首页

> 论文发表知识库

首页 论文发表知识库 问题

硅胶发泡配方论文答辩

发布时间:

硅胶发泡配方论文答辩

发泡硅胶也叫做加成型硅胶,双组分加成型硅胶。由两部分组成:A组分是硅胶,B组分是固化剂;两组分 按1:1的比例混合配比。本品为白色硫化后成为柔软的弹性材料。发泡硅胶产品是一种纯有机硅材料经化学发泡而成,发泡后其孔径小且细腻均匀。发泡硅胶是一种环保型材料,生产出来的产品无毒无味,安全卫生。

硅橡胶与一般的通用橡胶相比较,所有三大类的硅橡胶的配合组分都比较简单,热硫化型也是这样。除生胶外,配合剂主要包括补强剂、硫化剂及某些特殊的助剂,一般只需有5~6个组分即可组成实用配方。硅橡胶配方设计应当考虑到以下几点。(1)硅橡胶制品一般在高温下使用,其配合剂应在高温下保持稳定,为此,通常选用无机氧化物作补强剂。(2)硅橡胶为饱和度高的生胶,通常不能用硫黄硫化,而采用热硫化。热硫化是以有机过氧化物作硫化剂的,因此胶料中不得含有能与过氧化物分解产物发生作用的活性物质,否则会影响硫化。 (3)硅橡胶在微量的酸或碱等极性化学试剂的作用下易引起硅氧烷键的裂解和重排,导致硅橡胶耐热性的降低.所以在选用配合剂时必须考虑到它们的酸碱性,同时还应考虑到过氧化物分解产物的酸性,以免影响硫化胶的性能。 (一)生胶的选择 设计配方时应根据产品的性能和使用条件,选用具有不同特性的生胶。对一般的硅橡胶制品要求使用温度在-70℃~250℃范围内,都可采用乙烯基硅橡胶;当制品的使用温度要求较高时(-90~300℃),可采用低苯基硅橡胶;当制品要求耐高低温又需耐燃油或溶剂时,则应当采用氟硅橡胶。

深圳瑞博橡胶生产加工硅橡胶制品超轻橡塑发泡配方:橡塑共同的发泡底,工艺与配方设计上一些注意事项:1.有机发泡剂:发气量大,发孔均匀细致,如H;2.无机发泡剂:碳酸氢氨 碳酸氢钠等。可选择两者并用,为了降低发孔剂的分解温度,还可使用发泡助剂,如尿素,明巩。浅色白色,也可将标胶跟换为异戊二烯,可生产各种颜色,如咖啡色,注意钛白打底,防止发花。硫化体系:硫化体系必须与发孔速度相匹配,最好的是硫化起点大于发孔起点,然后同时硫化与发孔(如果流苏以发孔速度快,则发孔率小)另外树脂的选择,为了支撑发孔壁的挺性与均匀度的。补强体系:白炭黑、炭黑、碳酸镁、陶土、滑石粉、纳米钙等均有补强效果,体积轻粒子细成本低最常用。具体发泡配方如下:单位:KGEVA粒 70 量产单 VA含量不限 硬度偏上标 胶:30(必须塑练OK)白炭黑:27 这是按照70度计算油:1 0树脂:1硬脂酸:1PEG4000:3氧化锌:5小药每kgDCP:10ACP-HC:25 / 1 k g关于橡塑发泡总结:混炼过程要严格,要求胶料可塑度均匀,配合剂均匀,但也不能过炼,开炼加药后,束薄2次排气不良好,弹性与手感非常不错,具备橡胶手感同时收缩率很小。重点注意生产过程中的斩后气孔。

硅胶毕业论文

数字时钟 电子时钟毕业设计 全路面起重机 玉米脱粒机的设计 毕业设计 连杆孔研磨装置设计毕业设计 硅胶(RB)手机按键模具分析与制作 注射器盖毕业课程设计说明书旁承上平面与下心盘上平面垂直距离检测装置的设计毕业论文 拉线套注射模设计 q 348414338

