须得到保证的基本生活用水量分别为80,50,10,20千吨,但由于水源紧张,三个水库每天 只能分别供应60,70,40千吨自来水。由于地理位置的差别,自来水公司从各水库向各区送水所需付出的引水管理费用不同(见下表),其他管理费用都是400元每千吨。根据公司规定,各区用户按照统一标准950元每千吨收费。此外,四个区都向公司申请了额外用水量,分别为10,20,30,50千吨。该公司应如何分配供水量,才能获利更多?引水管理费(元每千吨) 甲 乙 丙 丁A 160 130 220 170B 140 130 190 150C 190 200 230 ----问题分析 分配供水两就是安排从三个水库向四个区供水的方案,目标是获利最多,而从题目给出的数据看,A,B,C三个水可的供水量170千吨,不够四个区的基本生活用水量与额外用水量之和270千吨,因而总能全部卖出并获利,于是自来水公司每天的总收入是950*(60+70+40)=161500元,与送水方案无关。同样,公司每天的其他管理费为400*(60+70+40)=68000元也与送水方案无关。所以要是利润最大,只须是引水管理费最小即可。另外,送水方案自然要受三个水可的供水量和四个取得需求量的限制。模型建立决策变量为A、B、C、三个水库(i=1,2,3)分别向甲、乙、丙、丁四个小区(j=1,2,3,4)的供水量。设水库i向j的日供水量为xij。由于C水库鱼定去之间没有输水管道,即X34=0,因此只有11个决策变量。由上分析,问题的目标可以从获利最多转化为引水管理费最少,于是有min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;约束条件有两类:一类是水库的供应量限制,另一类是各区的需求量限制。由于供水量总能卖出并获利,水库的供应量限制可以表示为x11+x12+x13+x14=60;x21+x22+x23+x24=70;x31+x32+x33=40;考虑到歌曲的基本用水量月外用水量,需求量限制可以表示为 80<=x21+x11+x31;50<=x12+x22+x32;10<=x13+x23+x33;20<=x14+x24;x21+x11+x31<=90;x12+x22+x32<=70;x13+x23+x33<=40;x14+x24<=70;模型求解将以上式子,输入LINGO求解,得到如下输出:Optimal solution found at step: 10 Objective value: Value Reduced CostX11 送水方案为:A水库向乙区供水60千吨,B水库甲区、丁区分别供水50,20千吨,C水库向甲、丙分别供水30,10千吨。引水管理费为25800元,利润为161500-68000-25800=67700元。二. 货机装运问题 某架火机油三个货舱:前舱、中舱、后舱。三个货舱所能装载的货物最大量的体积都有限,如下表所示,并且,为了保持飞机的平衡,三个货舱中世纪装在货物的重量必须与其最大容许重量成比例。 前舱 中舱 后舱 重量限制(吨) 15 26 12 体积限制(立方米) 8000 9000 6000 现有四类货物供该伙计本次飞行装运,其有关信息如下表所示,最后一列之装运后所获得的利润。应如何安排装运,使货机本次飞行获利最大? 重量(吨) 空间 利润(元每千吨) 货物1 20 480 3500 货物2 18 650 4000 货物3 35 600 3500 货物4 15 390 3000模型假设 问题中没有对货物装运提出其他要求,我们可以作如下假设:(1) 每种货物可以分割到任意小;(2) 每种货物可以在一个或多个货舱中任意分布;(3) 多种货物可以混装,并保证不留空隙。模型建立决策变量:用Xij表示第i种货物装入第j个货舱的重量(吨),货舱j=1,2,3分别表示前舱、中舱、后舱。