首页

> 论文发表知识库

首页 论文发表知识库 问题

恶唑烷硫酮检测论文

发布时间:

恶唑烷硫酮检测论文

能,不过最好不要用猪饲料喂狗,因为北方用猪饲料喂狗会让狗长的又壮又大,但是无生育能力,南方用猪饲料喂狗狗会长不高。猪饲料,狗粮成分大致都是蛋白成分,能量成分和预混料3种组成!蛋白饲料当然指的蛋白质,如大豆粕,菜籽粕,棉粕,鱼粉,能量成分指的是淀粉糖类。如小麦,麦麸,玉米面,米糠。预混料指的是各种矿物质,氨基酸等微量组成。猪饲料,和狗粮最主要的区别是在蛋白成分上。猪饲料,狗粮的蛋白成分主要都是植物蛋白,蛋白成分最主要的大豆粕指的是黄豆压完油后的豆渣,成本很高,鱼粉因为是动物蛋白,成本更高,用量非常少,由于大豆粕成本高,所以所有饲料都会添加其他植物蛋白降低成本,好了,这就要讲到菜籽粕和棉粕了,南方的猪饲料都会添加很大比例的菜籽粕,菜籽粕指的是油菜籽压完油后的渣子,北方的猪饲料都会添加很大比例的棉粕,棉粕指的是棉花籽压完油的渣子。而狗粮是绝对不敢用菜籽粕和棉粕来替换一定比例大豆粕的。现在讲,由于成本降低,用棉粕的话,棉粕虽然是高植物蛋白,但是它含有一种非常危险的成分!就是棉酚,学医的都知道,棉酚药理作用是直接作用于睾丸生精上皮,导致精子死亡,畸形,而且效果显著。如果你北方的含有棉粕的饲料喂狗,虽然饲料由于含有所有成分,促进狗的前期生长,你会发现小狗开始会长的非常壮,而且个头也会很大,但是就是不发情(母狗),6个月发情,可能你的狗到1岁了都无法发情,或者后期你取消了饲料喂狗,狗会延期发情,公狗会导致不育,也就是说北方用猪饲料喂狗会让狗长的又壮又大,但是无生育能力南方猪饲料多用菜籽粕代替一定比例的高成本豆粕,菜籽粕同样也是蛋白含量很高的一种植物蛋白,但是菜籽粕也含有硫氰酸酯、硫氰酸酯、恶唑烷硫酮、腈,芥子碱,单宁、植酸等物质,这些物质是毒性物质,会抑制动物发育成长,甲状腺肿大,南方用含有菜籽粕的猪饲料喂狗,效果是狗前期由于饲料的高营养和各种微量元素充足,而成长迅速,看过去胖嘟嘟的壮壮的(听说很多藏獒卖家会在小狗卖前1个月用这些饲料让狗长的非常壮,提高卖相,只是听说),但是由于菜籽粕的毒性成分,狗一直大便不成形,拉稀,而且由于毒性成分在体内积累,毒性效果越来越大,导致抑制成长,也就是说小狗尤其是大中型犬小的时候长的会比同龄的狗都要大,但是成年后几乎肩高都不能达到这一犬种的最低肩高要求,比如高加索最低肩高65cm,用这种猪饲料喂大的狗肩高只可能50cm。

饲料检测项目:1、铬、铅、汞、砷、镉含量2、氟、氰化物(HCN)计含量3、霉菌含量4、黄曲霉毒素B15、亚硝酸盐含量6、游离棉酚含量7、异硫氰酸酯含量8、恶唑烷硫酮9、六六六含量、滴滴涕含量10、沙门氏杆菌(不得检出)11、细菌总数