关键词:超高分子 量聚乙烯 工程塑料1 引言UHMWPE是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和北京助剂二厂投入生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。UHMWPE平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。2 UHMWPE的成型加工由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。 一般加工技术(1)压制烧结压制烧结是UHMWPE最原始的加工方法。此法生产效率颇低,易发生氧化和降解。为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。(2)挤出成型挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。双螺杆挤出多采用同向旋转双螺杆挤出机。60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。北京化工大学于1994年底研制出Φ45型UHMWPE专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。(3)注塑成型日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。1985年美国Hoechst公司也实现了UHMWPE的螺杆注塑成型工艺。北京塑料研究所1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用UHMWPE托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。(4)吹塑成型UHMWPE加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。UHMWPE吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。 特殊加工技术 冻胶纺丝以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的UHMWPE纤维〔3〕。UHMWPE冻胶纺丝过程简述如下:溶解UHMWPE于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。在冻胶原丝中,几乎所有的溶剂被包含其中,因此UHMWPE大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中UHMWPE折叠链片晶的形成。这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。UHMWPE纤维是当今世界上第三代特种纤维,强度高达,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。国际上已将UHMWPE纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。UHMWPE纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。 润滑挤出(注射)润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。产生润滑层的方法主要有两种:自润滑和共润滑。(1)自润滑挤出(注射)UHMWPE的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。有专利报道〔4〕:将70份石蜡油、30份UHMWPE和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。(2)共润滑挤出(注射)UHMWPE的共润滑挤出(注射)有两种情况,一是采用缝隙法〔5、6〕将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分(详见)。如:生产UHMWPE薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。 辊压成型〔1〕辊压成型是一种固态加工方法,即在UHMWPE的熔点以下对其施加一很大的压力,通过粒子形变,有效地将粒子与粒子融合。主要设备是一带有螺槽的旋转轮和一带有舌槽的弓形滑块,舌槽与螺槽垂直。在加工过程中有效地利用了物料与器壁之间的摩擦力,产生的压力足够使UHMWPE粒子发生形变。在机座末端装有加热支台,经过模口挤出物料。如将此项辊压装置与挤压机联用,可使加工过程连续化。 热处理后压制成型〔8〕把UHMWPE树脂粉末在140℃~275℃之间进行1min~30min的短期加热,发现UHMWPE的某些物理性能出人意料地大大改善。用热处理过的UHMWPE粉料压制出的制品和未热处理过的UHMPWE制品相比较,前者具有更好的物理性能和透明性,制品表面的光滑程度和低温机械性能大大提高了。 射频加工〔9〕采用射频加工UHMWPE是一种崭新的加工方法,它是将UHMWPE粉末和介电损耗高的炭黑粉末均匀混合在一起,用射频辐照,产生的热可使UHMWPE粉末表面发生软化,从而使其能在一定压力下固结。用这种方法可在数分钟内模压出很厚的大型部件,其加工效率比目前UHMWPE常规模压加工高许多倍。 凝胶挤出法制备多孔膜〔10〕将UHMWPE溶解在挥发溶剂中,连续挤出,然后经一个热可逆凝胶/结晶过程,使其成为一种湿润的凝胶膜,蒸除溶剂使膜干燥。由于已形成的骨架结构限制了凝胶的收缩,在干燥过程中产生微孔,经双轴拉伸达到最大空隙率而不破坏完整的多孔结构。这种材料可用作防水、通氧织物和耐化学品服装,也可用作超滤/微量过滤膜、复合薄膜和蓄电池隔板等。与其它方法相比,由此法制备的多孔UHMWPE膜具有最佳的孔径、强度和厚度等综合性能。3 UHMWPE的改性 物理机械性能的改进与其它工程塑料相比,UHMWPE具有表面硬度和热变形温度低、弯曲强度以及蠕变性能较差等缺点。这是由于UHMWPE的分子结构和分子聚集形态造成的,可通过填充和交联的方法加以改善。 填充改性采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对UHMWPE进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。用偶联剂处理后,效果更加明显。如填充处理后的玻璃微珠,可使热变形温度提高30℃。玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,UHMWPE仍有相当高的冲击强度。 交联交联是为了改善形态稳定性、耐蠕变性及环境应力开裂性。通过交联,UHMWPE的结晶度下降,被掩盖的韧性复又表现出来。交联可分为化学交联和辐射交联。化学交联是在UHMWPE中加入适当的交联剂后,在熔融过程中发生交联。辐射交联是采用电子射线或γ射线直接对UHMWPE制品进行照射使分子发生交联。UHMWPE的化学交联又分为过氧化物交联和偶联剂交联。(1)过氧化物交联过氧化物交联工艺分为混炼、成型和交联三步。混炼时将UHMWPE与过氧化物熔融共混,UHMWPE在过氧化物作用下产生自由基,自由基偶合而产生交联。这一步要保证温度不要太高,以免树脂完全交联。经过混炼后得到交联度很低的可继续交联型UHMWPE,在比混炼更高的温度下成型为制件,再进行交联处理。UHMWPE经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。国外曾报道用2,5-二甲基-2,5双过氧化叔丁基己炔-3作交联剂〔11〕,但国内很难找到。清华大学用廉价易得的过氧化二异丙苯(DCP)作为交联剂进行了研究〔12〕,结果发现:DCP用量小于1%时,可使冲击强度比纯UHMWPE提高15%~20%,特别是DCP用量为时,冲击强度可提高48%。随DCP用量的增加,热变形温度提高,可用于水暖系统的耐热管道。(2)偶联剂交联UHMWPE主要使用两种硅烷偶联剂:乙烯基硅氧烷和烯丙基硅氧烷,常用的有乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷。偶联剂一般要靠过氧化物引发,常用的是DCP,催化剂一般采用有机锡衍生物。硅烷交联UHMWPE的成型过程首先是使过氧化物受热分解为化学活性很高的游离基,这些游离基夺取聚合物分子中的氢原子使聚合物主链变为活性游离基,然后与硅烷产生接枝反应,接枝后的UHMWPE在水及硅醇缩合催化剂的作用下发生水解缩合,形成交联键即得硅烷交联UHMWPE。(3)辐射交联在一定剂量电子射线或γ射线作用下,UHMWPE分子结构中的一部分主链或侧链可能被射线切断,产生一定数量的游离基,这些游离基彼此结合形成交联链,使UHMWPE的线型分子结构转变为网状大分子结构。经一定剂量辐照后,UHMWPE的蠕变性、浸油性和硬度等物理性能得到一定程度的改善。用γ射线对人造UHMWPE关节进行辐射,在消毒的同时使其发生交联,可增强人造关节的硬度和亲水性,并且使耐蠕变性得以提高〔13〕,从而延长其使用寿命。有研究〔14〕表明,将辐照与PTFE接枝相结合,也可改善UHMWPE的磨损和蠕变行为。这种材料具有组织容忍性,适于体内移植。 加工性能的改进UHMWPE树脂的分子链较长,易受剪切力作用发生断裂,或受热发生降解。因此,较低的加工温度,较短的加工时间和降低对它的剪切是非常必要的。为了解决UHMWPE的加工问题,除对普通成型机械进行特殊设计外,还可对树脂配方进行改进:与其它树脂共混或加入流动改性剂,使之能在普通挤出机和注塑机上成型加工,这就是中介绍的润滑挤出(注射)。 共混改性共混法改善UHMWPE的熔体流动性是最有效、最简便和最实用的途径。目前,这方面的技术多见于专利文献。共混所用的第二组份主要是指低熔点、低粘度树脂,有LDPE、HDPE、PP、聚酯等,其中使用较多的是中分子量PE(分子量40万~60万)和低分子量PE(分子量<40万)。当共混体系被加热到熔点以上时,UHMWPE树脂就会悬浮在第二组份树脂的液相中,形成可挤出、可注射的悬浮体物料。(1)与低、中分子量PE共混UHMWPE与分子量低的LDPE(分子量1,000~20,000,以5,000~12,000为最佳)共混可使其成型加工性获得显著改善,但同时会使拉伸强度、挠曲弹性等力学性能有所下降。HDPE也能显著改善UHMWPE的加工流动性,但也会引起冲击强度、耐摩擦等性能的下降。为使UHMWPE共混体系的力学性能维持在一较高水平,一个有效的补偿办法是加入PE成核剂,如苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐等,可以借PE结晶度的提高,球晶尺寸的微细均化而起到强化作用,从而有效阻止机械性能的下降。有专利〔15〕指出,在UHMWPE/HDPE共混体系中加入很少量的细小的成核剂硅灰石(其粒径尺寸范围5nm~50nm,表面积100m2/g~400m2/g),可很好地补偿机械性能的降低。(2)共混形态UHMWPE的化学结构虽然与其它品种的PE相近,但在一般的熔混设备和条件下,它们的共混物都难以形成均匀的形态,这可能与组份之间粘度相差悬殊有关。采用普通单螺杆混炼得到的UHMWPE/LDPE共混物,两组份各自结晶,不能形成共晶,UHMWPE基本上以填料形式分散于LDPE基体中。熔体长时间处理和使用双辊炼塑机混炼,两组份之间作用有所加强,性能亦有进一步的改善,不过仍不能形成共晶的形态。Vadhar发现〔16〕,当采用两步共混法,即先在高温下将UHMWPE熔融,再降到较低温度下加入LLDPE进行共混,可获得形成共晶的共混物。Vadher用溶液共混法也得到了能形成共晶的UHMWPE/LLDPE共混物。(3)共混物的力学强度对于未加成核剂的UHMWPE/PE体系,其在冷却过程中会形成较大的球晶,球晶之间存在着明显的界面,而在这些界面上存在着由分子链排布不同引起的内应力,由此会导致裂纹的产生,所以与基体聚合物相比,共混物的拉伸强度常常有所下降。当受到外力冲击时裂纹会很快地沿球晶界面发展而导致最后的破碎,因此又引起冲击强度的下降。 流动改进剂改性流动改进剂促进了长链分子的解缠,并在大分子之间起润滑作用,改变了大分子链间的能量传递,从而使得链段位移变得容易,改善了聚合物的流动性。用于UHMWPE的流动改进剂主要是指脂肪族碳氢化合物及其衍生物。其中脂肪族碳氢化合物有:碳原子数在22以上的n-链烷烃及以其作主成分的低级烷烃混合物;石油分裂精制得到的石蜡等。其衍生物是指末端含有脂肪族烃基、内部含有1个或1个以上(最好为1个或2个)羧基、羟基、酯基、羰基、氮基甲酰基、巯基等官能团;碳原子数大于8(最好为12~50)并且分子量为130~2000(以200~800为最佳)的脂肪酸、脂肪醇、脂肪酸酯、脂肪醛、脂肪酮、脂肪族酰胺、脂肪硫醇等。举例来说,脂肪酸有:癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬酯酸、油酸等。北京化工大学制备了一种有效的流动剂(MS2)〔17〕,添加少量(~)就能显著改善UHMWPE的流动性,使其熔点下降达10℃之多,能在普通注塑机上注塑成型,而且拉伸强度仅有少许降低。另外,用苯乙烯及其衍生物改性UHMWPE,除可改善加工性能使制品易于挤出外,还可保持UHMWPE优良的耐摩擦性和耐化学腐蚀性〔18〕;1,1-二苯基乙炔〔19〕、苯乙烯衍生物〔20〕、四氢化萘〔21〕皆可使UHMWPE获得优良的加工性能,同时使材料具有较高的冲击强度和耐磨损性。 液晶高分子原位复合材料液晶高分子原位复合材料是指热致液晶高分子(TLCP)与热塑性树脂的共混物,这种共混物在熔融加工过程中,由于TLCP分子结构的刚直性,在力场作用下可自发地沿流动方向取向,产生明显的剪切变稀行为,并在基体树脂中原位就地形成具有取向结构的增强相,即就地成纤,从而起到增强热塑性树脂和改善加工流动性的作用。清华大学赵安赤等采用原位复合技术,对UHMWPE加工性能的改进取得了明显的效果〔22〕。用TLCP对UHMWPE进行改性,不仅提高了加工时的流动性,采用通常的热塑加工工艺及通用设备就能方便地进行加工,而且可保持较高的拉伸强度和冲击强度,耐磨性也有较大提高。 聚合填充型复合材料高分子合成中的聚合填充工艺是一种新型的聚合方法,它是把填料进行处理,使其粒子表面形成活性中心,在聚合过程中让乙烯、丙烯等烯烃类单体在填料粒子表面聚合,形成紧密包裹粒子的树脂,最后得到具有独特性能的复合材料。它除具有掺混型复合材料性能外,还有自己本身的特性:首先是不必熔融聚乙烯树脂,可保持填料的形状,制备粉状或纤维状的复合材料;其次,该复合材料不受填料/树脂组成比的限制,一般可任意设定填料的含量;另外,所得复合材料是均匀的组合物,不受填料比重、形状的限制。与热熔融共混材料相比,由聚合填充工艺制备的UHMWPE复合材料中,填料粒子分散良好,且粒子与聚合物基体的界面结合也较好。这就使得复合材料的拉伸强度、冲击强度与UHMWPE相差不大,却远远好于共混型材料,尤其是在高填充情况下,对比更加明显,复合材料的硬度、弯曲强度,尤其是弯曲模量比纯UHMWPE提高许多,尤其适用作轴承、轴座等受力零部件。而且复合材料的热力学性能也有较好的改善:维卡软化点提高近30℃,热变形温度提高近20℃,线膨胀系数下降20%以上。因此,此材料可用于温度较高的场合,并适于制造轴承、轴套、齿轮等精密度要求高的机械零件。采用聚合填充技术还可通过向聚合体系中通入氢或其它链转移剂,控制UHMWPE分子量大小,使得树脂易加工〔23〕。美国专利〔24〕用具有酸中性表面的填料:水化氧化铝、二氧化硅、水不溶性硅酸盐、碳酸钙、碱式碳酸铝钠、羟基硅灰石和磷酸钙制成了高模量的均相聚合填充UHMWPE复合材料。另有专利〔25〕指出,在60℃,且有催化剂存在的条件下,使UHMWPE在庚烷中干燥的 氧化铝表面聚合,可得到高模量的均相复合材料。齐鲁石化公司研究院分别用硅藻土、高岭土作为填料合成了UHMWPE复合材料〔26〕。 UHMWPE的自增强〔27、28〕在UHMWPE基体中加入UHMWPE纤维,由于基体和纤维具有相同的化学特征,因此化学相容性好,两组份的界面结合力强,从而可获得机械性能优良的复合材料。UHMWPE纤维的加入可使UHMWPE的拉伸强度和模量、冲击强度、耐蠕变性大大提高。与纯 UHMWPE相比,在UHMWPE中加入体积含量为60%的UHMWPE纤维,可使最大应力和模量分别提高160%和60%。这种自增强的UHMWPE材料尤其适用于生物医学上承重的场合,而用于人造关节的整体替换是近年来才倍受关注的,UHMWPE自增强材料的低体积磨损率可提高人造关节的使用寿命。4 UHMWPE的合金化UHMWPE除可与塑料形成合金来改善其加工性能外(见和),还可获得其它性能。其中,以PP/UHMWPE合金最为突出。通常聚合物的增韧是在树脂中引入柔性链段形成复合物(如橡塑共混物),其增韧机理为“多重银纹化机理”。而在PP/UHMWPE体系,UHMWPE对PP有明显的增韧作用,这是“多重裂纹”理论所无法解释的。国内最早于1993年报道采用UHMWPE增韧PP取得成功,当UHMWPE的含量为15%时,共混物的缺口冲击强度比纯PP提高2倍以上〔29〕。最近又有报道,UHMWPE与含乙烯链段的共聚型PP共混,在UHMWPE的含量为25%时,其冲击强度比PP提高一倍多〔30〕。以上现象的解释是“网络增韧机理”〔31〕。PP/UHMWPE共混体系的亚微观相态为双连续相,UHMWPE分子与长链的PP分子共同构成一种共混网络,其余PP构成一个PP网络,二者交织成为一种“线性互穿网络”。其中共混网络在材料中起到骨架作用,为材料提供机械强度,受到外力冲击时,它会发生较大形变以吸收外界能量,起到增韧的作用;形成的网络越完整,密度越大,则增韧效果越好。为了保证“线性互穿网络”结构的形成,必须使UHMWPE以准分子水平分散在PP基体中,这就对共混方式提出了较高的要求。北京化工大学有研究发现:四螺杆挤出机能将UHMWPE均匀地分散在PP基体中,而双螺杆挤出机的共混效果却不佳。EPDM能对PP/UHMWPE合金起到增容的作用。由于EPDM具备的两种主要链节分别与PP和UHMWPE相同,因而与两种材料都有比较好的亲合力,共混时容易分散在两相界面上。EPDM对复合共晶起到插入、分割和细化的作用,这对提高材料的韧性是有益的,能大幅度地提高缺口冲击强度。另外,UHMWPE也可与橡胶形成合金,获得比纯橡胶优良的机械性能,如耐摩擦性、拉伸强度和断裂伸长率等。其中,橡胶是在混合过程中于UHMWPE的软化点以上进行硫化的。5 UHMWPE的复合化UHMWPE可与各种橡胶(或橡塑合金)硫化复合制成改性PE片材,这些片材可进一步与金属板材制成复合材料。除此之外,UHMWPE还可复合在塑料表面以提高耐冲击性能。在UHMWPE软化点以上的温度条件下,将含有硫化剂的未硫化橡胶片材与UHMWPE片材压制在一起,可制得剥离强度较高的层合制品,与不含硫化剂的情况相比,其剥离强度可提高数十倍。用这种方法同样可使未硫化橡胶与塑料的合金(如EPDM/PA6、EPDM/PP、SBR/PE)和UHMWPE片材牢固地粘接在一起。参考文献:〔1〕 钟玉荣,卢鑫华.塑料〔J〕,1991,20(1):30〔2〕 孙大文.塑料加工应用〔J〕,1983(5):1〔3〕 杨年慈.合成纤维工业〔J〕,1991,14(2):48〔4〕 JP 63,161,075〔P〕〔5〕 .〔J〕,1981,27(1):8

