1、硕士论文一般多少字左右。 2、硕士论文摘要多少字合适。 3、硕士论文要多少字。 4、硕士论文要多少字数。1.硕士论文一般3-5万字之间,主要还是看学校的具体规定。 2.如果学校规定3万字的,那么你写2万字,如果学校规定2万字的,那么你写2万字。 3.上下浮动不要超过2000字。
我觉得你写写清代或近代史比较好,其可考的文献的八万多卷,特别是戊戌变法那一百多天,很有写头,一种史实有两套说法,你可以参照当中的一些说法,既然你是教育硕士,那就看看戊戌变法中的科举废除的危害性和有益性这方面的文献,以古看今,特别是教育考试改革这方面
你好的!⑴ 首先就不要有马上毕业,最后一次花点钱就得了的想法⑵ 只有自己写论文,做设计才能顺利的毕业⑶ 在这里我给出方法,以及相关资料寻找的网址,请认真阅读⑷ 否则,真的可能导致预想不到的后果!==================================================================== ❶ 中国知网也好、万方数据也好都有大量的原创论文! ❷ 并且,大部分的院校都有免费的接口! ❸ 如果真没有免费的接口,那就百度知道悬赏求助下载吧! ❹ 要是要外文的论文准备翻译的话,最好的办法就是【谷歌学术】 ❺ 需要什么语言的论文直接就用相应的语言搜索!100% 能找到类似的! ❻ 至于翻译,可以直接谷歌翻一下,弄完在自己弄通顺就可以了!【友情提示】==================论文写作方法===========================❶ 其实,原创的论文网上没有免费为你代谢的!谁愿意花时间给你写这个呢?难道你在空闲的时间原以为别人提供这种毫无意义的服务么?所以:还不如自己写。主要是网上的不可靠因素太多,万一碰到人的,就不上算了。❷ 写作论文的简单方法,首先大概确定自己的选题【这个很可能老师已经给你确定了】,然后在网上查找几份类似的文章。❸ 通读一些相关资料,对这方面的内容有个大概的了解!看看别人都从哪些方面写这个东西!❹ 参照你们学校的论文的格式,列出提纲,接着要将提纲给你们老师看看,再修改。等老师同意你这个提纲之后,你就可以补充内容!❺ 也可以把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章!然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了!❻ 最后,到万方等数据库进行检测【这里便宜啊,每一万字才1块钱】,将扫红部分进行再次修改!❼ 祝你顺利完成论文!
硕士学位论文字数要求是3-5万之间。硕士毕业论文字数一般是3-5万之间,学校不一样,专业不一样,字数也就不一样。
一般字数是指正文字数,即第一章到最后一章,不含摘要、目录、致谢、参考文献、附录等,说的是字数而不是字符数,比如3万字毕业论文,就是3万字的汉字,不包括标点和空格。
硕士毕业论文不单有字数要求还有页数要求,页数在60-80页之间就可以,这也是指的正文部分,同样不包括摘要、目录、致谢、参考文献、附录等。
参考文献篇数一般不少于40篇,在其中外文参考文献不少于20篇,参考文献中近五年的文献数一般不少于总数的三分之一,而且还要用近两年的参考文献,参考文献在正文中要有引用标注。
硕士论文题目:中、英文题目:论文题目应能概括整篇论文的核心内容,恰当、简明、引人注目,并力求简短,一般不超过30字。论文题目的字符间距可根据题目字数适当调整;
硕士论文摘要:论文摘要的字数一般在1000字左右。除非有特殊需要,可以写详细写作,字数可扩充到2000字左右,摘要中不应用到图、表、化学结构式、非公知公用的符号和术语等。
硕士论文关键词:论文的关键词3-5个,是用来说明全文的主题内容的单词或术语,力求精炼、准确。
硕士论文开题报告:硕士论文开题报告字数不得少于3000字,是研究生实施毕业论文课题研究的前瞻性计划和依据,是毕业论文中心思想的高度概括。
硕士论文正文:正文部分字数是开题报告字数后,保持在3万字左右,具体可根据学校的相关规定调整。在制定论文框架时,需要合理分配篇幅,将主要内容放在论文具体研究内容上,该部分作为论文的重点部分体现研究成果和见解。
一、硕士论文一般要求多少字 不同学校的要求也是不同的,一般要求3-5万字之间,开题报告一般5000字左右。 二、硕士论文要求3万字是什么概念? 硕士论文字数一般是3-5万之间,学校不一样,专业不一样,字数也就不一样,一般指导老师都会给出一个大概的字数条件,然而就会有人疑惑,这个字数怎么算。比如3万字的毕业论文,怎样才算3万字了呢,这里就为大家讲解一下。 1.一般字数是指正文字数,即第一章到最后一章,不含摘要、目录、致谢、参考文献、附录等,说的是字数而不是字符数,比如3万字毕业论文,就是3万字的汉字,不包括标点和空格。 2.硕士毕业论文不单有字数要求还有页数要求,页数在60-80页之间就可以,这也是指的正文部分,同样不包括摘要、目录、致谢、参考文献、附录等。 3.参考文献篇数一般不少于40篇,在其中外文参考文献不少于20篇,参考文献中近五年的文献数一般不少于总数的三分之一,而且还要用近两年的参考文献,参考文献在正文中要有引用标注。
论文摘要的字数一般在1000字左右。除非有特殊需要,可以写详细写作,字数可扩充到2000字左右,摘要中不应用到图、表、化学结构式、非公知公用的符号和术语等。
硕士研究生学位论文的字数要求
在学习、工作中,大家都有写论文的经历,对论文很是熟悉吧,借助论文可以有效提高我们的写作水平。相信许多人会觉得论文很难写吧,以下是我整理的硕士研究生学位论文的字数要求,希望对大家有所帮助。
对于硕士研究生来说,毕业论文是学习成功与否的最后一道关卡,顺利通过毕业论文和答辩就能获得学位证书了,那么发表硕士学位论文有没有字数限制呢?一般对论文的字数是有要求的,大多数学位论文都要在3万字以上,从选题背景、研究内容、意义等,每个部分都要详细,字数太少首先会给评审老师留下不好的印象,所以建议大家要尽量挖掘研究内容,包括试验方法、试验材料都要详细论述。