加水。因为菜籽粕加水之后喂猪更容易被吸收,所以加水喂养效果更好。

在喂养菜籽粕的时候,加一些维生素,或者是添加一些粗粮,这样喂养的效果才是最好的,而且也很不错。

辛烷值检测论文

绿色催化剂的应用及进展摘要]对新型绿色催化剂杂多化合物的研究进展进行了综述,主要介绍了杂多化合物在催化氧化、烷基化、异构化等石油化工领域的研究现状,并对其应用和发展前景做了总结和评述。[关键词]杂多化合物;绿色化工催化剂;展望随着人们对环保的日益重视以及环氧化产品应用的不断增加,寻找符合时代要求的工艺简单、污染少、绿色环保的环氧化合成新工艺显得更为迫切。20世纪90年代后期绿色化学[1,2]的兴起,为人类解决化学工业对环境污染,实现可持续发展提供了有效的手段。因此,新型催化剂与催化过程的研究与开发是实现传统化学工艺无害化的主要途径。杂多化合物催化剂泛指杂多酸及其盐类,是一类由中心原子(如P、Si、Fe、B等杂原子及其相应的无机矿物酸或氢氧化物)和配位原子(如Mo、W、V、Ta等多原子)按一定的结构通过氧原子桥联方式进行组合的多氧簇金属配合物,用HPA表示[3-6]。HPA的阴离子结构有Keggin、Dawson、Anderson、Wangh、Silverton、Standberg和Lindgvist 7种结构。由于杂多酸直接作为固体酸比表面积较小(<10 m2/g),需要对其固载化。固载化后的杂多酸具有“准液相行为”和酸碱性、氧化还原性的同时还具有高活性,用量少,不腐蚀设备,催化剂易回收,反应快,反应条件温和等优点而逐渐取代H2SO4、HF、H3PO4应用于催化氧化、烷基化、异构化等石油化工研究领域的各类催化反应。1杂多酸在石油化工领域的研究进展随着我国石油化工工业的快速发展,以液态烃为原料制取乙烯的生产能力在不断增长,而产生的副产物中有大量的C3~C9烃类,其化工综合利用率却仍然较低,随着环保法规对汽油标准中烯烃含量的严格限制,如何在不降低汽油辛烷值的情况下,生产出高标号的环境友好汽油已是我国炼油业面临的又一个技术难题。目前,催化裂化副产物C3~C9烃类的催化氧化、烷基化、芳构化以及C3~C9烃类的回炼技术已成为研究的热点。因此,催化裂化C3~C9烃类的开发与应用将有着强大的生产需求和广阔的市场前景。催化氧化反应杂多酸(盐)作为一类氧化性相当强的多电子氧化催化剂,其阴离子在获得6个或更多个电子后结构依然保持稳定。通过适当的方法易氧化各种底物,并使自身呈还原态,这种还原态是可逆的,通过与各种氧化剂如O2、H2O2、过氧化尿素等相互作用,可使自身氧化为初始状态,如此循环使反应得以继续。用杂多酸作催化剂使有机化合物催化氧化作用有两种路线是可行的[7]:①分子氧的氧化:即氧原子转移到底物中;②脱氢反应的氧化。将直链烷烃进行环氧化是生产高辛烷值汽油的重要途径之一。Bregeault等[8]研究了在CHCl3-H2O两相中,在作为具有催化活性的过氧化多酸化合物的前体的杂多负离子[XM12O40]n-和[X2M18O62]m-以及同多负离子[MxOy]z-(M=Mo6+或W6+;X=P5+,Si4+或B3+)的存在下,用过氧化氢进行1-辛烯的环氧化反应时,负离子[BW12O40]5-、[SiW12O40]4-和[P2W18O62]6-都是非活性的,并且许多光谱分析法表明它们的结构在反应过程中没有发生变化。[PMo12O40]3-表现出很低的活性,而[PW12O40]3-、H2WO4和[H2W12O42]10-都表现出高活性。反应中Keggin型杂多负离子[PW12O40]3-被过量的过氧化氢分解而形成过氧化多酸{PO4[WO(O2)2]4}3-和[W2O3(O2)4(H2O)2]2-,而这两种活性物种在环氧化反应中起到了重要的作用。烷基化反应石油炼制工业上,烷烃烷基化、烯烃烷基化及芳烃烷基化反应是生产高辛烷值清洁汽油组分的环境友好工艺。但以浓硫酸和氢氟酸作为催化剂的传统烷基化工艺因氢氟酸的毒性和浓硫酸的严重腐蚀性受到了很大的限制。C4抽余液是蒸气裂解装置产生的C4馏份经抽提分离丁二烯后的C4剩余部分,其中富含大量的1-丁烯和异丁烯。如何利用C4抽余液中的异丁烯和1-丁烯是C4抽余液化工利用的关键。异丁烯是一种重要的基本有机化工原料,主要用于制备丁基橡胶和聚异丁烯,也用来合成甲基丙烯酸酯、异戊二烯、叔丁酚、叔丁胺等多种有机化工原料和精细化工产品。