UHMWPE辐照交联,添加助剂改性

大学生是祖国建设的栋梁之才,医学生既有大学生心理发展的共性,又因其自身的学科专业特点而具有职业定向的个性特征。下文是我为大家整理的关于大专医学生 毕业 论文的 范文 ,欢迎大家阅读参考! 大专医学生毕业论文篇1 浅谈红芪多糖的纯化及初步结构鉴定 论文摘要:目的研究红芪多糖的分离纯化及初步的结构。 方法 采用超声辅助提取多糖,比较 Sevag法、三氯乙酸法和三氯乙酸-正丁醇法脱蛋白的效果,并用 GC、TLC及 IR分析多糖的初步结构。结果三氯乙酸-正丁醇法脱蛋白,经 Sephadex G-25柱层析分离纯化后得红芪多糖2(HPS-2),HPLC确定为均一多糖,糖含量为 ,糖组成分析表明其含有鼠李糖、木糖、阿拉伯糖、葡萄糖和半乳糖,摩尔比为 .3∶.2∶∶∶2.。结论HPS-2是一种以 β苷键为主的吡喃型杂多糖。 论文关键词:红芪多糖; 薄层色谱; 结构鉴定 红芪(Radix Hedysari),为豆科岩黄芪属植物多序岩黄芪Hedysarumpolybotrys 的干燥根,为甘肃特产名贵药材,在临床上主要用于补气固表, 利尿托毒, 排脓, 敛疮生肌。红芪中含有氨基酸、有机酸、β-谷甾醇、红芪多糖、微量元素等众多的生物活性物质[1]。近年来研究发现,红芪多糖的活性成分具有增强机体免疫力、抗肿瘤、抗衰老、治疗糖尿病等作用[1,2]。特别是我们近几年的研究发现,经 7%乙醇沉淀部分药理作用尤为明显。由于多糖为大分子化合物,分离纯化比较困难,而蛋白质的脱除是后期结构鉴定的关键之一,为了提高多糖的得率、纯度及活性,本实验对这部分多糖进行了脱蛋白方法的研究,结合TLC、GC、IR等方法对 HPS-2 的结构进行了初步的分析,以期为红芪多糖的进一步研究提供理论基础。 1 材料与仪器 红芪,购自甘肃武都;牛血清白蛋白、考马斯亮蓝 G-25(西安周鼎国生物技术有限责任公司);单糖对照品(中国药品生物制品检定所);Sephadex G-25(上海长征制药厂);硅胶 G(青岛海洋化工厂); 其它 试剂均为分析纯。 CR22G Ⅱ型离心机(日本日立);UV-17 型紫外仪(日本岛津);GC-Clarus 5型气相色谱仪(美国 PerkinElmer公司);红外光谱仪(Nicolet NEXUS 67);BS-1A 自动部分收集器、HL-2 恒流泵(上海沪西分析仪器厂有限公司);美国Waters6型高效液相色谱仪,配 Waters2414型示差折光检测器。 2 方法 红芪多糖的提取纯化路线其流程如下。 提取红芪药材→粉碎→超声脱脂→热水提取3次→合并提取液→减压浓缩后离心→取上清液→乙醇沉淀→有机溶剂洗剂→透析→减压浓缩→冷冻干燥得粗多糖 HPS。 纯化粗多糖液→脱蛋白、色素→Sephadex G-25柱层析→洗脱液透析→浓缩→冷冻干燥→精制红芪多糖 HPS-2。 蛋白质和多糖含量的测定蛋白质含量测定采用考马氏亮蓝法[3],多糖含量采用苯酚-硫酸法[4]。 脱蛋白方法 称取一定量的粗多糖,加入适量蒸馏水,6℃加热溶解,备用。本实验采用 3种脱蛋白的方法。 Sevag法取粗多糖溶液,加入等体积的氯仿-正丁醇(V/V为 4∶1)试剂,混合振摇 3 min,离心除去沉淀,透析后醇沉,冷冻干燥,即得脱蛋白多糖。 三氯乙酸法取粗多糖溶液,加入多糖溶液体积 .1倍量的三氯乙酸,低温(4℃)剧烈振摇 3 min,离心除去沉淀,透析后醇沉,冷冻干燥,即得脱蛋白多糖。 三氯乙酸-正丁醇法 取粗多糖溶液,加入等体积的三氯乙酸-正丁醇(V/V为 1∶1)试剂,振荡 1 min,静置分层,收集下层水溶液,透析后醇沉,冷冻干燥,即得脱蛋白多糖。 红芪多糖的精制将一定量的脱蛋白多糖,溶解于适量蒸馏水中。过氧化氢除色素,减压浓缩,经醇沉、离心、冷冻干燥得红芪多糖1(HPS-1),取适量的 HPS-1,蒸馏水溶解后,Sephadex G-25柱分离,蒸馏水洗脱,流速 .8 ml/min,每 3 ml收集1份,苯酚-硫酸法跟踪检测,绘制洗脱曲线,合并主峰流出液,减压浓缩至一定体积,冷冻干燥得 HPS-2。 纯度鉴定用 HPLC法,TSK-gel G25PW色谱柱,示差折光检测器,流动相为双蒸水,流速 1. ml/min,检测器温度35℃,样品浓度4 mg/ml,进样量5 μl。同时取该样品溶液在 2~4 nm范围内进行紫外扫描。 气相色谱参照文献[5],多糖样品经彻底水解后制备糖腈乙酸酯衍生物,以单糖的糖腈乙酸酯衍生物为对照品进行 GC分析。色谱条件: OV-11毛细管柱(5 m×. 32 mm),载气为N2 ,流速 5 ml/min,分流比 4∶1,FID氢火焰检测器,汽化室温度 25℃,检测器温度 28℃。程序升温:11℃(保持 5 min)→(5℃/min)→ 28 ℃(保持 2 min)。进样量 .4 μl。 薄层色谱[6]取 15mg HPS-2,三氟醋酸彻底水解,水解产物溶于 1 ml蒸馏水中,以标准单糖为对照,分别取样品水解液和单糖对照液在含磷酸二氢钠的硅胶G薄层板上点样,上行二次展开,展开剂: 醋酸乙酯∶冰醋酸∶甲醇∶水=12∶3∶3∶2(V/V);自然风干后显色,显色剂: 苯胺-邻苯二甲酸溶液,烘箱中 15 ℃加热 5~1 min显色。 红外光谱测定 取 2 mg HPS-3,KBr压片,测定红外光谱。 3 结果 脱蛋白方法的选择以蛋白脱除率和多糖损失率为指标,比较 Sevag法、三氯乙酸法和三氯乙酸-正丁醇法的脱蛋白效果(见图1)。Sevag法的多糖损失率最低,但脱蛋白率也最低;三氯乙酸-正丁醇法的脱蛋白率最高,多糖损失率最低;三氯乙酸法的脱蛋白率达 3%以上,但多糖损失最高。综合各方面的因素,本实验选取三氯乙酸-正丁醇法脱除红芪多糖中的蛋白质。 红芪多糖分离纯化红芪多糖经Sephadex G-25柱层析纯化分离的洗脱曲线(见图2)。仅出现 1个洗脱峰, 收集主峰, 透析, 浓缩,冷冻干燥, 得到 HPS-2。 纯度鉴定HPS-2的紫外扫描在 26~28nm处吸收峰消失,茚三酮反应呈阴性,说明样品中的蛋白质基本除尽,也无核酸存在;碘-碘化钾反应呈阴性,表明样品为非淀粉多糖;经 HPLC凝胶色谱后为单一对称峰。表明其为均一组分;苯酚-硫酸法测定 HPS-2的糖含量为 。 红芪多糖的结构分析 气相色谱分析 气相色谱分析(见图 3)。比较标准品和样品的保留时间,可见多糖 HPS- 2由鼠李糖、木糖、阿拉伯糖、葡萄糖、半乳糖5种单糖组成。其摩尔组成比例为 .3∶.2∶∶∶2.。 薄层色谱分析HPS-2 经薄层色谱(见图 4)。检出半乳糖(Rf对=Rf样=.4)、葡萄糖(Rf对=Rf样=.3)、阿拉伯糖(Rf对=.2,Rf样=.19)、木糖(Rf对=Rf样=.62)和鼠李糖(Rf对=Rf样=.77),其中木糖和鼠李糖含量较低,斑点不明显。这与气相色谱结果一致。 红外分析从IR谱图由图 5可见,HPS-2在 3 6~3 2 cm-1、3 ~2 8 cm-1和 1 4~1 2 cm-1处均具有多糖的特征吸收峰。1 154、1 8、1 24 cm-1处为 β-吡喃糖基的振动峰[7];898 cm-1为 β-糖苷键的吸收峰,82 cm-1处为 α-吡喃糖的吸收峰,说明多糖 HPS-2中存在 α和 β两种类型的苷键,并以吡喃型糖为主。 4 结论 本实验比较了3种脱蛋白方法,三氯乙酸-正丁醇法脱蛋白效果最好,脱除率达 ,多糖损失率少。利用葡聚糖凝胶 Sephadex G-25柱层析分离纯化红芪多糖得 HPS-2,经 HPLC及紫外扫描为均一多糖,不含蛋白质和核酸。 GC、TLC及 IR分析 HPS-2的糖基组成和结构为,主要由鼠李糖、木糖、阿拉伯糖、葡萄糖和半乳糖5种单糖组成,其摩尔比为 .3∶.2∶∶∶2.,单糖主要为吡喃糖,异头碳以 β型为主,并有少量的 α型。这为红芪多糖的深入研究打下了理论基础,特别为其组成的快速分析提供了可靠的方法。 参考文献 [1]权菊香. 红芪的药理研究进展[J]. 时珍国药研究,1997,8(2):178. [2]金智生,汝亚琴. 中药红芪的实验研究进展[J].甘肃中医学院学报,23,2(4):52. [3]李知敏,王伯初,周 菁,等. 植物多糖提取液的几种脱蛋白方法的比较分析[J].重庆大学学报,24,27(8):57. [4]董 群,郑丽伊,方积年. 改良的苯酚-硫酸法测定多糖和寡糖含量的研究[J].中国药学杂志,1996,31:55. [5]康学军,曲见松. 白芷多糖中单糖组成的气相色谱分析[J].药物分析杂志,26,26(7):891. [6]张维杰.复合多糖生化研究技术[M].上海:上海科学技术出版社,1987:1. 大专医学生毕业论文篇2 试谈医学 教育 实践改革 摘要:医学教育主要是通过理论教学和实践教学来进行,通过理论知识的传授、临床技能和临床思维的训练,最终培养成能够解决病患疾苦的合格的医师。理论教学在整个培养过程中占据绝大部分时间,理论授课形式对学生吸引力不够,学生主动参与学习程度不够,实际解决问题能力不强,这些都影响了教学效果。因此,针对现阶段医学教育存在的问题,在医学教育中加强医学教育改革,减少理论授课时间,增加实践课教学时间,提高学生主观能动性,加强师生之间教学互动,进而提升学生学习的主动性和积极性,提高教学质量和教学效果,在真正意义上提升学生解决问题的能力。 关键词:医学教育;实践改革;探讨 医学专业学生的实践能力培养是我国医学教育的关键,也是最终目的。我国传统的医学教育存在重视理论知识的单一传授,忽视学生动手能力和解决实际问题能力培养的问题。随着医学事业的发展,现阶段的社会对医学生的培养提出了更高的要求,需要在医学教学中加强对学生实践能力的培养,在课程的设置上增加实践教学课时,减少不必要的理论授课时间。比如我国很多医科大学建设了医学技能培训中心,将医学教育中的理论教学、实践教学和技能培训进行结合,并相应配备了高技术的设备和计算机培训软件系统,在计算机软件的作用下将医学操作和人体模型进行结合,在很大程度上满足了医学发展对医学生培训的需求。 1现阶段医学教育的发展现状 伴随我国高等教育的扩招,我国高等教学实现了由精英化教育向大众化教育的转变。高等医学院校的招生人数不断增加,但与之相匹配的教育投入却没有按照一定比例增加,在扩招的影响下,加剧了学生人数增加与投入教育资源不足之间的矛盾。