在职研究生论文字数是有限制的。该要求是与学员们所报考的院校有关的,不同学校要求也就不一样,但是一般要求在2-3万字,也有要求达到4-5万字的。
院校规定:在职研究生论文字数一般都是根据学员们所报考的院校以及专业来规定的。而且学员们在论文创作阶段时,所报院校肯定会对毕业论文有一个文字性的说明,学员们一定要认真的阅读该文字上面的要求,严格执行。
严格按照字数规定:学员们在创作论文的时候一定要严格按照院校的相关规定进行。一般院校对于学员们的论文字数要求还是非常的严格的,必须达到所规定的字数才可以,学员们在创作论文的时候一定要有良好的论文框架,这样才能有美观程度。
不要大幅度增加:对于有的学员来说,总是以为自己写的字数越多通过的概率也就越大。其实不然,学员们写的多了,问题相对也就出来了。所以学员们不要想当然的写更多的字数,当心弄巧成拙。在职研究生论文字数是有限制的,主要是依据学员们所报考的院校以及所选择的专业决定的。
一、论文封面要求
1.封面采用研究生处下发的统一封面格式;
2.封面要求用A4白色铜版纸;
二、中文摘要
中文摘要应说明论文的目的、研究方法、研究成果、结论和意义论文摘要应尽量突出学位论文中具有的创新性和新见解。
1.硕士学位论文中文摘要字数为500—800字,博士学位论文中文摘要字数为1000—1500字;
2.中文摘要及其关键词另设一页;
(1)在“论文摘要”(三号宋体加黑)下空一行打印摘要内容(四号宋体),每段内容开头之前空二格,其标点符号占一格。
(2)在写完摘要内容后下空二行填写“关键词”(四号黑体),关键词的数量不超过3-5个,关键词的字数不超过4-6个。
三.英文摘要
英文摘要内容应与中文摘要内容相一致,要符合英语语法,语句通顺。
1. 英文摘要另设一页;
2.摘要内容每段开头留四个字符空格。
四.目录
1.“目录”两字(三号宋体加黑)居中,下空一行为章、节、小节和页码。
2.每章的标题为四号宋体加黑,每节的标题为小四号宋体加黑。
五.引言
引言是学位论文主体部分的开始,主要介绍本研究领域的'国内外现状和相关领域中已有的研究成果。介绍本论文所要解决的问题和预期结果。
六.正文
正文是学位论文的主体(采用小四号宋体)。
七.结论
结论是学位论文总体的总结,要求观点明确、精练、完整。认真阐述自己研究的创造性成果及在本领域中的意义。
八.参考文献
1.参考文献采按先后顺序用阿拉伯数字连续编号,符号置于方括号内。一种文献在同一文中被反复引用者,用同一序号表示。
2.参考文献的著录项目要齐全,注明序号,作者,题目,刊名,出版年份,卷号(期号),
3.参考文献的类型以单字母方式标识:M-专著,C—论文集,N—报纸文章,J—期刊文章,D—学位论文,R—研究报告,S—标准,P—专利,其他未说明的文献类型,采用字母“Z”标识。
九.学位论文字数要求
按有关规定,硕士学位论文一般不少于3万字;博士论文一般不少于5万字。
备 注:学位论文必须将第二页一起进行打印装订交研究生处。
一、论文的结构顺序
1、封面
2、目录
3、中文摘要及关键词
4、英文摘要及关键词
5、正文
6、全文脚注
7、参考文献
8、附件
9、 封底
二、论文各部分具体要求
1、封面:应包括论文题目、专业名称、研究方向、本人姓名及学号、论文完成日期、指导教师及职称等内容,统一用打印方式。
2、目录:包括摘要、引言、各章节标题、文献附录(包括图目、表目、谱例等)及其所在页码,依次编列。
3、中文摘要及关键词:硕士论文的中文摘要1000-1500字左右。摘要应说明工作目的、研究方法、成果和结论。力求语言精炼,突出本论文的创造性成果。为便于文献检索,摘要下方另起一行注明本论文的关键词(3-5个)关键词须符合《汉语主题词表》(中国科学技术情报研究所、北京图书馆主编,科学技术文献出版社1980年出版)的规范。
4、英文摘要及关键词:英文摘要内容须与中文摘要相对应,以便于国际交流。摘要下方另起一行注明与中文关键词相对应的英文关键词(3-5个)。
5、正文:是学位论文的主体,正文篇幅一般为15000-30000字左右,其中,理论专业字数不少于三万字,正文部分一般包括:
(1)绪论:或称序言、引言,说明选题的目的和意义,指明论文的研究范围,要求对该论题国内外研究现状进行必要的文献综述。
(2)本论:为论文的主体部分,应包括论点、论据与论证过程。论点要求有新见解或新发现,提出新观点;论据要求充分翔实、准确可靠;论证过程要求结构严谨、层次清晰、概念明确、逻辑严密。能体现出研究者本人自觉而训练有素的方法论意识。文字表达力求规范、准确和流畅。
(3)结论:论文应有结论,结论应该明确、精炼、完整,阐述自己的创造性工作在本研究领域中的意义和作用。严格区分本人的研究成果与导师或其他人的科研成果的界限。
6、全文脚注:凡引用或转引他人观点或文献资料,均应如实说明、详加注释,力求准确、客观。文章所有注释及引文出处一律采用脚注。要求注明作者、文献名、来源(期刊名称、年份、期数、页码,书籍需注明出版单位、年份、页码,网上资料需注明网址和时间)。
7、参考文献:按照中华人民共和国国家标准GB7714-87《文后参考文献著录规则》,要求只列出自己阅读过、文中引用过、正式出版和发表的文献资料。要求注明作者、题目、来源(期刊名称、年份、期数,书籍需注明出版单位、年份)。外文文章应列出原名。中外文献分开,中文文献按著者姓氏笔划排列,英文文献按字母顺序排列。中文在前,英文在后。
8、附件:第一手资料或新发现材料要求以附件形式提供。
10、封底
三、论文的书写与排版要求
1、本规范以中华人民共和国国家标准GB7713-87《科学技术报告、学位论文和学术论文的编写格式》为基准制定。
2、提交纸质文本和与之一致的电子文本。电子文本用WORD软件编辑保存为“。doc”格式文件。纸张与版芯均采用WORD软件的默认值,即:A4纸张(210mm×297mm),上下边距为250mm,左右边距为260mm.纸质文本与电子文本统一格式,用A4标准大小的白纸,双面打印。正文中的附图和谱例必须为插入的电子文本。
3、字体要求:中文字体统一使用宋体,英文字体使用Times New Roman.