1-丁烯是一种化学性质比较活泼的a-烯烃,其主要用途是作为线性低密度聚乙烯(LLDPE)的共聚单体,也用于生产聚丁烯、聚丁烯酯、庚烯和辛烯等直链或支链烯烃、仲丁醇、甲乙酮、顺酐、环氧丁烷、醋酸、营养药、农药等。特别是自20世纪70年代LLDPE工业化技术开发成功以来,随着LLDPE工业生产的蓬勃发展,国内外对1-丁烯的需求与日俱增,已成为发展最快的化工产品之一。刘志刚[9]等用浸渍法制备了Cs+、K+、NH4+的SiPW12杂多酸盐类和SiO2负载的SiPW12杂多酸,在超临界条件下评价了它们对异丁烷和丁烯烷基化的催化作用。结果表明,它们的活性和选择性大小顺序是当阳离子数相同时,Cs+盐>K+盐>NH4+盐。(NH4)尽管催化活性不高,但对C8产物的选择性达到%;具有很高的催化活性,但其对C8产物的选择性却只有。异构化反应汽油的抗爆性用异辛烷值表示,直链烃异构化是生产高辛烷值汽油的重要手段。C5~C6烷烃骨架异构化旨在提高汽油总组成的辛烷值,反应受平衡限制,低温有利于支链异构化热动力学平衡。为达到最大的异构化油产率,C5~C6烷烃异构化应在尽可能低的温度和高效催化剂存在下进行。烷烃骨架异构化是典型的酸催化反应,最近发现有较多的固体酸材料(其酸强度高于H-丝光沸石)可用于轻质烷烃骨架异构化,其中,最有效的有基于杂多酸(HPA)的催化材料和硫酸化氧化锆、钨酸化氧化锆(WOx-ZrO2)。2绿色催化剂绿色化学对催化剂也提出了相应的要求[1,2]:(1)在无毒无害及温和的条件下进行;(2)反应应具有高的选择性,人们将符合这两点的催化剂称之为绿色催化剂。由于一些杂多酸化合物表现出准液相行为,极性分子容易通过取代杂多酸中的水分子或扩大聚合阴离子之间的距离而进入其体相中,在某种意义上吸收大量极性分子的杂多酸类似于一种浓溶液,其状态介于固体和液体之间,使得某些反应可以在这样的体相内进行。作为酸催化剂,其活性中心既存在于“表相”,也存在于“体相”,体相内所有质子均可参与反应,而且体相内的杂多阴离子可与类似正碳离子的活性中间体形成配合物使之稳定。杂多酸有类似于浓液的“拟液相”,这种特性使其具有很高的催化活性,既可以表面发生催化反应,也可以在液相中发生催化反应。准液相形成的倾向取决于杂多酸化合物和吸收分子的种类以及反应条件。正是这种类似于“假液体”的性质致使杂多酸即可作均相及非均相反应,也可作相转移催化剂。陈诵英[10]等用二元杂多酸为催化剂,双氧水为氧化剂,醋酸为溶剂,催化氧化三甲基苯酚(TMP)合成三甲基苯醌(TMBQ),这与传统方法先用发烟硫酸磺化TMP,然后在酸性条件下用固体氧化剂氧化得到TMBQ相比,能减少排放大量废水以及10 t以上的固体废物,且其摩尔收率可达86%,大大提高了原子利用率。刘亚杰[11]等采用一种性能优良的环境友好的负载型杂多酸催化剂(HRP-24)合成二十四烷基苯。HR-24属于一种大孔、细颗粒、强酸性的固体酸催化剂,大孔和细颗粒有利于大分子烯烃的扩散,且不容易被长链烯烃聚合形成的胶质堵塞孔道,而强酸性可使催化剂在较低温度下就具有较高的催化活性。实验表明,在反应温度和压力较低的情况下(120℃和~ MPa),烯烃的转化率和二十四烷基苯的选择性都接近100%。Furuta等[12]采用Pd-H3SiW12O40催化乙烯在氧气和水存在下氧化一步合成了乙酸乙酯,简化合成工艺,与绿色化学相适应。刘秉智[13]以活性炭负载磷钼钨杂多酸为催化剂,用30%双氧水催化氧化苯甲醇合成苯甲醛,苯甲醛收率可达。与国内同类产品的生产工艺相比,其具有催化活性好,反应条件温和,生产成本低廉,催化剂可重复使用,对设备无腐蚀性,不污染环境,是一种优良的新型合成工艺路线,具有一定的工业开发前景。3展望虽然绿色化工催化剂理论发展逐渐得到完善,但大多数催化剂仍停留在实验阶段,催化剂性能不稳定,制备过程复杂,性价比低是制约其工业化应用的主要原因,但从长远角度考虑,采用绿色化工催化剂是实现生产零污染的一个必然趋势。环境友好的负载型杂多酸催化剂既能保持低温高活性、高选择性的优点,又克服了酸催化反应的腐蚀和污染问题,而且能重复使用,体现了环保时代的催化剂发展方向。今后的研究重点应是进一步探明负载型杂多酸的负载机制和催化活性的关系,进一步解决活性成分的溶脱问题,并进行相关的催化机理和动力学研究,为工业化技术提供数据模型,使负载型杂多酸早日实现工业化生产,为石油化工和精细化工等行业创造更大的经济、社会效益。求最佳答案