决策目标是最大化利润,即max=3500*(x11+x12+x13)+4000*(x21+x22+x23)+3500*(x31+x32+x33)+3000*(x41+x42+x43);约束条件包括以下4个方面: (1)供装载的四种货物的总重量约束,即x11+x12+x13<=20;x21+x22+x23<=18;x31+x32+x33<=35;x41+x42+x43<=15; (2)三个货舱的重量限制,即x11+x21+x31+x41<=15;x12+x22+x32+x42<=26;x13+x23+x33+x43<=12;(3)三个货舱的空间限制,即480*x11+650*x21+600*x31+390*x41<=8000;480*x12+650*x22+600*x32+390*x42<=9000;480*x13+650*x23+600*x33+390*x43<=6000; (4)三个货舱装入重量的平衡约束,即(x11+x21+x31+x41)/15=(x12+x22+x32+x42)/26;(x12+x22+x32+x42)/26=(x13+x23+x33+x43)/12; 模型求解将以上模型输入LINGO求解,可以得到:Optimal solution found at step: 10 Objective value: Variable Value Reduced Cost X11 X12 X13 X21 X22 X23 X31 X32 X33 X41 X42 X43 实际上,不妨将所得最优解四舍五入,结果为货物1装入前舱1吨、装入中舱7吨、装入后舱2吨;货物2装入前舱12吨、后舱6吨;货物3装入后舱2吨;货物4装入中舱15吨。最大利润为155340元。三. 混合泳接力队的选拔问题 某班准备从5名游泳队员中选择4人组成接力队,参加学校的4*100m混合泳接力比赛。5名队员4中用字的百米平均成绩如下表所示,问应如何让选拔队员组成接力队? 甲 乙 丙 丁 戊蝶泳 1`06 57``2 1`18 1`10 1`07 仰泳 1`15 1`06 1`07 1`14 1`11 蛙泳 1`27 1`06 1`24 1`09 1`23 自由泳 58``6 53`` 59``4 57``2 1`02问题分析 从5名队员中选出4人组成接力队,没人一种泳姿,且4人的用字各不相同,是接力队的成绩最好。容易想到的一个办法是穷举法,组成接力对的方案共有5!=120中,一一计算并作比较,即可找出最优方案。显然这不是解决这类问题的好办法,随着问题规模的变大,穷举法的计算量将是无法接受的。可以用0-1变量表示以讴歌队员是非入选接力队,从而建立这个问题的0-1规划模型,借助县城的数学软件求解。模型的建立与求解设甲乙丙丁戊分别为队员i=1,2,3,4,5;即蝶泳、仰泳、蛙泳、自由泳分别为泳姿j=1,2,3,4.记队员i的第j中用字的百米最好成绩为Cij(s),既有Cij I=1 I=2 I=3 I=4 I=5 J=1 66 78 70 67 J=2 75 66 67 74 71 J=3 87 66 84 69 83 J=4 58 53 59 62 引入0-1变量Xij,若选择队员i参加泳姿j的比赛,记Xij-=1,否则记Xij=0.根据组成接力队的要求,Xij应该满足两个约束条件:第一, 没人最多只能入选4中用字之一,记对于i=1,2,3,4,5,应有∑Xij《=1;第二, 每种泳姿必须有一人而且只能有1人入选,记对于甲,2,3,4,应有∑Xij=1;当队员i入选泳姿j是,CijXij表示他的成绩,否则CijXij=0。于是接力队的成绩可表示为∑∑CijXij,这就是该题的目标函数。将题目所给的数据带入这一模型,并输入LINGO:min=66*x11+75*x12+87*x13+*x14+*x21+66*x22+66*x23+53*x24+78*x31+67*x32+84*x33+*x34+70*x41+74*x42+69*x43+*x44+67*x51+71*x52+83*x53+62*x54;SUBJECT TOx11+x12+x13+x14<=1;x21+x22+x23+x24<=1;x31+x32+x33+x34<=1;x41+x42+x43+x44<=1;x11+x21+x31+x41+x51=1;x12+x22+x32+x42+x52=1;x13+x23+x33+x43+X53=1;x14+x24+x34+x44+X54=1;@bin(X11);@bin(X12);@bin(X13);@bin(X14);@bin(X21);@bin(X22);@bin(X23);@bin(X24);@bin(X31);@bin(X32);@bin(X33);@bin(X34);@bin(X41);@bin(X42);@bin(X43);@bin(X44);@bin(X51);@bin(X52);@bin(X53);@bin(X54); 得到如下结果 Optimal solution found at step: 12 Objective value: Branch count: 0 Variable Value Reduced Cost X11 X12 X13 X21 X22 X23 X24 X31 X32 X33 X34 X41 X42 X43 X44 X51 X52 X53 X54