4、字号要求:
正文中的一级标题:小三号字
二级标题:四号字
三级标题:小四号字
四级标题:五号字
标题一律用粗体(Boldface),标题体系须一致
正文一律用五号(号)字,倍行距
引文一律用五号(号)楷体字,倍行距
脚注一律用小五号楷体字
5、每段开头缩进两个汉字(或四个英文字符)的位置,段与段之间不空行。
6、页脚:页脚中下插入页码(小五号字体)。
1. 中、英文题目:论文题目应能概括整篇论文的核心内容,一般不超过30字。 2.论文的摘要字数一般在1000字左右。除非有特俗要求,可扩充到2000字左右。 3. 论文的关键词3-5个,是用来说明全文的主题内容的单词或术语,力求精炼准确
本科毕业论文字数5000-15000字之间,硕士毕业论文字数20000-50000字之间,博士毕业论文字数50000-150000字之间含博士后。
毕业论文写作技巧第一条,先要围绕着论题去占有和选择材料。也就是说,当你的论题已经确定以后,第一,围绕着立论去占有材料,多多益善的去看。有的论题是来自老师已经拟订好的题目。有相当一部分学生是自己确立论题的,先积累材料,再有论点。一旦立论确立了以后,再回过头来去占有材料。在占有材料方面跟我《基础写作》里讲的有相通的地方。第一要占有材料,占有研究对象的真实的材料。比如你要研究某个作家,某个阶段的几部作品,就将这几部作品拿来进行深入细致的研读,进一步来确定自己的论点。如果你的论文是报告类的,不是纯理论性的,用实验报告、调查报告、总结的形式来写论文的,那么你的调查材料、实验材料也要占有。
第二,要对研究对象的外延材料占有。比如你要研究的是作家作品的话,那么你就要对作家写作的背景材料,包括政治经济背景、文艺思潮背景等。还有作家谈自己创作的材料,还有他人已经研究过的材料等。有了这些材料,你就可以做到知人论世,可以使自己在研究当中尽量公允,不带偏见。所以,充分占有材料,也就使你的论据更充分。这样你将来的论证就会更加深广。第三,在有材料的基础上要选择材料。决不能只要有材料就统统拉进来。这是你们写论文常出现的问题。比如让你写一万字,你可能写到五六万字。象刚才那个学生一样,写出六万字,太丰富了。把握不住自己的时候,可以让老师来帮助你,告诉你哪些能用,哪些不能用。多占有材料总比没有材料写不出来要好,因为删总是好删的。在材料多的情况下,你就选更好的材料。
不同的学校对于本科毕业论文的字数要求不同,一般非211、985学校的本科毕业论文字数在6000字——8000字左右。
一些要求较高的专业或者重点院校则要求论文字数高达10000字左右或者以上,具体论文各部分字数的大致要求:
1、文献综述
字数在1000字——3000字之间。文献综述是在确定了选题后,在对选题所涉及的研究领域的文献进行广泛阅读和理解的基础上,对该研究领域的研究现状、新水平、新动态、新技术和新发现、发展前景等内容进行综合分析、归纳整理和评述。
2、正文
字数要求在6000字以上,原则上不超过10000字。正文是毕业论文的主体内容,是整篇论文的核心所在,占论文的绝大部分篇幅。包括引言、正文、结论或结束语三大部分。
3、标题
一般不超过20个汉字。毕业论文题目应简明扼要,避免过宽、过大、过空,要能准确反映论文的实质性主题内容,包括研究的范围、层次和深度等。
4、摘要
论文的中文摘要应以最简洁的语言介绍论文的概要、作者的突出论点和新见解。学士学位论文中文摘要一般不少于200字。
5、关键词
一般为3——5个。关键词根据论文正文内容及论文主题选取。英文关键词要与中文关键词一一对应。
6、致谢
一般不超过300字。致谢可以对下列方面表达谢意:协助完成研究工作和提供便利条件的组织或个人;在研究工作中提出建议和提供帮助的人;给予转载和引用权的资料、图片、文献、研究思想和设想的所有者;其他应感谢的组织或个人。
大学毕业论文需要的字数介绍
紧张而又充实的大学生活即将结束,众所周知毕业前要通过最后的毕业论文,毕业论文是一种比较重要的检验大学学习成果的形式,那么大家知道正规的毕业论文怎么写吗?下面是我整理的大学毕业论文需要的字数介绍,仅供参考,欢迎大家阅读。
不同的学校对于本科毕业论文的字数要求不同,一般非211、985学校的本科毕业论文字数在6000字——8000字左右,一些要求较高的专业或者重点院校则要求论文字数高达10000字左右或者以上,下面是论文各部分字数的大致要求:
1、文献综述
字数在1000字——3000字之间。文献综述是在确定了选题后,在对选题所涉及的研究领域的文献进行广泛阅读和理解的基础上,对该研究领域的研究现状、新水平、新动态、新技术和新发现、发展前景等内容进行综合分析、归纳整理和评述。
2、正文
字数要求在6000字以上,原则上不超过10000字。正文是毕业论文的主体内容,是整篇论文的核心所在,占论文的.绝大部分篇幅。包括引言、正文、结论或结束语三大部分。
3、标题
一般不超过20个汉字。毕业论文题目应简明扼要,避免过宽、过大、过空,要能准确反映论文的实质性主题内容,包括研究的范围、层次和深度等。
4、摘要
论文的中文摘要应以最简洁的语言介绍论文的概要、作者的突出论点和新见解。学士学位论文中文摘要一般不少于200字。
5、关键词
一般为3——5个。关键词根据论文正文内容及论文主题选取。英文关键词要与中文关键词一一对应。
一般是8000到10000轻轻一写就超了
一篇有关数学史的论文(网上搜索不到)研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同。具体地说,它所研究的内容是:①数学史研究方法论问题;②总的学科发展史——数学史通史;③数学各分支的分科史(包括细小分支的历史);④不同国家、民族、地区的数学史及其比较;⑤不同时期的断代数学史;⑥数学家传记;⑦数学思想、数学概念、数学方法发展的历史;⑧数学发展与其他科学、社会现象之间的关系;⑨数学教育史;⑩数学史文献学;等等。按其研究的范围又可分为内史和外史。内史 从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;外史 从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。人们研究数学史的历史,由来甚早。古希腊时就曾有人写过一部《几何学史》,可惜未能流传下来,但在5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。