汽油机电控燃油喷射系统的点火控制(上)XXX(XX汽车电器研究所 )摘要:在发动机控制系统中,电控点火装置对发动机的点火控制包括点火提前角控制、通电时间控制和爆震控制3个方面。分别介绍了它们的控制原理、控制方式、控制方法、控制电路。在发动机的集中电控系统中, ECU (电子控制器)是一种电子综合控制装置。它不仅用来控制燃油喷射系统,同时还具有点火控制、怠速控制、排放控制、进气控制、增压控制、自诊断、失效保护和备用控制等多项控制功能。其中的点火控制是重要功能之一。在发动机控制系统中,电控点火装置(Electronic Spark Advance,简称ESA)对发动机的点火控制包括点火提前角控制、通电时间控制和爆震控制3个方面。1发动机点火控制的发展在传统的化油器式汽油机中,点火控制系统经过了传统式(触点式)向无触点式发展的过程。在这一过程中,系统中的分电器仍一直采用机械式离心和真空提前机构来控制发动机的点火提前角。燃油喷射控制系统经历了机械控制(K系统)、机电混合式控制(K-E系统)到电子控制(EFI系统)的过程。随着EFI系统的出现和发展,点火控制系统开始采用电控点火装置(ESA)。EFI系统的点火控制随着电子工业的发展也经历了普通(传统)式到电控式的过程。在K系统或带普通分电器式的EFI系统中,由于仍采用机械式离心和真空提前机构,不能实现对影响发动机工况的多种因素的多元及非线性控制,这类EFI系统被称为普通EFI系统。而采用电控点火装置(ESA)的EFI系统中,去掉了分电器的机械式离心和真空提前机构,甚至去掉了分电器,其功能完全由ESA来承担,它可以使发动机在任何工况下均处于最佳点火提前状态,并实现3方面的功能:点火提前角控制、通电时间控制和爆震控制。2ESA的点火提前角控制在ECU中,预先存储记忆发动机在各种工况及运行条件下最理想的点火提前角。发动机运转时, ECU根据发动机的转速和负荷信号,确定基本点火提前角,并根据其他有关信号进行修正,最后确定点火提前角,并向点火电子组件输出点火指示信号,以控制点火系统的工作。2·1最佳点火提前角通常把发动机发出功率最大和油耗最小时的点火提前角称为最佳点火提前角。对现代汽车而言,最佳的点火提前角不仅应保证发动机的动力性和燃油经济性都达到最佳,还必须保证排放污染最小。2·2影响点火提前角的因素2·2·1发动机转速当发动机转速升高时,点火提前角相应增大(但非线性关系),在普通式的EFI系统中,由于采用的是机械式离心提前调节器,所以调节曲线与理想点火调节曲线相差较大。当采用ESA时,可以使发动机的实际点火提前角接近于理想的点火提前角。2·2·2进气歧管绝对压力(负荷)当进气歧管压力高(真空度小、负荷大)时,要求点火提前角小;当进气歧管压力低(真空度高、负荷小)时,要求点火提前角大。但它们也非线性关系。在普通式的EFI系统中,由于采用的是机械式真空提前调节器,所以调节曲线与理想点火调节曲线相差较大。当采用ESA时,可以使发动机的实际点火提前角接近于理想的点火提前角。