数学建模论文题 目 生活中的数学建模问题学 院 专业班级 学生姓名 成 绩 年 月 日摘要 钢铁、煤炭、水电等生活物资从若干供应点运送到一些需求点,怎样安排输送 方案使利润最大?各种类型的货物装箱,由于受体积、重量等的限制,如何相互搭配装载,使获利最高?若干项任务分给一些候选人来完成,因为每个人的专长不同,他们完成任务的效益就不一样,如何分派使获得的总效益最大?本文将通过以下的例子讨论用数学建模解决这些问题的方法。关键词:获利最多,0-1变量一. 自来水输送问题问题 某市有甲、乙、丙、丁四个居民区,自来水由A,B,C三个水库供应。四个区每天必须得到保证的基本生活用水量分别为80,50,10,20千吨,但由于水源紧张,三个水库每天 只能分别供应60,70,40千吨自来水。由于地理位置的差别,自来水公司从各水库向各区送水所需付出的引水管理费用不同(见下表),其他管理费用都是400元每千吨。根据公司规定,各区用户按照统一标准950元每千吨收费。此外,四个区都向公司申请了额外用水量,分别为10,20,30,50千吨。该公司应如何分配供水量,才能获利更多?引水管理费(元每千吨) 甲 乙 丙 丁A 160 130 220 170B 140 130 190 150C 190 200 230 ----问题分析 分配供水两就是安排从三个水库向四个区供水的方案,目标是获利最多,而从题目给出的数据看,A,B,C三个水可的供水量170千吨,不够四个区的基本生活用水量与额外用水量之和270千吨,因而总能全部卖出并获利,于是自来水公司每天的总收入是950*(60+70+40)=161500元,与送水方案无关。同样,公司每天的其他管理费为400*(60+70+40)=68000元也与送水方案无关。所以要是利润最大,只须是引水管理费最小即可。另外,送水方案自然要受三个水可的供水量和四个取得需求量的限制。模型建立决策变量为A、B、C、三个水库(i=1,2,3)分别向甲、乙、丙、丁四个小区(j=1,2,3,4)的供水量。设水库i向j的日供水量为xij。由于C水库鱼定去之间没有输水管道,即X34=0,因此只有11个决策变量。由上分析,问题的目标可以从获利最多转化为引水管理费最少,于是有min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;约束条件有两类:一类是水库的供应量限制,另一类是各区的需求量限制。由于供水量总能卖出并获利,水库的供应量限制可以表示为x11+x12+x13+x14=60;x21+x22+x23+x24=70;x31+x32+x33=40;考虑到歌曲的基本用水量月外用水量,需求量限制可以表示为 80<=x21+x11+x31;50<=x12+x22+x32;10<=x13+x23+x33;20<=x14+x24;x21+x11+x31<=90;x12+x22+x32<=70;x13+x23+x33<=40;x14+x24<=70;模型求解将以上式子,输入LINGO求解,得到如下输出:Optimal solution found at step: 10 Objective value: Value Reduced CostX11 送水方案为:A水库向乙区供水60千吨,B水库甲区、丁区分别供水50,20千吨,C水库向甲、丙分别供水30,10千吨。引水管理费为25800元,利润为161500-68000-25800=67700元。二. 货机装运问题 某架火机油三个货舱:前舱、中舱、后舱。三个货舱所能装载的货物最大量的体积都有限,如下表所示,并且,为了保持飞机的平衡,三个货舱中世纪装在货物的重量必须与其最大容许重量成比例。 前舱 中舱 后舱 重量限制(吨) 15 26 12 体积限制(立方米) 8000 9000 6000 现有四类货物供该伙计本次飞行装运,其有关信息如下表所示,最后一列之装运后所获得的利润。