中世纪阿拉伯国家的一些传记作品和数学著作中,曾讲述到一些数学家的生平以及其他有关数学史的材料。12世纪时,大量的古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是当时的数学研究,也是对古典数学著作的整理和保存。近代西欧各国的数学史研究,是从18世纪,由J.É.蒙蒂克拉、C.博絮埃、.克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。①通史研究 代表作可以举出.康托尔的《数学史讲义》(4卷,1880~1908)以及.博耶(1894、1919)、.史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的著作。法国的布尔巴基学派也写了一部数学史收入《数学原理》丛书之中。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国M.克莱因所著《古今数学思想》一书,被认为是70年代以来的一部佳作。②古希腊数学史 许多古希腊数学家的著作被译成现代文字,在这方面作出了成绩的有.海贝格、胡尔奇、.希思等人。洛里亚和希思还写出了古希腊数学通史。20世纪30年代起,著名的代数学家范?德?瓦尔登在古希腊数学史方面也作出成绩。60年代以来匈牙利的A.萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合著,1945)都是这方面的权威性著作。他所著《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范?德?瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。④断代史和分科史研究 德国数学家(C.)F.克莱因著的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家J.迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专著并不多,但却有(.)H.外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参预数学史的研究,可能是基于()H.庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。”⑤历代数学家的传记以及他们的《全集》、《选集》的整理和出版 这是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。⑥专业性学术杂志 最早出现于19世纪末,.康托尔(1877~1913,30卷)和洛里亚(1898~1922,21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书?律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书?律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。在中国古算书的序、跋中,经常出现数学史的内容。如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位 《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1849)、沈钦裴(1829年校算《四元玉鉴》)、罗士琳(1789~1853)等人。②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的。经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专著一道,都是权威性著作。从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。参考资料:数学史自建国以来,由於中算史专家李俨教授、钱宝琮教授、严敦杰教授的提倡,在国内有不少自发的人员从事于数学史研究,这些人员都是各自独立地进行研究,相互之间,在学术上很少进行磋商,但是,在中国数学史、外国数学史上确有许多急需解决的疑难问题,也就是由於当时形势的需要,急需把这些“个体户”组织起来,按“互助组”的形式进行研究。自1977年“互助组”成立以来,已有十五年了。在这期间,相互切磋、相互提携、相互支援、相互协助共同为中国科学、技术史作了不少可喜工作。例如,1984年受国家教委的委托,在北京师范大学举办了“中、外数学史讲习班”,除有百余所高等院校派员参加学习外,还有当代著名数学家江泽涵教授、吴文俊教授、王梓坤教授光临“讲习班”,进行指导并讲话,“讲习班”还邀请了全国十多名著名数学史家前来授课或作专题讲演;在“讲习班”期间,不但播放了中国数学古籍的幻灯片、故宫博物院库藏科、技文物幻灯片,而且有幸参观了故宫博物院库藏数百种科、技文物的实物。这次“讲习班”的活动,收到非常丰硕的效果,之后,有很多人对数学史产生了浓厚兴趣,加入了数学史的行列,从而对数学史进行学习、探讨、研究;也有人积极进行准备,拟开设数学史课,从而改变了全国只有十一所高校开设数学史课的极不相称之局面。在中国古典数学中,《九章算术》及《数书九章》是两部著名学术著作,其中有许多千古未解之谜及疑难问题,为了解决这些研究中以及教学中的难题,受国家教委的委托,于1986年在徐州师范学院举办了“《九章算术》暨《数书九章》暑期讲习班”,全国有四、五十所高等院校派员参加了这次“讲习班”。一致认为这次“讲习班”解决了在中国数学史的研究中、教学中的实际困惑和难点。“讲习班”期间,除讲授课程、专题报告外,还组织了多次“专题讨论”;在“专题讨论”中,可以自由发言,讲述个人的不同观点,并可以进行辩论和答问;因而“专题讨论”收到了意想不到的效果。之后,还参观了徐州地区的古迹和出土文物展览。原先,由开设数学史课程的十一所高校,后来逐渐扩展为六十多所高校,但是这种大范围的扩展,使得数学史的教材成了当务之亟的问题,因而组织有关人员进行教材的编撰工作;于1986年、1987年分别出版了《中国数学简史》、《外国数学简史》两部高校教材,不止解决了一些高校缺少数学史教材问题,也可供给某些研究生作为业余的读物,这两部教材现已被广大高校所采用。