2·2·3汽油的辛烷值发动机在一定条件下,会出现爆震现象。爆震使发动机动力下降、油耗增加、发动机过热,对发动机极为有害。发动机的爆震与汽油品质有密切关系,常用辛烷值来表示汽油的抗爆性能。汽油的辛烷值越高,抗爆性越好,点火提前角可增大;辛烷值越低,抗爆性越差,点火提前角则应减小。在无电控的普通点火系统中,是靠人工对分电器初始位置进行调节来实现的。在EFI中,为了适应不同辛烷值的汽油的需要,在ECU中存储了2张点火正时图,在实际使用中,可根据不同的汽油品种进行选择。在出厂时,一般开关设定在无铅优质汽油的位置上。2·2·4其它因素最佳点火提前角还与发动机燃烧室的形状、燃烧室内温度、空燃比、大气压力、冷却水温度等因素有关。在普通EFI系统中,当上述因素变化时,系统无法对点火提前角进行调整。当采用ESA时,发动机在各种工况和运行条件下,都能提供理想的点火提前角,因此发动机的动力性、经济性和排放都可以达到最佳。2·3点火提前角控制系统的组成及功用(表1)表1点火提前角控制系统的组成及功用名称功用传感器空气流量计(用于L型EFI)进气歧管绝对压力传感器(用于D型EFI)检测进气量分电器曲轴位置传感器(NE信号)检测曲轴角度(转速)凸轮轴位置传感器(G1、G2信号)检测凸轮轴(曲轴)角度基准位置节气门位置传感器向ECU输入点火提前角修正用信号水温传感器检测发动机冷却水温度,向ECU输入点火提前角修正用信号起动开关(起动信号)向ECU输入发动机正在起动中的信号空调开关A/C向ECU输入空调的工作状态(ON、OFF)信号车速传感器检测车速,向ECU输入车速信号空档起动开关检测换档手柄置于N档或P档爆震传感器检测发动机爆震信号点火电子组件(点火模块)根据ECU输出的点火控制信号,控制点火线圈初级电流的通断,产生次级高压。同时,向ECU反馈点火确认信号ECU根据各传感器输入的信号,计算出最佳点火提前角,并将点火控制信号输送给点火电子组件2·4点火提前角的控制方式2·4·1点火正时控制在ESA中,点火提前角的控制包括发动机起动期间和起动后的2种基本情况。a·起动期间点火时间控制(图1a)当发动机在起动期间时,转速较低(通常在500 r/min以下),由于进气歧管压力信号或进气量信号不稳定,因此常将点火时间固定在初始点火提前角(其大小随发动机而异)。此时点火时刻与发动机工况无关,故不经ECU计算,直接由传感器信号控制一个固定的初始点火提前角。当发动机转速超过一定值时,自动转换为由ECU的点火正时信号IGT控制。b·起动后点火时间控制(图1b)根据有关传感器送来的信号, ECU计算出最佳点火时刻,输出点火正时信号IGT,控制点火电子组件点火。此时,点火时间由进气歧管压力信号(或进气量信号)和发动机转速确定的基本点火提前角和修正量决定。修正项目随发动机而异,并根据发动机各自图1点火时间控制(a)起动期间点火时间控制(b)起动后点火时间控制的特性曲线进行修正。以上2种情况可归纳如下:

根据汽油的介电常数法测定汽油的辛烷值,测量方法采用了分段回归对应校准,利用微差法直读辛烷值,该方法简单,快捷。目前长沙富兰德开发出了最新一款的辛烷值测定仪FDR-3601,用标准油样进行标定,然后用标定好的仪器对试样进行检测,检测结果准确性高。还有款FDR-3621的十六烷值测定仪,检测柴油的十六烷指数,结果准确性高。

这不是闺房记乐,这是闲情记趣中的。绝 是说 花多,不断绝。你自己参照百度吧属 是一类的意思 。联系上下文,是寻觅昆虫善 这一句翻译为,岂不是很好吗行 试验,或者说做了 。何妨而效之 , 何不仿效一下。或抱花梗,或踏草叶,栩栩如生,宛然动人。上文说以针刺死,做了标本,所以有这句。浮生六记记得是芸这个人,表现的是一个知己与伴侣的妻子,你从这方面来回答吧。既然是闲情,也何必计较呢,应试教育真是糟蹋东西。我闲居在家的时候,案头上的插花盆景长续不断。芸说,你的插花啊,能表现出雨露风晴中的各种自然韵味,可谓精妙入神。然后画法中有一种草木与昆虫共同相处的方法,你为何不效仿一下呢。我说,虫儿会爬会乱动,怎么可能像作画一般呢?芸说,我有一种办法,不过恐怕会被(后人)作为始作俑者而引起罪过呢。我说,那你说说看。芸说,虫儿死后,它的颜色神态并不会有多大改变,(我们)找到螳螂产蝉蝶之类用针刺死,然后用细丝捆在它们的脖子上,系在草木间,再整理它们的脚足,或抱花梗,或踏草叶,栩栩如生,(这样)岂不是很好吗?我很高兴,按她的办法去试了,看见的人没有不赞美称绝的。求于闺中的意见,当今世上恐怕未必再有这样会心的人了吧。

甲烷浓度检测论文

其实应该说甲烷作为一种温室气体的效力是二氧化碳的23-25倍

其他

:质量当量:

1tCH4的GWP值为21tCO2e

其中:GWP为增温潜力值,表示对温室效应的贡献大小。

补充:

根据IPCC的国家温室气体清单指南2006,全球增温潜势计作一吨温室气体在一段时间(如100年)内对一吨二氧化碳的辐射强迫。因此均采用 1tCH4 = 21tCO2e

=====================================其他参考

科学家们相信,南极洲冰盖和冰川下的水世界中生活着大批的微生物。他们还推测,这些微生物可能在漫长的时间里制造出了大量的甲烷,通常情况下甲烷被冰封在那里,但是如果上升的气温使冰川和冰盖融化,甲烷则有可能外泄到大气之中。

甲烷是大气中继水蒸气、二氧化碳之后最为重要的温室气体。一些科学家担心,南极和北极地区冰封的甲烷如果随着全球变暖而被释放出来,将会对气候形成正反馈的循环,进一步加剧全球变暖。

英国布里斯托大学的地球化学家杰玛·沃德姆(JemmaWadham)的研究小组分别在南极和北极的冰川采了样本,拿到实验室里进行研究。他们发现,冰里面存在高浓度的甲烷,以及大量的产烷生物。在南极的样本中,每克冰里有1000万个产烷生物,在格陵兰的样本中,每克里面有10万个。

他们还将这些产烷生物放在瓶子里培养。南极洲的样本在起初的250天里都没有什么动静,接下来却突然产生了大量的甲烷。格陵兰的产烷生物一直到今年3月15日都没有出现任何释放甲烷的迹象,但沃德姆认为它们也许只是需要更多一点的时间。

在沃德姆等人得到的样本中,产烷生物的含量与深海沉积物中的含量不相上下,生物的种类也与北极地区泥炭和冻土中的产烷生物非常相似。

甲烷的温室效应

2008年发表在英国《自然》杂志上的一篇文章曾指出,亿年前,由于甲烷的释放,地球迅速升温,炎热的气候取代了冰期。论文第一作者、美国加州大学滨河分校教授马丁·肯尼迪(MartinKennedy)认为,同样的事件可能在今天再次发生,而且变化会来得异常迅速———不是在几千年或几百万年里,而是在短短一个世纪中。“这是一个重要的忧虑因素,因为也许只要一点点的升温就能让禁锢着的甲烷释放出来。”肯尼迪表示。

根据科学家的估计,湿地、永久冻土,包括北冰洋下的永久冻土里,以甲烷(CH4)形式存在的碳的量是现在大气中以二氧化碳(CO2)形式存在的碳的至少两倍。在大气里,甲烷的含量已经是工业革命前的两倍。这种增加中有人类活动的作用,包括能源生产和使用、垃圾填埋、养牛、稻米农业和生物体燃烧,但也有大约百分之四十来自于自然界。

甲烷作为一种温室气体的效力是二氧化碳的23-25倍。地球上的甲烷水合物(俗称“可燃冰”)如果在几年中有10%释放到大气中,那么它对地球辐射的影响就相当于二氧化碳增加了十倍。

在联合国政府间气候变化专门委员会(IPCC)的报告中,气温的曲线总是随着二氧化碳的水平平滑上升,这是因为图示是根据线性数学模型做出来的。但是肯尼迪和其他一些地质学家认为甲烷能够在短短几十年里造成非线性的气候变化。

