首页

> 论文发表知识库

首页 论文发表知识库 问题

粒子群算法毕业论文

发布时间:

粒子群算法毕业论文

目标函数是什么 还有约束条件

好的,只要编程的吗。

对于论文,首先就是要有创新点,或者实际应用。不改进就是别人的东西,改进了就是你自己的了。建议模仿别人的混合其他算法或者改进参数,或者参数自动生成等。这样有了改进的东西的论文才有创新点。

我这里有一个粒子群的完整范例:<群鸟觅食的优化问题>function main()clc;clear all;close all;tic; %程序运行计时E0=; %允许误差MaxNum=100; %粒子最大迭代次数narvs=1; %目标函数的自变量个数particlesize=30; %粒子群规模c1=2; %每个粒子的个体学习因子,也称为加速常数c2=2; %每个粒子的社会学习因子,也称为加速常数w=; %惯性因子vmax=; %粒子的最大飞翔速度x=-5+10*rand(particlesize,narvs); %粒子所在的位置v=2*rand(particlesize,narvs); %粒子的飞翔速度%用inline定义适应度函数以便将子函数文件与主程序文件放在一起,%目标函数是:y=1+(*(1-x+2*x.^2).*exp(-x.^2/2))%inline命令定义适应度函数如下:fitness=inline('1/(1+(*(1-x+2*x.^2).*exp(-x.^2/2)))','x');%inline定义的适应度函数会使程序运行速度大大降低for i=1:particlesize for j=1:narvs f(i)=fitness(x(i,j)); endendpersonalbest_x=x;personalbest_faval=f;[globalbest_faval i]=min(personalbest_faval);globalbest_x=personalbest_x(i,:);k=1;while k<=MaxNum for i=1:particlesize for j=1:narvs f(i)=fitness(x(i,j)); end if f(i)vmax; v(i,j)=vmax; elseif v(i,j)<-vmax; v(i,j)=-vmax; end end x(i,:)=x(i,:)+v(i,:); end if abs(globalbest_faval)

粒子群算法英文文献毕业论文

好的,只要编程的吗。

我这里有一个粒子群的完整范例:<群鸟觅食的优化问题>function main()clc;clear all;close all;tic; %程序运行计时E0=; %允许误差MaxNum=100; %粒子最大迭代次数narvs=1; %目标函数的自变量个数particlesize=30; %粒子群规模c1=2; %每个粒子的个体学习因子,也称为加速常数c2=2; %每个粒子的社会学习因子,也称为加速常数w=; %惯性因子vmax=; %粒子的最大飞翔速度x=-5+10*rand(particlesize,narvs); %粒子所在的位置v=2*rand(particlesize,narvs); %粒子的飞翔速度%用inline定义适应度函数以便将子函数文件与主程序文件放在一起,%目标函数是:y=1+(*(1-x+2*x.^2).*exp(-x.^2/2))%inline命令定义适应度函数如下:fitness=inline('1/(1+(*(1-x+2*x.^2).*exp(-x.^2/2)))','x');%inline定义的适应度函数会使程序运行速度大大降低for i=1:particlesize for j=1:narvs f(i)=fitness(x(i,j)); endendpersonalbest_x=x;personalbest_faval=f;[globalbest_faval i]=min(personalbest_faval);globalbest_x=personalbest_x(i,:);k=1;while k<=MaxNum for i=1:particlesize for j=1:narvs f(i)=fitness(x(i,j)); end if f(i)vmax; v(i,j)=vmax; elseif v(i,j)<-vmax; v(i,j)=-vmax; end end x(i,:)=x(i,:)+v(i,:); end if abs(globalbest_faval)