医学教育是培养学生诊断和治疗疾病的教育,是高投入的教育,医学实践教学对提升医学生的分析能力、实践能力和创新能力具有重要意义。但在扩招的情况下,医学教育面临师资力量、教学经费不足、教学场所不够等困境,使得医院的实践教学变得困难,情况不容乐观。 具体体现在以下几方面:第一,人才培养方案制定不合理,无法实现医学教育培养目标。医学教育不仅需要培养创新型人才,更需要培养能够在各级医疗卫生机构中从事大量诊疗工作的医师,只要这样才能解决患者看病难、看病贵的现实问题。但在实际的医学教育培养方案中,对学生实践能力的培养,即在处理病人过程中分析问题、解决问题的能力培养明显不足。学生理论知识丰富,动手能力差。 第二,招生人数急剧增加,但学校硬件和软件设施不能相应增加,无法取得优质的教学质量。由于大学教育由精英教育向大众化教育发展,以及部分经济利益的驱动,几乎每个大学都在扩招。这样的后果就是,学生人数迅猛增加,学校的软硬件设施没有相应增加,而招收的学生整体素质是下降的,能力参差不齐。扩招后的医学院校,由于在办学资金、师资力量以及教学设施上存在限制,导致在实际教学中不能完全采用小班式教学,而更多的是采用大班式的理论教学。大班理论教学效果自然不如小班教学。 人数的增加与学生整体素质的下降加之教学效果下降自然影响最终毕业学生的素质和能力。第三,医学院校附属医院实践条件受限,患者自我保护意识增强,学生实践机会减少。医学院校的附属医院都是大型医院,恰恰也是病人最多的医院,往往是一床难求,临床工作的医师往往超负荷工作,在指导临床实践的实习生的时间和精力上都受到严重影响,指导学生实践的效果自然受到影响。伴随社会发展,医疗环境发生了变化,病人自我保护意识增强,传统的和患者面对面的实践教学面临挑战,更多病人不愿意让学生动手检查和进行一些医学处置。所以,学生实践能力受到影响。而且由于扩招,最终在临床上实践的学生人数多,导致每个实践学生管理病人的数量减少,所见疾病种类也减少。 2医学教育实践教学改革的策略 制定合理的培养方案 医学院校既要培养创新型高素质人才,以期他们去探索未知的许多医学难题。也要培养更多实用型医技人才,大量的医疗卫生机构需要他们去充实力量,大量的患者需要医师去诊断和治疗,这是解决看病难、看病贵,大医院人满为患的根本。因此,要因人制宜地制定培养方案,不搞一刀切。 增加教育经费的投入 投入更多的教育经费,可以增加教师的数量,改善教师工作条件,提高教师教学能力。改善教学硬件设施,采用多媒体教学,采用更多小班教学,增加授课过程中教师与学生互动,变被动学习为主动参与,提高学生学习积极性。 压缩临床课程理论教学学时,增加实践课学时,改革学生成绩考核方式 临床课程理论教学属于被动教学,老师讲,学生听,学生觉得枯燥无味,学习积极性不高,课堂死气沉沉。学生喜欢实践性强的内容,喜欢更接近临床病人的内容。因此,增加临床课程实践教学学时等于提前进入临床实践。对影像专业核医学课程,我们的改革就是将20学时的理论学时压缩成14学时,实践学时由2学时增加到8学时。改革评价学生成绩的方式,将每次的作业、课堂纪律、考勤、期末考试成绩综合后作为本学期最终成绩。经过这些改革,学生学习积极性明显增强,自律性加强,学习效果越来越好,综合素质得到提高。 加强实验技能中心和附属医院的建设,充分发挥实践教学平台的作用,对实践过程进行严格规范 实践教学是培养和提升学生实践技能的根本,实验技能中心和附属医院就是虚拟实践和真实实践的两个平台。医学院校要从意识上重视医学实践的发展,为医学实践配置相应的教学设备,实行完善的设备管理 措施 ,加强对实践教学过程的规范。另外,有关人员还要加强对医学实践教学模拟软件的开发,将先进的技术和理念运用到医学教育实践中。还要加强对医学教育资金的投入,完善医学教学平台实践教学环节的建设。医学教学模式的选择要根据医学实践教学改革面临的问题进行建立,要重点突出模拟教学的地位,形成医学教学质量评价的标准,对医学实践的管理模式进行创新,对教育实践的过程进行优化。[1] 加强对实践教学的管理,完善相应的实践教学制度,加强实践教学质量的管控 针对原有重视理论课教学,忽视实践课教学问题,医学教学对原有的教学管理模式进行改革,强化实践教学制度的建设,加强对实验考核、实验设备以及实验消耗的管理。在实践课环节,要更多要求学生主动参与,分析医学问题。在加强对实践教学质量的管控方面做到以下几点: 第一,加强对实践教学计划的管理。根据人才培养的目标以及学生具备的知识、技能,制定适合的实践教学大纲。实验教学设计要结合具体的医学考试内容进行设计,建立一种不依附于理论教学的实验教学体系,加强对实验综合性、创新性的关注。 第二,加强对实践过程的管理。在实践教学中要按照严格的要求组织实验教学,特别是注意对学生独立分析和处理问题能力的培养。加强对实践教学的考核。[2]第三,加强对实践教学质量的检查。首先,要健全实验课的考核评定方法,将学生对实验课全过程的记录作为对其最终考核的标准之一。其次,建立实验听课制度,加强学生之间的相互学习。最后,定期在网上对学生进行实验教学评价调查,进而了解最新的实验教学状况。 3 总结 综上所述,伴随医学院的扩招以及社会发展对医学人才的需要,医学教育改革是医学教育发展的必然需要。培养具有实践技能的医学高级人才是一个系统工程,因此,如何培养一个符合社会需要的医学人才,需要各个医学院校进行不断的研究和探索。 参考文献: [1]裴冬梅,吴多芬.医学实践教学改革的新途径[J].现代教育管理,2009,(6):69-71. [2]赵申武.医学临床专业预防医学实践教学改革探讨[J].实用预防医学,2009,(1):293-294. 大专医学生毕业论文篇3 医学模拟教学在妇产科教学的应用 【摘要】探讨用单项基础技能训练、综合训练的模拟教学模式在本科生妇产科教学中的应用,以达到提高医学生临床基本技能操作能力和培训科学思维的目的。 【关键词】妇产科;实践教学;模拟教学 临床实践教学是医学生学习掌握基本操作技能、培养临床思维等能力的关键阶段[1,2]。妇产科的操作大多涉及患者的隐私,而医学模拟教育可以利用局部功能训练模型、模拟人、计算机虚拟模拟人,模拟临床真实环境作为教学铺助,达到提高学生临床基本操作技能和培训科学思维的目的。 1模拟教学在妇产科实践教学中的应用 医学本科生学习期间,要掌握基本的操作技能,如在妇产科,对患者子宫后穹窿的穿刺、输卵管通液术、上环术、下环术及产前检查等。可采用多元化示范为导向的模拟教学模式,用局部功能训练模型训练学生,使其有效率地掌握相应的临床操作技能[2],熟练操作技巧[3]。示范教学是指教师与学生之间的互动性局部功能训练模型示范教学,该环节是以实验技能为主的操作教学,教师先通过微视频进行示范,让学生了解基本操作要求,再有选择的对一些重点、难点问题进行讲解并示范操作[4]。各小组选择代表先照样练习,掌握要领后再向组内同学讲解并在全班示范操作。学生在练习时,老师注意观察,对关键部分要提示学生注意,随时指出操作中的不足,并加以讲解。 要给出充足的实践操作时间,用于组内和组间的示范性交流,相互间进行评价,并可以拍摄视频,收集教学素材,用于以后的实验教学,活跃课堂的教学气氛。在示范性教学中,要充分发挥微课、慕课等新教学手段的优点,利用好信息化教学的优势。局部功能训练模型能给学生提供反复强化操作训练的机会,让学生能熟练操作技能。现有的高级综合模拟人拥有强大软件功能。 模拟人具有生理系统和功能体征系统,根据实践教学内容的要求,设置相应的参数,设计不同病情的“患者”,满足各层次的医学实践教学的需求。此类综合训练模拟教学提高了学生的学习兴趣和学习难度[5,6]。综合训练教学采用了启发式教学、案例教学、小组讨论式方法等多种 教学方法 。教师可以一星期前告知学生案例,学生事先做好预习准备。实验室模拟人连接监护仪、呼吸机、麻醉机,学生可对模拟人进行观察、做各种体格检查、采集数据,在最短的时间内做出综合分析和鉴别判断[4],实施相应的临床诊治方案。教师根据学生的诊治表现给予指导和纠正错误,培训医学生的良好的临床思维,提升现代医学教学受训学生的教学质量。 2医学模拟教学的优点 妇科患者病种多样 学生可以通过模拟教学观察到多种妇科疾病,特别是临床上少见疾病的特征[6],学生可直接进行体格检查和操作,熟悉各种妇科疾病患者的诊治。 通过模拟教学反复练习 学生在模型上重复练习[6],能较好的掌握操作要点,直到技能熟练,如妇科患者子宫后穹窿穿刺术、诊刮术、会阴侧切缝合术等。 模拟教学安全性强 在带教教师的指导下直接在患者身上进行操作,如助产术,存在一定的安全隐患。病史采集不熟练及诊治时间急促,易引发患者不良情绪,可能触发医患矛盾。而模拟教学利用模拟系统直到学生进行练习,避免此类问题的发生[7,8]。在妇产科的本科生教学中,模拟教学创造了一个安全、贴近真实临床的教学环境,同时也必须认识到,模拟教学不能完全代替临床实践床旁教学。 参考文献 [1]邓贝贝.医学模拟教学:现代医学教育改革的必经之路[J].卫生教育,2015,21(34):85-86. [2]卢书明,马亮亮,李艳霞,等.案例教学法联合模拟教学法在消化内科临床教学实践中的应用[J].医学伦理与实践,2015,28(23):3299-3301. [3]李益平,刘冬莹,库华义.医学模拟教学在基层卫生技术人员康复技能培训中的应用[J].中安国医学教育杂志,2014,34(1):105-106. [4]张明亚,罗良平,赵辉.高级综合模拟系统在医学教育中的应用[J].医疗卫生装备,2012,33(5):132-133. [5]尹悦,韩霏,郭凤林,等.临床实习前医学模拟教学集中训练的效果分析[J].中国高等医学教育,2012,4:67,101. [6]刘静馨,陈沁,罗艳华.护理教育者在高仿真模拟教学中的真实体验的质性研究[J].护理进修杂志,2011,26(12):1082-1084. [7]伍丽艳,植瑞东,陈康敏.情景模拟教学法和虚拟医学教学法在临床教学中的作用分析[J].北方药学,2013,10(7):152-153. [8]吴凡,许杰洲,杨棉华.医学模拟教学在提高学生能力与素质中的应用探讨[J].中国医学教育技术,2010,24(2):171-173. 猜你喜欢: 1. 大专临床医学论文 2. 大专临床医学专业毕业论文 3. 大专临床毕业论文范文 4. 大专临床医学毕业论文