在他对远古气候的研究中,存在于较低纬度的甲烷水合物首先变得不稳定,释放出甲烷气体。这些甲烷气体所造成的升温使得甲烷水合物的去稳定化向着更高的纬度发展,最终成为一种失控的反馈效应传播到全球。

尽管肯尼迪等人研究的是几亿年前发生的情况,但是他们看到今天发生的状况与那时是类似的。在定量评估温室气体排放对气温变化的贡献时,IPCC报告引用了“辐射强迫”的概念,它指的是某种因子造成的太阳辐射的变化。肯尼迪也用这个概念来考察。“如果我们将二氧化碳水平翻一倍或是翻两倍,会发生什么情况呢?”肯尼迪担心,二氧化碳增加所造成的全球变暖会让储藏在自然界的甲烷在一代人的时间里释放出来。

美国加州大学圣塔芭芭拉分校的地质学和古生物学教授吉姆·肯尼特(JimKennett)同意肯尼迪的看法,认为他的思路是正确的。肯尼特甚至认为,如果地球的气候能够在短短几十年里发生巨大的变化,那么甲烷的释放是唯一可能的引爆器。

正在释放的甲烷

“甲烷从永久冻土冒出来是一件正在发生的事情。今天我们面临的挑战是我们无法测量它,所以我们就无挂虑地忽略它。”肯尼迪在2008年说。

现在他所说的无法测量的情况正在发生改变。一些科学家在近些年开展了艰苦的野外测量工作,以期查明自然界中的甲烷究竟在以多大的速度向外释放。

来自美国、俄罗斯和瑞典研究机构的一组科学家从2003年到2008年每年均乘坐俄罗斯的破冰船,到东西伯利亚北极大陆架(ESAS)探测甲烷。他们还在2006年做了一次直升机考察,在2007年冬天做了一次冰面考察。在这些考察中,他们取得了至少5100个海水样本。然后他们在这个基础上分析ESAS甲烷释放的情况。这样的行动艰苦又周期漫长的研究工作被一些科学家称为“灰姑娘科学”。ESAS由西伯利亚的海岸线向北延伸1000千米,海床中包含了从上一次冰期遗留下来的永久冻土。这里海底的年平均温度为-到1摄氏度,比地面上的永久冻土的年平均温度高出12到17摄氏度。

美国阿拉斯加大学国际北极研究中心的娜塔莉亚·沙克霍娃(NataliaShakhova)及其合作者经过数年的艰苦探测得出的结果是,ESAS每年以甲烷形式向大气中释放出的碳的量约为8×1012克(8TgC)。他们在直升机上的测量结果也在大气中记录到四倍于北极其他地区的甲烷浓度。“海底甲烷最后也影响大气甲烷的浓度,问题就是人们对甲烷,包括二氧化碳,在大气里面的收支还是了解得很不够,数字不准确。”北京大学物理学院大气科学系教授王绍武评论说,“现在这项研究加了一个甲烷的源,那么以后在计算甲烷的收支的时候它是可以纳入考虑的。”沙克霍娃等人的论文发表在3月5日的美国《科学》杂志。在一篇配发的评论中,德国马普研究所的马丁·黑曼(MartinHeimann)说这项研究是“一个勤奋、高质量实地测量的美妙案例”。

在1月15日的《科学》杂志上,英国爱丁堡大学地球科学学院安东尼·布鲁姆(AnthonyBloom)等人还从另一个角度考察了甲烷的释放情况。他们分析了2003年到2005年的卫星资料,从中寻找湿地释放甲烷的量级与分布。

他们的研究显示,赤道地区的湿地为全球的甲烷释放贡献52%到58%。他们还估计,在2003年到2007年期间,由于中纬度的北极地区的升温,湿地的甲烷排放增加了7%。用另一个数字来说,是每年增加大约6TgC。“这些变化对于全球甲烷循环来说有多重要?”黑曼在评论中写道,“考虑到全球每年排放的甲烷有大约440TgC,西伯利亚的北冰洋海域和北半球湿地的甲烷排放变化是微不足道的。这是一个好消息,说明当下的气候变化并没有严重影响全球甲烷循环。”“但是在持续的变暖之下,这种状况会持续吗?”黑曼继续自问自答,“我们不知道。”