粒子群算法(particle swarm optimization,PSO)是计算智能领域中的一种生物启发式方法,属于群体智能优化算法的一种,常见的群体智能优化算法主要有如下几类: 除了上述几种常见的群体智能算法以外,还有一些并不是广泛应用的群体智能算法,比如萤火虫算法、布谷鸟算法、蝙蝠算法以及磷虾群算法等等。 而其中的粒子群优化算法(PSO)源于对鸟类捕食行为的研究,鸟类捕食时,找到食物最简单有限的策略就是搜寻当前距离食物最近的鸟的周围。 设想这样一个场景:一群鸟在随机的搜索食物。在这个区域里只有一块食物,所有的鸟都不知道食物在哪。但是它们知道自己当前的位置距离食物还有多远。那么找到食物的最优策略是什么?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。 Step1:确定一个粒子的运动状态是利用位置和速度两个参数描述的,因此初始化的也是这两个参数; Step2:每次搜寻的结果(函数值)即为粒子适应度,然后记录每个粒子的个体历史最优位置和群体的历史最优位置; Step3:个体历史最优位置和群体的历史最优位置相当于产生了两个力,结合粒子本身的惯性共同影响粒子的运动状态,由此来更新粒子的位置和速度。 位置和速度的初始化即在位置和速度限制内随机生成一个N x d 的矩阵,而对于速度则不用考虑约束,一般直接在0~1内随机生成一个50x1的数据矩阵。 此处的位置约束也可以理解为位置限制,而速度限制是保证粒子步长不超限制的,一般设置速度限制为[-1,1]。 粒子群的另一个特点就是记录每个个体的历史最优和种群的历史最优,因此而二者对应的最优位置和最优值也需要初始化。其中每个个体的历史最优位置可以先初始化为当前位置,而种群的历史最优位置则可初始化为原点。对于最优值,如果求最大值则初始化为负无穷,相反地初始化为正无穷。 每次搜寻都需要将当前的适应度和最优解同历史的记录值进行对比,如果超过历史最优值,则更新个体和种群的历史最优位置和最优解。 速度和位置更新是粒子群算法的核心,其原理表达式和更新方式: 每次更新完速度和位置都需要考虑速度和位置的限制,需要将其限制在规定范围内,此处仅举出一个常规方法,即将超约束的数据约束到边界(当位置或者速度超出初始化限制时,将其拉回靠近的边界处)。当然,你不用担心他会停住不动,因为每个粒子还有惯性和其他两个参数的影响。 粒子群算法求平方和函数最小值,由于没有特意指定函数自变量量纲,不进行数据归一化。

我也正在研究PSO方面的。我来答答看:我认为matlab编程中一般将适应度函数的自变量设为一个行向量,行向量的size为你针对的问题的多少,你的问题中有两个变量影响你的因变量Z,所以x的长度为2.还有,一般用matlab 的pso优化时,需要要自编一个针对你的问题的适应度函数。顺便说一句,我上面说的只是一般处理方法。你的fitness((x,:)),似乎在matlab中有语法错误。如果还想问具体的,就给我发短消息吧,我会尽快回答,另外,你的悬赏分怎么这么少呢!老兄,你就这么吝啬吗!

遗传算法和蚁群算法毕业论文

遗传算法有比较强的全局搜索能力,特别是当交叉概率比较大时,能产生大量的新个体,提高了全局搜索范围,遗传算法适合求解离散问题,具备数学理论支持,但是存在着汉明悬崖等问题。 蚁群算法适合在图上搜索路径问题,计算开销会大。两者都是随机算法,只不过遗传算法是仿生学的算法;蚁群算法是数学算法,是应用目前最广的算法 。针对不同的研究方向,它所体现出来的优缺点是不一样的,将这两个算法混合,优势互补,提高优化性能,并且分别来求解离散空间的和连续空间的优化问题。 希望可以帮到您,望采纳!

遗传算法是一种智能优化算法,神经网络是人工智能算法的一种。可以将遗传算法用于神经网络的参数优化中。

都差不多,简单的算法而已,随便挑个就行。个人觉得蚁群容易点,挑个信息素就够了。

一个程序的核心在于算法。比如说打开一个软件和运行一个软件的速度在计算机硬件性能相同情况下,软件的算法起到了几近决定性作用,所有的计算机软件和硬件的编程都是需要算法的,就算一个hello world程序虽然我们编时候没有用到算法但是在编译他和运行再屏幕显示的时候就是算法了。算法是计算机乃至自然界的核心,如果知道人脑的算法,就可以制造出人工智能的软件。算法太多,也就不全部列举出来了,具体的还有用法,你自己看下书或去网上找下,都应该可以找到的:比如:贪心算法,蚁群算法,遗传算法,进化算法,基于文化的遗传算法,禁忌算法,蒙特卡洛算法,混沌随机算法,序贯数论算法,粒子群算法,模拟退火算法等等。