为了统一各高校数学史的教学要求,为了划一数学史研究生的培养方案,受国家教委的委托,于1984年在北京师范大学召集了八所高等学校,共同制定了《高校中、外数学史教学大纲(草案)》、《数学史研究生培养方案(草案)》,并呈报给国家教委备案。在培养研究生方面,不但使研究生互访“互助组”各校的有关人员,而且还相互邀请“互助组”各校的有关人员前来授课,从而促进各校之间对研究生培养的联系;至於前来北京师大进修的德国慕尼黑大学进修生、日本东海大学高级进修生、日本东北大学进修生,也得到“互助组”各校有关人员的支持。为了深入探讨中国古典数学名著,制定了《中国数学史研究丛书》的规划,于1982年、1987年分别出版了两部学术专著,即《〈九章算术〉与刘徽》、《秦九韶与〈数书九章〉》。这两部书出版后,在国内、外引起强烈反应,得到国内、外许多专家的高度评价,认为中国数学史的研究,不但不是没有可深入研究的问题,而相反的是,认为中国数学史的研究前景,是非常广阔而大有作为的。因之,使得国内、外许多学者从事于中国数学史的研究。由於这两部专著的专题性很强,有些其他方面的学术论文不便收录,所以于差不多同时,先后出版了《中国数学史论文集(一)》、《中国数学史论文集(二)》、《中国数学史论文集(三)》;从而为广大学者和读者,提供了学术园地。为了弘扬中国古代优秀科技文化,经国家教委批准,并经国家自然科学基金委两次资助以及其他五单位资助,分别于1987年、1991年在北京师范大学举办了“秦九韶《数书九章》成书740周年纪念暨学术研讨国际会议”、“《九章算术》暨刘徽学术思想国际研讨会”,像这样的专题性学术研讨会在国际上并不多见,因而受到国际学术界的重视,会前收到不少国际学术界知名人士的贺电,会后分别寄赠会议论文集,前来参加会议的学者,包括十多个国籍,分别为50余人、60余人;这两次专题性的国际会议,在国际学术界产生了巨大影响。为了深入钻研中国古典数学,原拟计划先后出版《中国数学史论文集(四)》、《刘徽研究》、《中国数学史大系》、《南北朝数学》以及《隋唐数学》等书。其中《中国数学史论文集(四)》,早已发稿,由於技术上的原因,推迟了发排的时间;《中国数学史大系》,正在加紧撰写稿件;是国家“八五”期间重点图书,任重而道远,各位执笔者有信心完成任务。《刘徽研究》一书,是《〈九战算术〉与刘徽》一书的继续和发展。经过六年准备,克服了许多困难,终至与读者见面,由于种种原因,还有许多不尽人意的地方,请作者和读者们谅解和批评、指正。《刘徽研究》能得以出版,还是与台湾九章出版社、陕西人民教育出版社、孙文先先生、杨益先生的鼎力相助和大力支持分不开的,在此,特致以由衷的谢意。原来计划全面而深入地探讨刘徽的各项成就,但是,由於发稿较晚、发排较迟、校对也费了不少时日,在这里特向读者致以深切的歉意。到现在,“互助组”已不适合当前形势的需要,乃代替以“才团”,我们实事求是,继续前进,争取新的成绩。
学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥、难学。数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其它学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。而数学历史上的三大危机分别是古希腊时期的不可公度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。同时,介绍必要的数学史知识可以使学生在平时的学习中对所学问题的背景产生更加深入的理解,认识到数学绝不是孤立的,它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也密不可分,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。在我们所处的新数学时期,数学(不仅仅是自然科学)逐步进入社会科学领域,发挥着意想不到的作用,可以说一切高技术的背后都有某种数学技术支持,数学技术已经成为知识经济时代的一个重要特征。这些认识对于一个学习数学十余年的高中生来说是很有必要,也是必不可少的。二、 学习数学史有利于培养学生正确的数学思维方式现行的数学教材一般都是经过了反复推敲的,语言十分精练简洁。为了保持了知识的系统性,把教学内容按定义、定理、证明、推论、例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少。虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质、定理,然后用来解决问题的错误观点。所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题、猜想、论证、检验、完善,一步一步成熟起来的。影响了学生正确数学思维方式的形成。数学史的学习有利于缓解这个矛盾。通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式。这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿、莱布尼兹在古希腊的“穷竭法”、“求抛物线弓形面积”等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对“无穷小”的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充、完善下,经过几十年才逐步成熟起来的。数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想、方法代表着该内容相对于以往内容的实质性进步。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式。三、 学习数学史有利于培养学生对数学的兴趣,激发学习数学的动机 动机是激励人、推动人去行动的一种力量,从心理学的观点讲,动机可分为两个部分;人的好奇心、求知欲、兴趣、爱好构成了有利于创造的内部动机;社会责任感构成了有利于创造的外部动机。兴趣是最好的动机。在日本中学生夺取国际IEA调查总分第一名的同时,却发现日本学生不喜欢数学的比例也是第一,这说明他们的好成绩是在社会、家长、学校的压力下获得的。中国的情况如何呢?尚无全面的报道,但河南省新乡市四所中学的高中生学习数学情况的调查发现:“我不喜欢数学,但为了高考,我必须学好数学”的学生占被调查者的比例高达,而对数学“很感兴趣”的只有。