硅橡胶毕业论文

怎么说呢,一般都是很保守的做法吧,办法当然很多,当然机型有很多种啦,不一样哦以下是是水密封的装置、、、机械密封原理在下面,。,。,。,。东方马达该系列为经UL认证符合IEC规格之IP67的减速电机。适合用于溅水环境。备有适用于输送带等单向运转的感应式机种,输出功率为25W、40W、60W、90W。目前开发生产的大力距防水、防腐蚀的步进电机,型号有57系列,86系列。其加工和外表处理采用了特殊的工艺,前端盖采用进口油封,后端盖直接从电机里面引出电缆线,电机可以在一米深以内水中正常运行,已广泛用于环境恶劣的条件下!特别是在喷泉设备上使用更显示其优越性能,实用新型涉及防水电机,它包括电机定子、转子、转轴和端盖,还设有防水盖。引出线向下弯曲后嵌入防水盖内,能有效地防止水沿着引出线处流入电机内部,即使引出线在使用时经常活动,也不影响其防水效果。并且结构简单,安装方便。所述后端盖和防水盖的中心还开有轴向通孔,安装齿轮时可避免轴承受损。在齿轮安装完毕后,再在所述防水盖的轴向通孔内塞入耐油橡皮塞密封。一体式 控制部分与显示部分合为一体,装在一个精致的专用塑料盒子里。盒子安装在车把的正中,盒子的面板上开有数量不等的小孔,孔径4~5mm,外敷透明防水膜。孔内相应位置设有发光二极管以指示车速、电源和电池剩余电量。强制循环锅炉的锅水循环泵为何多采用湿式电动机?锅不循环泵安装在下降管系统,用它产生的压头,维持工质在蒸发系统的循环流动,循环泵产生的压头并不高,一般仅有—,但其工作参数却很高,即泵的入口水的压力、温度与汽包内工质参数一样。在这样高的参数下,解决泵轴的密封问题就比较困难。所以一般循环泵多采用无轴封泵,把电动机浸在水中,与水泵外壳边成一体。电动机的定子与转子均用防水聚氯乙烯绝缘电缆绕成。泵的叶轮和电动机转子固定在一根轴上,成为一个整体,并装在一个密封的壳体内。电动机内腔与泵壳内腔沿电动机转子和泵叶轮的间隙是互相连通的,电动机定子浸泡于水中,并处于锅炉工作压力之下。电动机的冷却是借助于装在电动机轴承端的辅助叶轮,使循环水由电动机后轴承进入电动机,经转子和定子的间隙到前轴承,然后流入外部冷却器,形成外密闭循环系统。高压冷却管圈的水,借助于低压冷却水予以冷却。机械密封原理及材料分析1.机械密封的工作原理机械密封又称端面密封(Mechanical Seal),是旋转轴用动密封。机械密封性能可靠,泄露量小,使用寿命长,功耗低,毋须经常维修,且能适应于生产过程自动化和高温、低温、高压、真空、高速以及各种强腐蚀性介质、含固体颗粒介质等苛刻工况的密封要求。机械密封是靠一对或几对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持接合并配以辅助密封而达到的阻漏的轴封装置。机械密封与软填料密封比较如下:优点:(1)密封可靠,在长期运转中密封状态很稳定,泄露量很小,其泄露约为软填料密封的1%;(2) 使用寿命长,在油、水介质中一般可达1~2年或更长,在化工介质中一般能工作半年以上;(3) 擦功率消耗小,其摩擦功率仅为软填料密封的10%~50%;(4) 轴或轴套基本上不磨损;(5) 维修周期长,端面磨损后可自动补偿,一般情况下不需经常性维修;(6) 抗振性好,对旋转轴的振动以及轴对密封腔的偏斜不敏感;(7) 适用范围广,机械密封能用于高温、低温、高压、真空、不同旋转频率,以及各种腐蚀介质和含磨粒介质的密封。缺点:(1)较复杂,对加工要求高;(2)安装与更换比较麻烦,要求工人有一定的技术水平;(3)发生偶然性事故时,处理较困难;(4)价高。机械密封前的准备工作:(1)检查机械密封的型号、规格是否符合设计图纸的要求,所有零件(特别是密封面、辅助密封圈)有无损伤、变形、裂纹等现象,若有缺陷,必须更换或修复。(2)检查机械密封各零件的配合尺寸、粗糙度、平行度是否符合设计要求。(3)使用小弹簧机械密封时,应检查小弹簧的长短和刚性是否相同。(4)检查主机的窜动量、摆动量和挠度是否符合技术要求,密封腔是否符合安装尺寸,密封端盖与轴是否垂直,一般要求:轴窜动量不大于±;轴摆动量(旋转环密封圈处)不大于;轴最大挠度不大于;密封端盖与垫片接触平面对中心线的不垂直度允许差~。(5)应保持清洁,特别是旋转环和静止环密封面及辅助密封圈表面应无杂质、灰尘。不允许用不清洁的布擦拭密封面。(6)允许用工具敲打密封元件,以防止密封件被损坏。2. 机械密封材料摩擦副材料根据统计,机械密封的泄露大约有80%~95%是由于密封端面,摩擦副造成的。除了要保持密封面平行之外,主要是摩擦副的材料问题。摩擦材料应具备下列条件:(1) 机械强度高,能耐压和耐压力变形;(2) 具有耐干磨性,耐高载荷性,自润滑性好;(3) 配对材料的磨合性好,无过大的磨损和对偶腐蚀;(4) 耐磨性好,寿命长;(5) 导热性和散热性好;(6) 耐高温性好;(7) 抗热裂性好;(8) 耐腐蚀性强;(9) 线膨胀系数小(10) 切削加工性好,成型性能好;(11) 气密性好;(12) 密度小。,能耐热变形和尺寸稳定性好;希望能帮到你啊。。。。。。。》》》》》》》》》》》》》

各个学校都有不同的要求,手里有我自己的,也有别的学校的,你要要的话Email: 可以传给你做个参考!