蚁群算法毕业论文模板

我来做任务的

论文摘要:文章针对侦察无人机航路规划这一问题,分析了影响航路规划的因素,构建了航路规划的模型。结合侦察无人机航路规划的特点与模型,论证了基于蚁群算法求解的理由与优点,并对蚁群算法的初始信息素强度与启发因子进行了改进。最后以岛屿进攻战役这一特定作战任务为例。利用MATLAB实现了侦察多目标时的航路规划问题。 引言 航路规划是指在目标点与起始点之间,为运动物体寻找满足某种性能指标和某些约束的线路、路径。目前对于航路规划的研究主要用于导弹、鱼雷、飞机等飞行器的飞行线路选择上,对于无人机的侦察航路的系统研究还不多见。在文献[3]中虽然也应用蚁群算法进行了航路规划,但没有充分考虑到威胁点存在和目标点价值对航路的影响,且对蚁群算法没有进行启发因子和信息素初始强度方面的创新。在相关外文文献中,由于美军无人机航程较大,其航路规划的约束条件就相对较少,可供借鉴的内容也很有限。而针对岛屿进攻战役这一特殊作战样式的研究更是尚属空白。本文正是基于这一背景下对该问题进行研究,以实现在充分发挥无人机最大作战效能的同时,又尽可能地降低无人机被毁伤概率。 1、影响航路规划的因素分析 影响侦察无人机航路规划的主要因素有如下四个方面。 目标价值 目标价值是衡量某一时刻对某一目标实施火力突击必要程度的综合指标(用Vm表示)。可采用层次分析法获得各个目标的价值Vm,也可以再进行归一化处理,得到各目标的相对价值系数Ku,以此来衡量目标的重要程度。 对不同的目标实施侦察时,对于价值较高的目标可安排更长的有效侦察时间,而对于价值相对较低的目标,则应适当压缩有效侦察时间。 有效飞行时间(距离) 侦察的主要目的是发现对己方有价值目标并及时描述目标的状态,因此发现目标的概率是航路是否合理的一个重要指标。距离目标越近,飞机上侦察设备能够搜索目标区的时间也就越长,发现目标的概率也就越大。 在执行侦察任务时,为了获得某一目标的有效信息,无人机必需接近目标并使目标处于其机载电子、光学侦察设备的作用距离内。如果为了实时监控某一目标,侦察无人机还必需在此目标的上空盘旋、停留,以使目标长时间地处于机载设备的监控之下。因此对目标的发现概率可以用有效飞行时间来表征。它表示侦察无人机对目标总的侦察、监控时间,为处理方便,若侦察无人机以等速率飞行,则其有效侦察飞行时间也可转变为有效飞行距离表征。 生存能力 侦察无人机要完成侦察任务就必须具备一定的生存能力。而其生存能力主要与侦察无人机的隐形规避性能、敌方雷达、防空武器的性能等相关。即侦察无人机的生存能力既受本身的易感性、易损性、可靠性影响,也受敌方的侦察探测和打击能力影响。 从侦察无人机完成飞行任务过程来看,包括发射、正常飞行和突破拦截三个过程,若用概率Pf、Pl、Ps表示三个过程的完成情况。 航程(油量)限制 航程是指侦察无人机起飞后,中途不经加油所能飞越的最大水平距离,即飞行距离。是表征侦察无人机远航和持久飞行能力的指标。由于其在地面一次所加的油量是有限的,因此它的航路必然受到航程的限制,且由于无线电的作用距离受限,飞机执行任务的位置不能超过其作战半径。 2、航路规划构模 侦察无人机多数情况下执行特定的侦察监视飞行任务,指挥员期望的目标是在有限的飞行时间与航程内发现尽可能多的目标,同时付出的代价最小。 就航路规划的约束条件而言,首先是威胁量不能超过指挥员的许可范围,其二,是侦察无人机总的飞行距离不能超过侦察无人机的航程。一旦两者之一不能成立,表明要求的任务是无法完成的,即 3、蚁群算法及其改进 蚁群算法作为一种新的计算模式引入人工智能领域,被称为蚂蚁系统,该系统基于以下假设: (1)蚂蚁之间通过环境进行通信。