可见目前中学生的学习动机不明确,对数学的兴趣也很不够,这些都极大地影响了学习数学的效果。但这并不是因为数学本身无趣,而是它被我们的教学所忽视了。在数学教育中适当结合数学史有利于培养学生对数学的兴趣,克服动机因素的消极倾向。数学史中有很多能够培养学生学习兴趣的内容,主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒、幻方、商人过河问题等,它们有很强的可操作性,作为课堂活动或是课后研究都可以达到很好的效果。二是一些历史上的数学名题,例如七桥问题、哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣。还有一些著名数学家的生平、轶事,比如说一些年轻的数学家成材的故事,《标准》中提到的“从阿贝尔到伽罗瓦”,阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁。还有法国数学家帕斯卡,16岁成为射影几何的奠基人之一,19岁发明原始计算器;德国数学家高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展、至今仍相当重要的《算术研究》;还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在的数学研究上有骄人成绩的例子,如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名。如果在教学中加入这些学生感兴趣又有知识性的内容,消除学生对数学的恐惧感,增加数学的吸引力,数学学习也许就不再是被迫无奈的了。四、学习数学史为德育教育提供了舞台在《标准》的要求下,德育教育已经不是像以前那样主要是政治、语文、历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从下几个方面来探讨一下。首先,学习数学史可以对学生进行爱国主义教育。现行的中学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少, 其实中国数学有着光辉的传统,有刘徽、祖冲之、祖暅、杨辉、秦九韶、李冶、朱世杰等一批优秀的数学家,有中国剩余定理、祖暅公理、“割圆术”等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年。《标准》中“数学史选讲”专题3就是“中国古代数学瑰宝”,提到《九章算术》、“孙子定理”这些有代表意义的中国古代数学成就。然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上。从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程。《标准》中“数学史选讲”专题11—— “中国现代数学的发展”也提到要介绍“现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程”。在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的“国际意识”,让学生认识到爱国主义不是体现在“以己之长,说人之短”上,在科学发现上全人类应该相互学习、互相借鉴、共同提高,我们要尊重外国的数学成就,虚心的学习,“洋为中用”。其次,学习数学史可以引导学生学习数学家的优秀品质。任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点。数学家们或是坚持真理、不畏权威,或是坚持不懈、努力追求,很多人甚至付出毕生的努力。阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是“我不能留给后人一条没有证完的定理”。欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表。对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执著追求的故事,对于他们正确看待学习过程中遇到的困难、树立学习数学的信心会产生重要的作用。最后,学习数学史可以提高学生的美学修养。数学是美的,无数数学家都为这种数学的美所折服。能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇、印度国王Bhaskara、美国第20任总统Carfield等都给出过它的证明。1940年,美国数学家卢米斯在所著《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力。黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与著名的斐波那契数列有着十分密切的内在联系。同时,在感叹和欣赏几何图形的对称美、尺规作图的简单美、体积三角公式的统一美、非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口。【参考文献】【1】中华人民共和国教育部制订 普通高中数学课程标准(实验) 人民教育出版社 2003【2】张奠宙 李士锜 李俊 编著 数学教育学导论 高等教育出版社 2003【3】李文林 编 数学史概论 高等教育出版社2002【4】张楚廷 著 教育部高等教育司 组编 数学文化 高等教育出版社 1999 【5】赵鸿涛 李华轩 高中生数学学习情况的调查 新乡教育学院学报 2003年 04期本文是全国高师院校数学教育研究会2004年年会交流论文
数学是一种文化,数学文化是人类社会优秀的、先进的文化。下文是我为大家整理的关于数学文化的论文范文的内容,欢迎大家阅读参考!
浅谈数学文化建设
摘要 随着新课改的不断深入,数学文化在小学数学教学中的地位和作用显得越来越重要。本文从教师数学文化素养、教材数学文化建设、教学数学文化渗透三个方面对小学数学文化建设作了探索,希望能给新课改提供借鉴和启示。
关键词 小学数学教学;数学文化;数学文化建设
数学是人类的文化,数学文化表现在数学的起源、发展、完善和应用的过程中。新课标指出:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学文化的核心是数学产生、发展的历史进程中,逐步沉淀下来的数学思考,数学观念,数学品质。因此,就小学数学教学而言,小学数学文化的建设显得尤为重要。下面是我关于小学数学文化建设的几点思考。