应如何安排装运,使货机本次飞行获利最大? 重量(吨) 空间 利润(元每千吨) 货物1 20 480 3500 货物2 18 650 4000 货物3 35 600 3500 货物4 15 390 3000模型假设 问题中没有对货物装运提出其他要求,我们可以作如下假设:(1) 每种货物可以分割到任意小;(2) 每种货物可以在一个或多个货舱中任意分布;(3) 多种货物可以混装,并保证不留空隙。模型建立决策变量:用Xij表示第i种货物装入第j个货舱的重量(吨),货舱j=1,2,3分别表示前舱、中舱、后舱。决策目标是最大化利润,即max=3500*(x11+x12+x13)+4000*(x21+x22+x23)+3500*(x31+x32+x33)+3000*(x41+x42+x43);约束条件包括以下4个方面: (1)供装载的四种货物的总重量约束,即x11+x12+x13<=20;x21+x22+x23<=18;x31+x32+x33<=35;x41+x42+x43<=15; (2)三个货舱的重量限制,即x11+x21+x31+x41<=15;x12+x22+x32+x42<=26;x13+x23+x33+x43<=12;(3)三个货舱的空间限制,即480*x11+650*x21+600*x31+390*x41<=8000;480*x12+650*x22+600*x32+390*x42<=9000;480*x13+650*x23+600*x33+390*x43<=6000; (4)三个货舱装入重量的平衡约束,即(x11+x21+x31+x41)/15=(x12+x22+x32+x42)/26;(x12+x22+x32+x42)/26=(x13+x23+x33+x43)/12; 模型求解将以上模型输入LINGO求解,可以得到:Optimal solution found at step: 10 Objective value: Variable Value Reduced Cost X11 X12 X13 X21 X22 X23 X31 X32 X33 X41 X42 X43 实际上,不妨将所得最优解四舍五入,结果为货物1装入前舱1吨、装入中舱7吨、装入后舱2吨;货物2装入前舱12吨、后舱6吨;货物3装入后舱2吨;货物4装入中舱15吨。最大利润为155340元。三. 混合泳接力队的选拔问题 某班准备从5名游泳队员中选择4人组成接力队,参加学校的4*100m混合泳接力比赛。5名队员4中用字的百米平均成绩如下表所示,问应如何让选拔队员组成接力队? 甲 乙 丙 丁 戊蝶泳 1`06 57``2 1`18 1`10 1`07 仰泳 1`15 1`06 1`07 1`14 1`11 蛙泳 1`27 1`06 1`24 1`09 1`23 自由泳 58``6 53`` 59``4 57``2 1`02问题分析 从5名队员中选出4人组成接力队,没人一种泳姿,且4人的用字各不相同,是接力队的成绩最好。容易想到的一个办法是穷举法,组成接力对的方案共有5!=120中,一一计算并作比较,即可找出最优方案。显然这不是解决这类问题的好办法,随着问题规模的变大,穷举法的计算量将是无法接受的。可以用0-1变量表示以讴歌队员是非入选接力队,从而建立这个问题的0-1规划模型,借助县城的数学软件求解。模型的建立与求解设甲乙丙丁戊分别为队员i=1,2,3,4,5;即蝶泳、仰泳、蛙泳、自由泳分别为泳姿j=1,2,3,4.记队员i的第j中用字的百米最好成绩为Cij(s),既有Cij I=1 I=2 I=3 I=4 I=5 J=1 66 78 70 67 J=2 75 66 67 74 71 J=3 87 66 84 69 83 J=4 58 53 59 62 引入0-1变量Xij,若选择队员i参加泳姿j的比赛,记Xij-=1,否则记Xij=0.根据组成接力队的要求,Xij应该满足两个约束条件:第一, 没人最多只能入选4中用字之一,记对于i=1,2,3,4,5,应有∑Xij《=1;第二, 每种泳姿必须有一人而且只能有1人入选,记对于甲,2,3,4,应有∑Xij=1;当队员i入选泳姿j是,CijXij表示他的成绩,否则CijXij=0。于是接力队的成绩可表示为∑∑CijXij,这就是该题的目标函数。