目的:应用市售漱口液漱口与传统口腔护理方法进行比较性研究,评价市售A组漱口液、B组漱口液漱口与传统口腔护理的效果,用以指导临床实际,提高基础护理质量。方法:将入选患者随机分成A组、B组和传统口腔护理组三组。A组患者用A漱口液,B组用B漱口液于患者置胃管后第2~3天行漱口口腔护理,传统口腔护理组用生理盐水棉球口腔檫拭做传统口腔护理。观察各组口腔护理前后细菌培养、真菌培养、口腔清洁度、口腔pH值、口腔气味、患者舒适度、护理用时、口腔护理并发症等指标变化。结果:(1) A、B组实施漱口后细菌培养菌落数较漱口前减少(A组t=,p<;B组t=,p<),而传统口腔护理组护理前后细菌培养没有变化(t=,p=)。A、B组与传统口腔护理组组间比较,差异显著(F=, p<)。(2)A、B组和传统口腔护理组对患者的口腔清洁、pH值、患者口腔气味的改善均有统计学意义;其中A组口腔护理清洁效果强于其它组(F=,p<)。(3)A、B组与传统口腔护理组舒适度比较没有差异。(4)传统口腔护理组护理用时明显高于A、B组(H=,P<)。(5)A、B组与传统口腔护理组均无口腔护理操作发症发生。结论:(1). A组、B组漱口液漱口护理效果明确。漱口与口腔擦拭一样均可达到清洁口腔、改善口腔气味的目的,还可改变口腔的酸性环境。(2). A组漱口液、B组漱口液漱口杀菌效果优于传统的口腔护理。(3).漱口方法简单、省时,舒适度与传统口腔护理相比没有统计学差异。在病人有自理能力的情况下,用市售A、B漱口液漱口可替代部分病人传统口腔护理。参考文献:[1] 丁广香. 临床口腔护理的现状认识与进展[J]. 临床护理杂志. 2011(06)[2] 李金玲. 决明子含漱液治疗重型肝炎患者口腔疾患[J]. 护理学杂志. 2011(19)[3] 奚洁,白皎皎,夏文兰,程婕. 高龄无创双水平气道正压通气患者口腔感染的护理干预[J]. 解放军护理杂志. 2011(18)[4] 杨雯. 口腔护理方法现状及其展望[J]. 现代临床护理. 2011(09)[5] 李宪红,徐文娟. 清热漱口草药方在口腔护理中的应用[J]. 中国误诊学杂志. 2011(22)[6] 顾银萍,林梅. 临床口腔护理方法的研究进展[J]. 中外医疗. 2011(17)[7] 刘建坤,崔东晖,赵润平,张曼丽,陈信. 芦荟绿茶冰溶液漱口治疗化疗所致口腔溃疡[J]. 护理学杂志. 2011(05)[8] 黄敬. 口腔护理研究进展[J]. 中国医药指南. 2010(29)[9] 张绮,谢蟪旭,何瑶,王萍,黄玮,彭生诚,唐丽洁,史宗道. 国内部分三甲医院危重疾病患者口腔护理情况调查[J]. 中国循证医学杂志. 2010(06)[10] 农小群. 口腔护理研究新进展[J]. 护理实践与研究. 2010(08)

机械密封设计中的选型机械密封结构型式的选择是设计环节中的重要步骤,必须先进行调查:①工作参数—介质压力、温度、轴径和转速。②介质特性—浓度、粘度、腐蚀性、有无固体颗粒及纤维杂质,是否易汽化或结晶等。③主机工作特点与环境条件—连续或间歇操作;主机安装在室内或露天;周围气氛性质及气温变化等。④主机对密封的允许泄漏量、泄漏方向(内漏或外漏)要求;寿命及可靠性要求。⑤主机对密封结构尺寸的限制。⑥操作及生产工艺的稳定性。根据工作参数p、v、t选型 这里p是指密封腔处的介质压力,根据p值的大小可以初步确定是否选择平衡式的结构以及平衡程度。对于介质粘度高、润滑性好的,p≤,或低粘度、润滑性较差的介质,p≤时,通常选用非平衡式结构。p值超过上述范围时,应考虑选用平衡式结构。当p>15MPa时,一般单端面平衡式结构很难达到密封要求,此时可选用串联式多端面密封。 υ是指密封面平均直径的圆周速度,根据υ值的大小确定弹性元件是否随轴旋转,即采用弹簧旋转式或弹簧静止式结构,一般υ<20~30m/s的可采用弹簧旋转式,速度更高的条件下,由于旋转件的不平衡质量易引起强烈振动,最好采用弹簧静止式结构。若p和υ的值都高时,可考虑选用流体动压式结构。 t是指密封腔内的介质温度,根据t的大小确定辅助密封圈的材质、密封面的冷却方法及其辅助系统。温度t在0~80℃范围内,辅助密封圈通常选用丁腈橡胶O形密封圈;-50℃≤t<150℃,根据介质腐蚀性强弱,可选用氟橡胶、硅橡胶或聚四氟乙烯成型填料密封圈:温度<-50或t≥150℃时,橡胶和聚四氟乙烯会产生低温脆裂或高温老化,此时可采用金属波纹管结构。介质浊度高于80℃时,在密封领域中通常就要按高温来考虑,此时必须采取相应的冷却措施。 机械密封根据介质特性选型 腐蚀性较弱的介质,通常选用内置式机械密封,其端面受力状态和介质泄漏方向都比外置式合理。对于强腐蚀性介质,由于弹簧选材较困难,可选用外置式或聚四氟乙烯波纹管式机械密封,但一般只适用p≤~的范围内。 易结晶、易凝固和高粘度的介质,应采用大弹簧旋转式结构。因为小弹簧容易被固体物堵塞,高粘度介质会使小弹簧轴向补偿移动受阻。 易燃、易爆、有毒介质,为了保证介质不外漏,应该采用有封液(隔离液)的双端面结构。 按上述工作参数和介质特性选定的结构往往只是一个初步方案,最终确定还必须考虑主机的特征和对密封的某些特殊要求。例如,火箭发动机的密封寿命只需几分钟,但要求短时间内绝对不漏。舰船上的主机有时为了获得更有效的空间,对密封的尺寸和安装位置往往提出十分苛刻的要求,又如潜艇上的排水泵,在潜艇沉浮过程中,压力变化幅度很大等。在这些情况下,就不能按常规选择标准结构,而必须对具体工况作特殊设计,同时采取必要的辅助措施。