一、小学数学教师数学文化素养
数学新课程精神强调:数学课程应展示数学文化的魅力,即展示数学文化的悠久历史,展示数学文化的博大精深,展示数学家的探索精神,展示数学文化的美学价值。作为数学文化传播者的小学数学教师,其自身的数学文化素养是决定小学数学文化建设的关键因素。
1.强化数学文化意识
数学之于文化好比种子之于土壤,是厚重的人类历史文化孕育了今天的数学。无论是从数学本身的发展看,还是从数学对社会与人类进步的作用看,数学文化的教育功能都是非常重要的。数学文化的教育功能主要包括四个方面:(1)使学生真正理解数学的本质;(2)发展学生理性精神;(3)培养学生创新精神;(4)培养学生审美能力。所以,小学数学教师首先要强化自身的“数学文化”意识,树立学生的“数学文化”意识。如果只掌握专业知识而没有深厚的数学文化底蕴,那他的数学王国将成为无源之水、无本之木。数学家们有这样一种观点:三流的教师传授知识,二流的教师传授技巧,一流的教师传授思想方法,而超级大师传播数学文化。
2.加强数学文化学习研究
小学数学教师仅仅具有“数学文化”意识是远远不够的,还必须认真地系统学习与研究数学文化,切实把它当做一项系统工程来做。
学习研究数学文化的发展历史,可以从中汲取丰富的数学文化养分,提高自身的数学素养。比如,最早系统提出数学文化观的美国数学家怀尔德()的《数学概念的进化》和《作为文化体系的数学》、美国著名数学教育家M・克莱因的《西方文化中的数学》、《古今数学思想》和《数学―――确定性的丧失》,郑毓信的《数学文化学》,方延明的《数学文化导论》,黄秦安的《数学哲学与数学文化》,齐民友的《数学与文化》,张顺燕的《数学的源与流》,张奠宙的《20世纪数学经纬》等国内外著作,都为我们的数学文化研究指明了方向。其次,学校要通过数学文化的知识培训、讲课比赛、外出交流等方式,切实为小学数学教师提供更多学习研究展示数学文化的机会与平台。
二、小学数学教材数学文化建设
除了应该不断加强数学文化的研究学习,自觉提高自身数学文化素养外,还必须认真进行教材研究,并着力推进教材数学文化校本化建设。
1.教材数学文化建设研究
在自身具有一定数学文化素养基础上,小学数学教师还需要下大力气深入研究小学数学教材,充分挖掘教材中数学文化的丰富内涵。只有将课本中枯燥的、抽象的数学问题经过自己的“加工、提炼、再创造”,才能还原成原汁原味的生活问题生动地呈现给学生,把他们带进一个绚丽多彩的数学皇宫,让他们感受数学丰富的方法、深邃的思想、独特的艺术之美,分享数学前行足迹中的创造、超越及其背后折射出的人类智慧和人性光芒,真正实现探索数学本质的理性回归。
2.教材数学文化校本化建设
鉴于地域不同和学生差异,地区的发展状况、学生的生活背景不尽相同,因此教师通常需要对手头使用的教材加以改进,适应自己的课堂教学的需求。为此宜在本地区组织数学骨干教师,充分挖掘教材中所隐藏的数学文化意蕴,使数学内容充满浓郁的生活气息和文化气息,从而使学生体会到数学与自然、与社会、与生活的密切相关性,重视学生数学知识与现实生活的有机结合,重视学生的情感、态度、价值观等人本教育,重视学生动手实践、合作交流、自主探索、创新能力的培养,彰显数学的文化价值和教育价值。只要不断探索和完善,就能开发出适合本地区特色的数学校本教材。
三、小学数学教学数学文化渗透
为加强小学数学文化建设,学校要采取多种方法形成“数学文化场”,使数学文化真正走进校园、走进课堂。
1.校园数学文化渗透
数学文化是校园文化的一个重要组成部分,数学文化是培养学生文化素养的重要载体。学校可通过校园文化平台、校园网络平台、多媒体平台等多种方式倾力打造“数学文化场”,形成浓郁的数学文化氛围,使数学文化真正走进校园。学校可通过数学板报、班级数学网页、数学角、数学晚会、数学文化节、数学文化读本、数学长廊等多种形式丰富学生的校园生活,推进校园数学文化建设,提升数学文化的品位,潜移默化地渗透数学文化。
2.课堂数学文化渗透
传统的数学教学忽视了数学文化的重要作用。在教学目标上,往往只重视数学知识传授和技能训练而忽视情感、态度、价值观等人文教育;在教学内容上,过分拘泥于知识的逻辑性,思维的抽象性,忽视数学知识与学生生活的有机结合,忽视数学学习和学生情感体验的有机融合;在学习方式上,学生往往是被动接受、机械练习,缺少动手实践、自主探索的机会,忽视挖掘数学文化内涵,培养学生主动参与数学学习的意识和兴趣。
数学教师只有不断提高自身的数学文化素养、加强数学文化研究,才能更好地将数学文化渗透于课堂教学中,让学生更好地体验数学、理解数学、热爱数学,实现数学文化的科学价值和人文价值的真正回归。
参考文献:
[1]M・克莱因著.张祖贵译.西方文化中的数学[M].上海:复旦大学出版社,2010.
[2]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2011.
浅析数学教育中渗透数学文化
摘 要:随着新课改的深入,数学课堂中的种种问题凸显出来。本文从数学文化的角度来反思了我国的数学教育,得出了一些结果。我们的数学教育不光是要教学生们加减乘除,更多的是要通过我们的数学教育,培养学生具有数学的精神、数学的思维、数学解决问题的方法。
中关键词:数学文化 价值 精神 兴趣
古老的中华民族早就有数学文化的传统,并闪闪发光,而我们在初高中所接触的数学却是丝毫提不起学生的精神,那我们的数学教育究竟有什么问题呢?为什么在别人的眼里我们国家的数学教育是那么成功,而我们国人却把我们的数学教育批评得一文不值、学生学得那么痛苦?通过学习数学文化这门课,我对这个问题有了深入的思考。
很多中学生认为数学不好,没什么用,只是考试的工具,每天把他们的头都学疼了。是我们的数学无用无趣,还是我们的学生意识不到数学的价值与乐趣?以前的我,也是对数学厌烦,没有好感,像很多学生一样,只是迫于高考才学习数学。但是自从学了数学文化这门课后,我才知道原来数学这么有价值、有用,而且历史悠久。数学的魅力让我赞叹。蜗牛、波浪、植物、蜘蛛网、建筑物,几乎一切事物都有数学的影子。
数学无处不在。有了数学才让建筑物妙不可言,有了数学才让预测如此准确,有了数学才让科学的宝塔如此坚固。我们的哲学家赞美数学,我们的科学家喜欢数学,可是怎么才能让我们的中小学生热爱数学呢?