将题目所给的数据带入这一模型,并输入LINGO:min=66*x11+75*x12+87*x13+*x14+*x21+66*x22+66*x23+53*x24+78*x31+67*x32+84*x33+*x34+70*x41+74*x42+69*x43+*x44+67*x51+71*x52+83*x53+62*x54;SUBJECT TOx11+x12+x13+x14<=1;x21+x22+x23+x24<=1;x31+x32+x33+x34<=1;x41+x42+x43+x44<=1;x11+x21+x31+x41+x51=1;x12+x22+x32+x42+x52=1;x13+x23+x33+x43+X53=1;x14+x24+x34+x44+X54=1;@bin(X11);@bin(X12);@bin(X13);@bin(X14);@bin(X21);@bin(X22);@bin(X23);@bin(X24);@bin(X31);@bin(X32);@bin(X33);@bin(X34);@bin(X41);@bin(X42);@bin(X43);@bin(X44);@bin(X51);@bin(X52);@bin(X53);@bin(X54); 得到如下结果 Optimal solution found at step: 12 Objective value: Branch count: 0 Variable Value Reduced Cost X11 X12 X13 X21 X22 X23 X24 X31 X32 X33 X34 X41 X42 X43 X44 X51 X52 X53 X54 即当派选甲乙丙丁4人组陈和积累对,分别参加自由泳、蝶泳、仰泳、蛙泳的比赛。参考文献数学模型(第三版) 姜启源著 高等教育出版社
大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
大数据只是一个时代背景,具体内容可以班忙做
学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考:1、大数据对商业模式影响2、大数据下地质项目资金内部控制风险3、医院统计工作模式在大数据时代背景下改进4、大数据时代下线上餐饮变革5、基于大数据小微金融6、大数据时代下对财务管理带来机遇和挑战7、大数据背景下银行外汇业务管理分析8、大数据在互联网金融领域应用9、大数据背景下企业财务管理面临问题解决措施10、大数据公司内部控制构建问题11、大数据征信机构运作模式监管12、基于大数据视角下我国医院财务管理分析13、大数据背景下宏观经济对微观企业行为影响14、大数据时代建筑企业绩效考核和评价体系15、大数据助力普惠金融
数学建模进入中国已经有26年了,并且有了很大的发展。据不完全统计,目前的中国数学建模爱好者以每年有50万人次的增长,26年来中国的数学建模爱好者总计有700余万人,这为数学建模行业的发展打下了坚定地基础。 中国的数学建模行业的发展前景将是什么样?这个话题很多人都提过,但是大多数人对其只是从【数学建模的用途】上来解释的,而非从人的需求层次上来反映——数学建模对未来就业会有什么帮助,对职业生涯发展会有什么帮助。下面将从我本人及数学中国站长马壮老师2年来的全国各地的调查结果、跟各类企业家(包括电商行业、移动互联网行业、数据挖掘分析行业、计算机行业)的交流以及自身做企业的一些经验中,来分析下设数学建行业的发展现状及未来前景。 1、从全国各地的调查结果及对中国未来教育发展的现状分析得知,数学建模目前已经逐渐进入了快速发展阶段,从刚开始只有大学生参与发展到现在小、中、高、大学生共同参与的科技活动。这为未来数学建模行业的发展积累了大量的后备力量,也是未来数学建模行业的希望。 2、从跟各类企业家的交流中得出,数学建模在各个行业中的需求很大,尤其是即将到来的【大数据时代】(其是未来5年会呈现爆发式发展的一个趋势),将为数学建模行业的发展提供难得的机会。从我去年的调查统计中显示,目前全国电商、互联网、移动互联网、市场营销等行业对数学建模人才的需求每年在10万以上,未来5年将会呈现每年以500%的形式发展(因为数学中国将正式联合相关企业对中国数学建模认证人才进行推介,并且联络数学中国老会员进行推荐,从而解决数学建模人才的就业难题)。