每只蚂蚁仅根据其周围的局部环境做出反应,也仅对其周围的局部环境产生影响; (2)蚂蚁对环境的反应由其内部模式决定; (3)在个体水平上,每只蚂蚁仅根据环境做出独立选择。在群体水平上,单只蚂蚁的行为是随机的,但蚁群通过自组织过程形成高度有序的群体行为。 基于蚁群算法进行航路规划的特点 基于蚁群算法的侦察无人机航路规划方法,能够保证在航路制订时得到一条具有较小可被探测概率及可接受航程的飞行航路,这种航路规划方法还具有以下特点:(1)在蚂蚁不断散布生物信息激素的加强作用下,新的信息会很快被加入到环境中,而由于生物信息激素的蒸发更新,旧的信息会不断被丢失,体现出一种动态特性; (2)最优路线是通过众多蚂蚁的合作被搜索得到的,并成为大多数蚂蚁所选择的路线,这一过程具有协同性; (3)由于许多蚂蚁在环境中感受散布的生物信息激素同时自身也散发生物信息激素,这使得不同的蚂蚁会有不同的选择策略,具有分布性。这些特点与未来战场的许多要求是相符的,因而采用蚁群算法对侦察无人机的航路进行规划具有可行性与前瞻性。 蚁群算法的改进 (1)ij(t)的初值 为了更好的考虑威胁,在定义在初始条件下定义轨迹强度不同,根据蚂蚁选择路线最优选择轨迹强度高的路线,而无人机的航路规划中则应该更优的选择距离威胁点较远的航路。那么可以定义轨迹的初始强度与距离成反比。即与威胁点越近的路线,信息素强度越小。对于两目标点间的每条路径,其信息素轨迹初始强度。 4、基于改进蚁群算法的侦察无人机航路规划的实现 航路规划的初始条件 蚁群算法用于航路规划主要运用在对多目标实施搜索侦察的航路规划问题,即航路规划需要得出的是飞行经过各个目标的数量和次序,以使侦察无人机经过尽可能多的目标点。 在进行初始规划的过程中,为更方便蚁群算法的实现,首先确定坐标系,将上述各目标点及威胁点用坐标系来表示,这样可以便于实际的运算。 假设在岛屿进攻战役中以某市为坐标点(100,100)的位置,以3公里为1个坐标系单位长度建立平面直角坐标系(这是在充分考虑了将主要有价值点都包括在一个(120×120)的范围内而合理构建的)。则可以确定上述各点的坐标系位置,得到各点坐标。同时各个目标点的价值系数通过层次分析法可求得到结果(具体过程略)。 蚁群算法模型的实现 蚁周系统的各初始参量的确定 为计算和表示方便,将目标点定义为向量Mi(其中i=1,2,3,…,12),威胁点定义为向量Ti(其中i=1,2,3)。采用蚁群算法实现目标点的类旅行商(TSP,Traveling Salesman Problem)问题,目前已经开发的蚁群算法包括蚁密系统、蚁量系统和蚁周系统,而实际应用多数应用后者。为模拟系统中蚂蚁行为的方便,定义标记。 蚁群算法模型分析 通过比较的方法,定性分析各个情况下的目标函数值和航路规划图。不难发现在考虑了目标点价值和威胁点威胁的情况下,航路尽可能地避开了威胁并优先选择通过目标价值较大的点。这样无人机的被毁伤概率较低,且如果发生被毁伤事件时,已经发现的总体目标价值最大。 针对四种情况进行定量分析,假设指挥员的倾向性为,即略侧重于考虑威胁代价。2000表示对每个目标的有效侦察距离均为2000m,计算目标函数的值,可见考虑完备时虽然航路总长最大但总体的目标函数值也最大,航程最优,即侦察无人机应按照依次通过这些目标点。 5、结束语 通过上述分析,在给定侦察无人机的侦察任务情况下经运算可求得最优的初始航路,它可以有效地提高无人机的侦察效能,降低无人机的被毁伤概率,它对于目前军事斗争准备中如何使用侦察无人机具有一定的指导意义。随着我军侦察无人机性能的提高及型号的不断丰富,在对未来岛屿进攻战役中如何对这些机型进行航路规划尚有待于进一步探讨。