数学作为一种文化,它不仅仅包括我们中小学生每天接触的加减乘除,还包括其他宝贵丰富的内容。例如,数学精神,它也是数学文化的一部份。日本数学家、数学教育家米山国藏就曾提出过七种数学精神,其中包括应用化的精神、扩张化的精神、系统化的精神、致力于发明发现的精神、统一建设的精神、严密化的精神以及思想经济化的精神。[1]虽然说我们不能完全体会到数学的所有精神,但是数学所具有的独特的精神足可以让我们赞叹不已。
没有一个学科可以像数学这样言简意赅却严密、不可击破。我们要学会欣赏数学这种简单、严密的美。这就要求我们教育工作者,不仅仅教授我们学生那些运算、定理,还要传递给我们学生数学的精神、数学的美。记得上数学文化课时,梅老师曾说:“我们的传统数学教育的一个弊端就是向我们的学生提供的更多的是符号变换方面的知识与技能。”其实,我们完全可以去教给学生那些知识,但是当我们在教的时候,应该引导学生去欣赏数学的美。
数学有了符号去抽象表达事物、定理,数学就有了这种简单、朴素的美。我们知道一种知识它越抽象,它就越具有概括性与普适性,也就越有用、越高级。当我们的学生学会欣赏数学的这种简单美,他也就不会那么讨厌数学了,同时,我们的数学教育也会更进一步。
数学家的理性思维、锲而不舍的探索精神也是值得学生去学习的。例如,欧拉是科学史上最多产的一位数学家,他十九岁开始发表论文,直到七十六岁,他一生共有八百多本著作和论文。他三十一岁右眼失明,晚年视力极差,最终双目失明,也没有停止对数学的研究与创作。如果我们的学生了解了欧拉,再来学习他的公式定理,那么我们的教学一定会取得成功。[2]学生要在数学这块土壤上汲取的营养太多太多,而不仅仅是课本上的定理。数学文化需要去丰富我们的数学课堂,我们的数学教育要多方面开展。
数学作为一种文化,它有着悠久的历史。从古至今,在这漫长的时间旅途中,出现了多少数学伟人,创造了多少有利于人类发展的文明成果。例如,欧拉公式和欧拉解决的著名哥尼斯堡七桥问题,黄金分割比的发现,我们中国的祖冲之与他的圆周率、刘徽的割圆术等等这些数学成果都为我们人类的文明发展做出了卓越贡献。就像我上高中时一样,有很多学生和我一样都不知道数学这些悠久灿烂的文明以及它们的重大意义。
其实,每一次数学的重大发现,都会推动历史的脚步向前发展。我们的学生要更多地了解数学的历史,了解数学家的事迹,了解那些对我们有过重大意义的数学发明发现。历史是一面镜子,如果我们不知道历史,我们就会对现在的东西不相信,不感兴趣,不珍惜。如果我们知道了它的历史,我们就会更好地认识今天的事物,去珍惜、学习它。我们的教师要多让我们的学生了解数学的历史,给学生们提供学习的机会。例如,在高一数学第一章《集合与函数概念》时,我们的教师可以先插入康托创立的集合论的历史知识。
这样的教学,就会改变传统的一味授受知识的境况,不仅教师讲得有趣,学生听得也有味。虽然说这样的教学好,但是这给我们的教师带来了难度与挑战,所以很多教师即使知道这样好也不愿意这样做。我们的教育者要真正担负起教书育人的职责,既然你来当教师,你就要对你的学生负责,对你自己负责。不要应付教学的差事,而是要在平常课余时间多看些有关自己科目的书,了解一下它的历史,它的名人趣事,这样才会在教学时有话可讲。我们的学生才会愿意听课,愿意学习,这样才能使我们的数学课堂生气盎然。
数学作为一种文化,它的作用、价值无处不在。我们要让学生了解数学的价值,从而给予他们学习数学的动力。可以这样说,如果一个人不懂得数学,不懂得数学文化,他将不能在未来这个世纪生存。数学促进了整个社会的发展,同时社会的发展离不开数学。数学被应用在各个领域,艺术品的设计、建筑物的创造、国家财政的预算、统计工作的完成都离不开数学。我们的学生知道了数学的价值如此之大,他就会自觉自动地去学习数学了。
当学生看到了他所要学习的东西的效益,他就会对它抱以积极的兴趣。那么就需要我们的教育工作者在传递知识的同时,还要向我们学生展示数学的价值。比如我们在讲授数学知识时,可以联系生活中的实例来激发学生的学习兴趣,例如购房分期付款问题等。总之,数学教育就是要贴近生活、贴近自然,让学生自己去体会数学的价值。
没有数学的创新,也就没有科技的创新。我们的教育工作者也可以在上课时多教授学生依靠数学科技进步的例子,让学生认识到数学的巨大价值,意识到数学离我们不远,数学就在我们身边。同学们可以自己利用数学去创新,可以是在学科内部,也可以是跨学科的,我们现在就可以学以致用。如果我们同学都意识到这一点了,我们民族也就有了希望。
年过花甲、有着四十年教龄的天津著名教师王连笑曾经说过:“数学不仅是计算、解题,数学中还包括学科思想文化、科学的思维方法以及人生哲理。对于学生来说,这些比数学知识本身更重要。教师不可能将每一个学生都培养成数学家,但是可以做到使每一个学生学会欣赏数学之美,感受数学带来的快乐。作为一名数学教师,不仅要教会学生数学的理性思维,更应将美好的人类情感交给学生,滋润学生的心灵。”[3]是的,我们的数学教育并不是把学生都培养成数学家,我们的教育工作者要开阔学生的视野,丰富课堂教育,提高我们学生对数学的认识,增强他们对数学的好感。
总结
我们国家今天的中小学生数学基础教育已经很成功了,人们都说我们到任何一个国家去,我们国家的小孩数学过硬。但为什么我们的数学教育不好呢?我们的数学教育缺的已不是那些加减乘除,缺的更多的是数学精神、数学思维、数学方法。数学文化需要灌注课堂,课堂需要数学文化。只有充满了数学文化气息的数学课堂才是飞舞的,洋溢着活力的。
参考文献:
[1]数学课程教材研究开发中心.数学文化[M].人民教育出版社,2003,第49页.
[2]徐秀兰.数学教学中如何渗透数学文化[J].科教文汇,2007,(3).
[3]天津教育.2007,(1).
都不准确,正确的是5000到10000字,如果想优秀的话,就在10000左右,如果只是想毕业,6000多就差不多够用了。
5000——8000字。一般来说,一篇本科毕业论文的字数要求就在5000—8000字之间,当然不同的学校可能要求有所出入。1、封面字数应在20以内;2、中文论文题目字数应在20以内;3、中文摘要一般为150-300字;4、正文:文理科毕业论文字数一般不少于4000字,工科、艺术类专业毕业设计字数一般不少于3000字。
对于毕业论文一般多少字每,个学历阶段都有不同的毕业论文字数要求,对于一般情况下,大专毕业生论文字数要求是最低的,一般要求在8000左右,本科毕业生论文字数要求较严格,一般要求在8000带15000之间,硕士生毕业生论文要求在20000到50000之间,博士生毕业论文由于高度的专业性,论文字数要求是最严格的,一般在50000字左右。高校毕业生在对毕业论文进行撰写时,还是要根据高校毕业论文的字数要求为准,大多高校对毕业论文的要求,不同的高校对毕业论文的要求存在偏差,毕业论文要通过论文查重,单单满足毕业论文字数要求是不够,论文格式也是要正确的。
1000到3000左右