汽车双组份发泡胶工艺研究论文

现在人们降低噪音方法越来越多了,其中使用隔音墙是一种非常常见的方法,很多材料都可以用作隔音墙墙体,比如说红砖墙和红砖墙都是很常用的材料,但是它们之间性能有什么不同呢?相信很多用户自己也不是很清楚,希望通过本文的介绍,能增加大家对不同隔音墙墙体材料隔音效果的了解。首先给大家说一下怎样来检测隔音效果:隔音效果的检查方法是在一房间内正常的放送音乐,在门口一米处测量声音的衰减程度,例如房间内的声压级是90dB,房间外面一米处测量的声压级是60dB则表示隔音30dB。房间的门的处理同样是装修设计比较困难的问题,录音棚的门的处理是专业的,隔音效果很好,可是成本很高,通常一个隔音门的价格少则4~5千元,多则上万元。目前比较实用的是采用成型一体门,大门边加密封条的办法,配合闭门器隔音效果还不错。首选是隔音墙板,这种材料属于专业的隔音材料,两边是金属板材中间是具有隔音作用的发泡塑料,这种墙板厚度越大隔音效果就越好。有些地方由于承受重量的问题,不能采用砖墙或者其他砌墙的办法,只能采用轻钢龙骨石膏板的办法。其次,经济实用的是2/4红砖墙,两边水泥墙面。这种隔断墙一定要砌到顶部,需要走通风管道或者其他走线时再打孔穿过,应该注意管路的密封问题,否则同样可以引起串音现象。我们的建议是再在石膏板的外面附加一层硬度比较高的水泥板,这种水泥板外观和石膏板相同(尺寸也差不多),但是硬度远远高于石膏板,是很好的隔音材料,应该注意的是施工工艺问题,特别是缝隙的部分一定要密封。长时间的被噪音干扰轻者会影响附近居民的睡眠质量,严重的可能会导致患者的生活质量下降,甚至影响患者的身体健康,而隔音墙能够为被噪音干扰的用户提供一个安静的环境。相关阅读推荐:国家规定在家庭中的八个部位必须使用安全隔音屏障蓝音隔音公司隔音屏障在性能方面突出的表现为每个受噪音干扰的家庭安装最合适的隔音门海绵优点:海绵是一种性能非常好的吸音材料,不然也就不会在录音棚内被大量使用了。表面做了吸音槽处理的海绵吸音效果更佳!这种海棉俗称波浪棉。不足:海绵的减震和隔音性能较差。吸水能力强、容易吸附灰尘,阴雨天或洗车后车重大大增加,容易引起对车身的锈腐!此外,未经过特别处理的海绵防火性差,一般不阻燃。改性海绵其实就是海绵,汽车隔音降噪网两年前为解决海绵的吸水问题,特意对海绵进行处理,在海绵一面热附着一层黑色塑膜,吸水问题得到解决,但是吸音能力就差多了,此外海绵本身减震能力也弱,所以弃用。目前市面上仍有人在刷上不干胶后,挂以国外品牌,竟卖到每平米近百元的价格,隔音材料用不干胶的做法并不科学。沥青板建筑上原先使用的沥青板具有较好的防水、减震、隔音效果。只是不能阻燃,自重较大且有污染。两年前天堂鸟先生推荐不少车友使用。后来发现山东生产一种改性沥青板,阻燃且环保,出厂时一面还可以附着一层铝箔,较美观。尽管施工时需要对材料加热处理,效果还是不错。优点:便宜。不足:自重大,吸音效果差。欧蓝德的地板下加的就是沥青板,车身的 A 、 B 、 C 柱填充了乙烯泡沫材料用于吸音降噪。橡胶板橡胶板因原材料组成成分不同,所表现出的物理性质也相差较大。比如表面光洁度、硬度、耐火性能、可塑性均有极大的差异。但总的来说普通橡胶减震能力弱于沥青板,隔音能力较强。 缺点就是自重大,吸音效果差,施工难度大。纤维毯、工业毛毡现在很多汽车生产厂家在生产线上使用的就是这种材料,你的爱车里多半也可以见到它的身影。只不过这种材料用在车底板和顶棚还可以,不适合其他部位使用。优点:成本低廉。缺点:减震效果一般,虽有一定吸音、隔音能力,但是不防水、不防火也不防腐。华普、夏利等车的前底板和顶棚等处可以见到,广本的后备厢内饰板及前车底板部位也有使用。麻绒价格便宜,原料来源丰富。防火、防潮性能差。在中华车的部分部位有使用。硅酸铝棉白色或淡黄色,柔软似棉花,耐火、吸水能力较差,不耐脏。对高频噪音吸收能力较强,隔音效果较差。对人体有危害,不环保。石油纤维棉白色,柔软似棉花,遇火既融,吸水能力较差,不耐脏。对高频噪音吸收能力较强,隔音效果较差。玻璃纤维棉吸声性能好,吸水,保温隔热,不自燃,防腐防潮。外观类似硅酸铝棉,但是很不环保,工业领域也已经逐步淘汰,但个别施工店面却依然在使用,有些引擎盖防护垫是用它做的。松散纤维易污染环境;内有气孔,相互连接,水汽能够非常容易的浸入,个别产品外加防护层,如有破损,即可导致污染,对健康造成威胁。老款切诺基副驾驶地垫下有少量使用。工业橡塑板黑色、柔软、防水、有一定耐火性。多用于建筑行业的保温设备或空调行业。优点:隔音、减震能力较强,价格便宜。不足:无吸音能力。有异味。目前被少数车友和部分汽车隔音店面使用,也有带自粘胶(背胶)的产品,价格稍高,可少量适用于底板部位,其余部位容易发粘或脱落,要慎用。发泡硅胶板优点:柔软、不易燃烧、防水、自重适中,环保。隔音效果和减震效果佳,使用寿命长。不足:吸音性能一般。成本太高:仅原材料就已经 90 多元每公斤 ,因此性价比不高。吸音涂料灰黑色液体,喷涂使用。吸音、隔音效果一般,倒是多层涂刷后减震能力还可以。发泡胶学名聚氨酯,白色偏黄、有些具有防火能力,不吸水,具有防火能力的价格较高。常用于建筑和保温行业。减震、隔音能力还可以,吸音效果一般。在车辆上使用后会给日后维修带来不便,不少隔音降噪网的网友在处理 A 、 B 、 C 柱时使用。铝箔复合材料市面常见,无品牌居多。以铝箔与海绵或多纤维材料复合而成,另一侧粘有不干胶。多用于引擎盖的隔音和防护。优点:质量轻、对声波的反射性能好。不足:复合层一般吸水;防火性能差;铝箔层向发动机和相邻线路反射大量热能,不利于发动机散热,易加速线路老化;不干胶在高温下容易发黏并脱落。隔声毡主要由铁粉、聚氯乙稀或沥青等材料制成,防潮、防蛀设计,有阻燃产品,常用于自来水管道包裹,墙体粘贴等建筑领域。隔音性能较好,无吸音能力。聚氨脂泡沫塑料 是构成发泡胶的主要成分。固化的聚氨脂泡沫材料能起到较好的隔音、吸音性能,防腐、防水,较好的聚氨脂材料有阻燃设计。但是吸声性能不稳定。车辆的座椅多用该材料制成。中华车后排座位下有大量聚氨脂隔音吸音材料,广本的车门内饰板也有少许采用。波峰海绵海绵或橡塑制品,多数在高温下释放有毒物质,做过改性后的产品有一定阻燃性。不防水且容易吸尘,水浸或受潮后更易藏污纳垢。有较好的吸音性能,海绵材质几乎无任何隔音性能,厚度一般在3CM甚至更厚,不适于对汽车噪音的抑制,常与隔声毡等材料搭配形成特殊声结构在影院、录音棚和KTV等场所做墙面吸音材料使用。平静隔音吸音棉以工业橡塑为主要载体,添加多种规格的隔音颗粒,氮气发泡成型,灰黑色外观。最具特色的是针对汽车噪音的异型吸音槽设计。防火、防水、柔软、恢复性强,底面刷胶粘贴起到止震作用;正面被微型吸音孔和异型吸音槽覆盖,对不同频率及波长的噪音高效过滤。集成了止震、隔音、吸音功能,满足车用降噪材料轻量化、环保等所有要求,性价比高。

一: 双组份6:1配比,常温固化滤芯专用胶常温固化胶粘剂6:1配比型号,是滤清器专用胶。该胶粘剂采用最新科技配方,属绿色环保产品,是国内当今是为理想的胶粘剂品种之一。用途:常温胶粘剂适用于汽车、拖拉机等内燃机所用的纸质滤芯,纸张与铁板或塑料的粘接。特点:双组份常温固化滤芯专用胶粘剂对金属纸张等具有良好的粘附力,耐冲击、抗剥离和耐振动疲劳性,还具有良好的耐磨、耐油等特点。技术参数:外观:白色粘稠液体粘度:30-粘接强度:初粘强度20-21KN/cm-1剥离强度40-48KN/cm-1高温135℃、低温-35℃机油浸泡192小时耐高油温试验,无缩裂脱胶现象。二:双组份8:1配比,常温固化滤芯专用胶粘剂常温固化胶粘剂8:1型号,是滤清器专用胶,该胶粘剂采用最新科技配方,属绿色环保产品,是国内当今是为理想的胶粘剂品种之一。技术参数:外观:白色粘稠液体粘度:30-粘接强度:初粘强度20-21KN/cm-1剥离强度:40-48KN/cm-1高温90oC、低温-35oC机油浸泡192小时耐高油温试验,无缩裂脱胶现象。三:双组份100:40配比,手工注塑PU注塑胶它是一种弹性体,通过浇注的办法产生滤芯端盖。这样就省去了空气滤芯的铁皮端盖和橡胶密封圈,而且又是生产扳式空气滤芯最理想的产品。理化指标和性能:A 组份:外观:橙红均一的液体(其它色泽可根据需要配置)密度:粘度:(25℃)B 组份:外观:棕黄色液体密度:粘度:(25℃)使用方法:1、每天用胶前A胶用手电钻搅拌均匀,B胶摇晃即可。2、打开电热板将温度调至40-50度,冬季将A、B胶用小容器预热。3、用脱模剂擦拭模具。4、将A、B胶按100:40的比例配比,加入40%的滑石粉,用2800转/分电机搅拌混合胶液,搅拌时间按胶量决定,每100克胶大概为7-10秒。5、搅拌均匀的混合液体倒入模具,然后放纸芯施加压力。6、10分钟后脱模。储运及包装:1、AB料储存期3-6个月。2、以室内15℃以上存放为宜。3、塑料桶包装。A胶50公斤,B胶20公斤包装四:双组份100:25配比,机器注塑PU注塑胶它是一种弹性体,通过机器浇注的办法形成滤芯端盖,这样就省去了空气滤芯的铁皮端盖和橡胶密封圈,节省了制造成本。而且结识耐用,封闭性能好。而且又是生产扳式空气滤芯最理想的产品。理化指标和性能:A 组份:外观:橙红色均匀的液体(其它色泽可根据需要配置)密度:粘度:(25℃)B 组份:外观:棕黄色液体密度:粘度:(25℃)使用方法:⒈ 每次往注胶机注胶之前必须将A胶桶(一般为200KG/桶)充分滚动,使A胶搅拌均匀为止。⒉ AB胶配比比例为A:B=100:25(即4﹕1)。⒊ 料温控制在24°C-28°C为宜,即可开机运行⒋ 使用之前必须用脱模剂擦拭模具(注:新塑料模具可以免擦)⒌ 若A、B料反应不充分,测量A、B料的比例。⒍ A、B料必须密封保存。以免和空气以及水汽发生反应,影响胶体的使用效果。储运及包装:1、AB料储存期3-6个月。2、以室内15℃以上存放为宜。3、塑料桶包装。A胶200公斤,B胶50公斤注意事项:1、本品一般在干燥的室内存放,并注意防水、防湿、防晒。必须盖好内塞和外盖,避免胶料吸收空气中的水份,影响使用效果。2、A/B发泡胶在常温下(25℃)能正常使用,如果温度太高或太低都会影响使用效果。必须使用人工方法降温或升温。3、模具在倒胶前必须涂刷脱模剂,待干后方可倒胶。包装规格: 100:25的双组胶PU胶,每组250公斤,其中A胶200公斤,B胶50公斤五:双组份2:1配比,胶水原液用途:常温胶粘剂适用于汽车、拖拉机等内燃机所用的纸质滤芯,纸张与铁板的粘接。特点:双组份常温固化滤芯专用胶粘剂对金属与纸张等具有良好的粘附力,耐冲击、抗剥离和耐振动疲劳性,还具有良好的耐磨、耐油等特点。技术参数:外观:半透明液体粘度:30-粘接强度:初粘强度20-21KN/cm-1剥离强度40-48KN/cm-1高温135oC、低温-35oC机油浸泡192小时耐高油温试验,无缩裂和脱胶现象。使用方法:1、端盖表面应清洗干净,除去油污、灰尘,并彻底干燥,表面不可有任何油污、水份等异物,以免影响胶接强度。2、配料前将料桶中A组份搅拌或倒置,按2:1(重量比)配比混合A与B组份,平均每公斤A胶加入2公斤滑石粉,并充分搅拌均匀。3、将适量胶粘剂注入端盖中,并放置片刻,使胶粘剂表面平整的涂布于端盖的各个部位。4、将滤芯纸(或加中心管)插入端盖,检查两胶接件表面,保证其完全接触后,在顶端稍加压力静置。5、经1小时左右的固化后,翻转并与另一端盖胶接,24小时完全干燥后方可包装,5天后使用。2:1:4说的是2公斤A胶配比1公斤B胶配4公斤滑石粉包装规格: 其中A胶50公斤,B胶25公斤六:单组份热固化胶生产的热固化滤芯胶是专为滤清器行业研制开发的产品,经国家权威检测部门检测,其产品性能完全符合行业的国家质量标准,并得到广大三滤厂家的认可和广泛使用。一 用途适用于内燃机等滤清器纸芯和金属端盖的粘接。(空气滤清器.柴油滤清器.机油滤清器.汽油滤清器等)二 特点1.对金属端盖有很强的粘接力,固化后的胶层具有良好的耐水 耐油.耐温.耐老化性能。2.具有广泛的工艺适应性,对烘道或烘炉加温都能适应,也适用于两端一起粘接固化,以提高生产效率。(机注 手工施注均可以)3.存储期长 不变质 不沉淀结块。三 技术性能1.外观 均匀粘稠液体(颜色可根据客户要求改变)2.密度3 ±0..2 g3.粘度 .不挥发物含量 ≥98%5.固化条件 160℃--180℃ 12-20min6.拉伸剪切强度(钢-钢) 常态≥10kg27.抗拉强度. 高折宽22mm的5折滤纸插入深的胶层,固化后滤纸---金属间的扯离强度≥200N内聚破坏8. 耐机油老化性 (135℃×192h)不脱胶9. 有效期 生产之日起6个月内。10.包装30kg。(可根据用户要求罐装)11.注意事项:A. 应储存在阴凉处。B. 加热固化所需的时间和滤清器的大小、胶层厚度、烘道温度、传热方式均有关联。C.粘度可根据用户要求调整。四 使用工艺说明1.纸芯端盖除油.除锈及污物,胶的涂层均匀,厚度不少于2mm2.用户在不同的设备和条件下,由于仪表显示的温度与滤清器附近的实际温度有差异,故在生产中要进行工艺检测,以确定温度保证最佳粘接,温度太低将影响效果。七:单组份水溶胶属性:该胶属于水溶性滤芯专用胶。用途:主要用于滤纸与镀锌板、滤纸与喷塑板之间的粘接。牢固:粘接固化后胶层不脱盖,无龟裂现象。安全:无毒无味,不易燃,不易爆,本品属于环保胶粘剂。特点:本品具有良好的耐热、耐老化、耐水、耐油等特性。抗疲劳和抗振动性强,剪切力大于800N/cm-1。方便:使用方便,开桶搅拌即可使用。包装:30公斤塑料桶包装八:滤芯胶垫专用胶特点:1、性能优异。具有优异的耐油、耐高低温交变性能,较强的抗拉、抗剪切强度。2、用量小、干燥快、使用面广。用途:1、各种机油滤芯、柴油滤芯、空气滤芯的粘接。2、“三滤”行业中滤纸接头粘接;3、“三滤”行业滤芯金属端盖与橡胶密封圈粘接。4、各种金属、陶瓷、玻璃制品的密封与粘接。5、更适合端盖与胶条的粘接。注意事项:在粘接时,盖要擦洗干净,不能有污垢,,最好先在盖上涂上点胶水,再在胶条上刷胶,稍等几分钟再粘接 。粘后的效果:用手无论怎样掰,纹丝不动,最后胶条弄坏了 ,也拌不开端盖与胶条。特别坚固不拉缝 ,特别光滑 。