3、从自己做企业的经验中,切身感受到数学建模人才在企业中的作用,并且定位了几个数学建模人才可以攻略的没有专业限制的职位: (1)相关专业领域的市场营销。很多人看到这个词汇,感觉就怕了,感觉就没底气了,从我自己做企业的经验来说,市场营销中最重要的一个环节是【市场分析+精准化营销】,而非普通人认为的沟通能力(沟通能力固然重要,但是那只是市场营销成功的皮毛,真正的核心是分析),所以这也是数模人的优势所在。寄语:如果你有事业心、有野心,那么你就可以去尝试这个职位,优秀的营销人员需要的是“分析能力”+“洞察力”+“随机应变的能力(可以理解为数模中的现学现卖能力)”=智慧。
1、小学低年级数学游戏教学方法的案例研究。
2、以学习为中心的小学数学教学过程研究。
3、激发小学生数学学习兴趣的实践研究。
4、农村小学与初中数学教学衔接问题的研究。
5、小学低年级学生数学学习兴趣的培养。
6、游戏化教学在小学数学教学中的应用与研究。
7、激发兴趣对小学生数学探究能力影响的研究。
8、小学数学教学中信息技术应用策略研究。
9、《几何画板》在小学平面图形上的教学应用研究。
注意。
1、选题能决定论文的阅读价值。导师在某一方面的知识面是很广的,研究也是有深度的,所以如果对新的有价值的选题肯定特别有兴趣。
2、选题能够规划文章的方向、角度和规模,弥补知识储备的不足。对于所搜集的资料进行整理,加固积累,加深理解,对于分散的思想进行选择、鉴别和几种,最后对文章进行整体轮廓的勾勒。
3、合适的选题可以保证写作的顺利进行,提高研究能力。选题是论文实践的第一步,需要积极思考,适当的选题能够使论文写作过程进行得比较顺利。
4、考虑写作过程。在确定选题的时候虽然有些新颖的观点固然可以吸引到是的眼球,但是有的学生提出的新观点水平太高,可是学生的知识储备不够,语言表达得也不精练、准确、专业,结果弄巧成拙。也有的学生提出的观点自己在论证时就感觉到不是很可信。
论文首页的三要素:1.标题:基于xx模型的xx问题研究2.摘要:针对每一个问题分别阐述问题、方法、结果3.关键词:…、…、建模论文题目形式一般采用以下两种:Ø 基于xx模型/方法(主要的、特色的)Ø 赛题所给题目/研究的问题
先跟你解释一下什么是数学建模数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。给你举个例子:最佳泄洪方案有一条由于河床泥沙淤结,每当上游发生洪水时,就会破堤淹没两岸造成人员和财产的损失。为了减少总的损失,人们争取破堤泄洪方法。图1是该河一案区域的信息示意图,在该区边界有很高的山,使该区域成为封闭的区域。区域内又分为15个小区,每个小区内标了三个三数字,分别表示该小区的海拔高度h(m),面积s(km2)和完全淹没时土地、房屋和财产损失总数k(百万元),我们假设:A, 各个小区有相对高度为的小堤相互隔离,例如左上方一块()和第二块(k=),小区间有海拔的小堤。B, 当洪水淹没一个小区水位高度pm时,该小区的损失函数:损失= kp 0<=p<=1P p>=1C, 假设决堤口可选在大堤或小堤的任何地方,决堤口数目也不受限制,但一经决口就不能再补合,从河流经大决堤口流入小区的洪水量按决口数目成比例分配。如在小区间小堤开一决口,即假设该两小区之间的这段小堤不复存在,若水位高过小堤,则将自动流向临近最低的一个小区泄洪,若这样的小区有几块时,则平均泄洪。求:(1).整个区域全部受损失的最小泄洪量Qmax;(2).当洪水量为Qmax/6,Qmax/3时,分别制定泄洪方案,但要使总损失最小(在一个方案中,决堤同时进行,并计算出该方案的损失数)。河床的数据我在这里没办法画表,这但是你可以从这个题目中看出建模的一个大概的概念而建模的过程是:模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。模型分析:对所得的结果进行数学上的分析。模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。模型应用:应用方式因问题的性质和建模的目的而异。最后回答你什么是数学建模论文:像上面的例子,你将现实中的某个问题阐述出来,提出问题,然后进行建模,并编程求解,最后得出一个优化解,最后总结呗,跟普通的论文,没什么区别