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。下面详细说明:1、范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。2、环境:蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。3、觅食规则:在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁都会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。4、移动规则:每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。5、避障规则:如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。6、播撒信息素规则:每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。 根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。

同调群的计算方法研究论文

G为任一交换群,Hom(Cn(K),G)为所有从Cn(K)到G的群同态所组成的群,这个群叫做K的以G为系数的 n维上链群,记作Cn(K;G)。利用K 的边缘算子嬠:Cn(K)→Cn-1(K)可得对偶同态δ:Cn-1(K;G)→Cn(K;G)。定义如下:设ƒ∈Cn-1(K;G),规定δƒ=ƒ嬠:Cn(K)→G。这个δ叫上边缘算子,具有δδ=0的性质。与同调群的定义相似,可以定义以G为系数的上闭链群Zn(K;G),上边缘链群Bn(K;G),上同调群Hn(K;G)。当G为整数加群Z时,省去符号Z,简单记为 Cn(K),Zn(K),Bn(K),Hn(K),等等。对于连续映射F:│K│→│L│,利用单纯映射去逼近,可得到同态。上同调群的构造可以由同调群完全确定。当多面体│K│为定向流形时,同调群和上同调群之间还有对偶关系(流形的庞加莱对偶定理),即Hn(|K|;G)同构于Hq-n(│K│;G),其中q为流形│K│的维数。.亚历山大在1915年证明了多面体的同调群的拓扑不变性,即如果两个多面体│K│,│L│同胚,那么这个同胚诱导它们的上同调群、同调群的同构。实际上,如果│K│,│L│伦型相同,其同伦等价也诱导它们的上同调群、同调群的同构。利用同调群可以解决不少几何问题。例如,布劳威尔不动点定理(见不动点理论),可以找到欧拉示性数与贝蒂数之间的关系式:其中αi为复形K的i维单形个数,b)i为多面体│K│的i维贝蒂x(K)即K的欧拉示性数。从而证明了欧拉示性数是│K│的拓扑不变量。单纯复形的整系数同调群是个有限生成的交换群。因此,它同构,其中Z代表整数加群,θ(1,n),…,θ(τn,n)为一串自然数,每个可整除后一个,叽表示直和。前面Z的个数即为n维贝蒂数;后面这串有限群的阶数θ(1,n),…,θ(τn,n)称为 n维挠系数。确定一个单纯复形(及其多面体)的各维贝蒂数与挠系数,也就算出了同调群。简单的单纯复形的同调群的计算,可以通过叫做挤到边上去的方法直观地解决。一般单纯复形同调群的计算,可以用矩阵变换的方法经有限多次的算术运算解决,不过具体实现这种计算是非常困难的。带系数群G的同调群的构造,可由整系数同调群与G按照“泛系数”公式来求。上同调群的计算也有其相应的公式。

由于Bn(K)是 Zn(K)的子群,把商群Zn(K)/Bn(K)叫做单纯复形K的n维(下)同调群,记作Hn(K)。Hn(K)中的每一个元素叫做一个n维同调类。如果两个n维闭链zń,z怽的差为一个边缘链时,就叫zń与z怽同调。如果zn是边缘链,则称zn同调于零。例如,图8b中的单纯复形,2个一维闭链(A,B)+(C,A)+(B,C),(A┡,B┡)+(C┡,A┡)+(B┡,C┡)有嬠((A,B,A┡)+(A┡,B,B┡)+(B,C,B┡)-(C,B┡,C┡)-(C,C┡,A┡)-(C,A┡,A))=((A,B)+(C,A)+(B,C))-((A┡,B┡)+(C┡,A┡)+(B┡,C┡))。因而这两个闭链同调(而它们都不同调于零)。同调群 Hn(K)的秩叫做K的n维贝蒂数。如果在n维链群的定义中,用任意的一个交换群G中的元素代替整数,可以得到以G为系数的n维链群 Cn(K;G)。相似地有以G为系数的n维边缘群Bn(K;G),n维闭链群Zn(K;G)。由此定义以G为系数的n维同调群Hn(K;G)。

相关百科

热门百科

首页
发表服务