双组份发泡胶多用于大面积喷涂或填充(如外墙保温,管道保温,冷库,冰箱等)工艺简单,买原料和机器就行了,防盗门里的双组份多为低发泡的胶黏性型发泡胶(以胶黏为主)。单组份发泡胶多用于门窗与墙体间的填缝密封,简单方便。

我们厂里做着发泡胶呢、具体配方也记不太清、大概是310、305、204、850、pc.。开孔、黑药、白药、二、丙丁烷、最后主要的成分就是石蜡、这应该是夏季配方、 以上这些配方的具体数据我就记不得了、得查一查以前的实验数据、、

最新瓷砖胶配方学术论文

瓷砖胶又称陶瓷砖粘合剂,主要用于粘贴瓷砖、面砖、地砖等装饰材料,广泛适用于内外墙面、地面、浴室、厨房等建筑的饰面装饰场所。其主要特点是粘接强度高、耐水、耐冻融、耐老化性能好及施工方便,是一种非常理想的粘结材料。瓷砖胶作为一种现代装潢的新型材料,具有传统水泥黄不可替代的优点,那么瓷砖胶的配方是怎样的呢?瓷砖胶又有什么施工方法呢?下面小编就来给大家介绍一下。

一、瓷砖胶的用途和优点

用途

瓷砖胶又称瓷砖粘合剂或粘结剂、粘胶泥等多种叫法,是现代房屋装潢的新型材料。主要用于粘贴瓷砖、面砖、地砖等装饰材料,广泛适用于内外墙面、地面、浴室、厨房等建筑的饰面装饰场所。其主要特点是粘接强度高、耐水、耐冻融、耐老化性能好及施工方便,是一种非常理想的粘结材料。

优点

瓷砖胶有许多优点,比如使用瓷砖胶可以比使用水泥多节约空间,瓷砖胶只要薄薄的一层就可以了。如果施工工艺达标的话,瓷砖粘的非常牢固;还能减少废料,无有毒的添加物,符合环境要求等。

施工墙面要湿润(外湿里干),并保持一定的平整度,高低不平或极其粗糙的部位应用水泥砂浆等材料找平;基层必须清除浮灰、油污、蜡质,以免影响粘结度;粘贴瓷砖后在5~15分钟内可以移动纠正。搅拌均匀后的粘结剂应在最快速度用完,将混合后的粘合剂涂抹在粘贴砖材的背面,然后用力按,直至平实为止。因材料不同而实际耗用量也不同。

二、瓷砖胶配方

瓷砖胶成熟配方

首先说明一下,关于干粉砂浆的各种配方没有绝对的成熟不成熟,是随着地域、气候、温度的不同随时变化的,当然只是一些细微的变化,我们拿瓷砖胶配方来说。

水泥425加350 千克 、石英沙5加600千克 、重钙 加50千克、HPMC 加4 千克 、胶粉 加4千克、木质纤维加千克、淀粉醚 加千克

以上这个配方的热点问题有以下几个方面:

第一。瓷砖胶里的木质纤维有什么作用?需要不需要,很多人建议不要,我们的看法是从砂浆质量来说,建议加上的,木质纤维的作用时保温、隔热、隔声、绝缘和透气性能,无论从哪方面质量说有比没有好,但从经济角度来说,不建议加,对施工无影响。

第二,胶粉的作用是粘贴剂以及涂刷层,外墙的话把胶粉加量加量到10公斤左右,还有外墙也要淀粉醚,他的的作用只是为了滑一些,好施工。但是如果是用来粘面包砖的话可以加到.作用是抗滑移

第三,做低端瓷砖胶水泥可以多加一些,400--450就行

第四,还有就是做瓷砖胶的设备,我们一般用干粉砂浆设备搅拌,搅拌>瓷砖胶不用选用太高档的干粉砂浆设备,砂浆里面纤维不多,易损颗粒没有,选单轴或双轴干粉砂浆设备就可以。

第五,对沙子的要求,砂子的含水量一般是小于,含泥量小于3~5%,常用砂为要复配.

三、瓷砖胶的施工方法

施工方法/步骤

先将所需要的清水倒入搅拌桶。

将瓷砖胶粉剂慢慢倒入桶中。

清水和瓷砖胶倒入后,然后搅拌至均匀无颗粒、无沉淀的膏糊状、静置数分钟再略搅拌,即可。

搅拌完成后用齿形刮板将胶浆均匀批刮在工作表面上,每次批刮约1平方施工面。

用手将瓷砖揉压于基面上,并调整瓷砖的平行度,为保证瓷砖的平行度建议使用塑料填缝。

以上工序完成后进行清洁,稳结的贴瓷砖施工完成,等待24小时后的填缝。

总结

瓷砖胶讲究的是粘结力够不够强,家德士针对瓷砖胶不同粘力而研发的三种瓷砖胶分别是:

通用瓷砖胶:墙面粘贴各类纸皮、马赛克等小型瓷砖,以及地面铺设瓷砖。

强力瓷砖胶:使用于室内外墙面、地面粘贴小中型瓷砖、小型石材、砂岩等。

强韧瓷砖胶:使用于室内外墙面、地面粘贴小中型石材、砂岩、瓷砖、抛光砖等。

瓷砖胶分为三种型号,分别是普通型、增强型和较大尺寸瓷砖或大理石三种,它们都适用于不同的地面或墙面,大家在购买的时候要注意。前面介绍了瓷砖胶的配方和施工方法,希望对大家有所帮助,想要了解更多信息请继续关注土巴兔学装修!

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【】,就能免费领取哦~

普通瓷砖胶原料:水泥,沙子,羟丙基甲基纤维素,可再分散乳胶粉,甲酸钙。高粘接力瓷砖胶原料:水泥,沙子,羟丙基甲基纤维素,甲酸钙,聚乙烯醇,丁苯胶粉。瓷砖胶又称陶瓷砖粘合剂,主要用于粘贴瓷砖、面砖、地砖等装饰材料,广泛适用于内外墙面、地面、浴室、厨房等建筑的饰面装饰场所。其主要特点是粘接强度高、耐水、耐冻融、耐老化性能好及施工方便,是一种非常理想的粘结材料。

1、普通瓷砖胶配方。水泥:330,沙子(30-50目):651;沙子(70-140目):39;羟丙基甲基纤维素(HPMC):4;可再分散乳胶粉:10;甲酸钙:5,合计 1000。 2、高粘接力瓷砖胶配方。水泥:350;沙子:625;羟丙基甲基纤维素:;甲酸钙:3;聚乙烯醇:,可在分散乳胶粉:18,合计 1000。 3、瓷砖背胶注意事项。(1)施工期间及完工一天之内,基层及环境温度应在5~35℃,刚施工好的材料一天之应避免淋水。(2)拌制时不得加水稀释及掺加其它任何物剂,拌好的材料应在规定时间内用完,超时不得再拌混使用。(3)施工完毕后,应做好养护及保护工作,防止污染、碰撞及损坏。(4)如遇眼部接触本产品应及时就医处理。(5)本品应存放于阴凉干燥的环境内,避免潮湿、雨淋。(6)贮存温度5~40℃,贮存期约为6个月。

相关百科

热门百科

首页
发表服务