一些科学家与肯尼迪等人持有不同的观点,他们认为甲烷的释放并不是灾难性的。美国芝加哥大学的地球科学教授大卫·阿彻(DavidArcher)指出,大部分甲烷水合物都深埋在地下和海洋里,那些地方人为造成的升温和甲烷的释放都会是在千年尺度里发生的事情。

他认为甲烷带来的影响是“长期的但并非灾难性的”。他在一篇文章中写道,“从地质的时间尺度来说,可以想象的是甲烷水合物会向大气和海洋中释放的碳与我们化石燃料燃烧所释放的一样多。”

危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热极易燃烧爆炸。与氧化剂能发生强烈反应。流速过快,容易产生和积聚静电。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳、二氧化碳。 侵入途径:吸入、食入、经皮吸收。 健康危害:对皮肤、粘膜有刺激性,对中枢神经系统有麻醉作用。 急性中毒:短时间内吸入较高浓度本品可出现眼及上呼吸道明显的刺激症状、眼结膜及咽部充血、头晕、头痛、恶心、呕吐、胸闷、四肢无力、步态蹒跚、意识模糊。重症者可有躁动、抽搐、昏迷。 慢性中毒:长期接触可发生神经衰弱综合征,肝肿大,女工月经异常等。皮肤干燥、皲裂、皮炎。 防护措施 呼吸系统防护:空气中浓度超标时,应该佩戴自吸过滤式防毒面罩(半面罩)。紧急事态抢救或撤离时,应该佩戴空气呼吸器或氧气呼吸器。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防毒渗透工作服。 手防护:戴乳胶手套。 其它:工作现场禁止吸烟、进食和饮水。工作毕,淋浴更衣。保持良好的卫生习惯。 急救措施 皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐,就医。 因此,甲苯本身对人体的神经系统有毒害作用,时间长了容易中毒,国家对甲烷的用量有很严格的规定,这就说明它的危害很厉害,你可以想一想,新房装修后里面就有甲烷,一般人多待一会都头疼 总之,建议换个工作!

甲烷 甲烷 �基本信息库中文名称:甲烷。英文名称:Methane;Marsh gas。CAS No.:74-82-8。分子式:CH�4。分子量:。危险标记:4(易燃液体)。包装方法:钢质气瓶。 �理化性质库主要成分:纯品。外观与性状:无色无臭气体。熔点(℃):。沸点(℃):。相对密度(水=1):(-164℃)。相对蒸气密度(空气=1):。蒸气压(PV): (℃)。稳定性和反应活性:稳定。危险特性:易燃,与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险。与五氧化溴、氯气、次氯酸、三氟化氮、液氧、二氟化氧及其他强氧化剂接触剧烈反应。溶解性:微溶于水,溶于醇、乙醚。 �应急处置库皮肤接触:若有冻伤,就医治疗。吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给予输氧。如呼吸停止,立即进行人工呼吸。就医。呼吸系统防护:一般不需要特殊防护,但建议特殊情况下佩带自吸过滤式防毒面具(半面罩)。眼睛防护:一般不需要特别防护,高浓度接触时可戴安全防护眼镜。身体防护:穿防静电工作服。手防护:戴一般作业防护手套。其他防护:工作现场严禁吸烟。避免长期反复接触。进入罐、限制性空间或其他高浓度区作业,须有人监护。泄漏应急处理:迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑以收容产生的大量废水。如有可能,将漏出气用排风机送至空旷地方或装设适当喷头烧掉。也可以将漏气的容器移至空旷处,注意通风。漏气容器要妥善处理,修复、检验后再用。有害燃烧产物:一氧化碳、二氧化碳。灭火方法:切断气源。若不能立即切断气源,则不允许熄灭正在燃烧的气体。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、泡沫、二氧化碳、干粉。 �管理信息库操作的管理:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止气体泄漏到工作场所空气中。避免与氧化剂接触。在传送过程中,钢瓶和容器必须接地和跨接,防止产生静电。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。储存的管理:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。应与氧化剂等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备。运输的管理:采用钢瓶运输时必须戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向,不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。运输时运输车辆应配备相应品种和数量的消防器材。装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。严禁与氧化剂等混装、混运。夏季应早晚运输,防止日光曝晒。中途停留时应远离火种、热源。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。铁路运输时要禁止溜放。废弃的管理:处置前应参阅国家和地方有关法规。建议用焚烧法处置。 �毒理学资料库急性毒性:小鼠吸入42%浓度×60 min,麻醉作用;兔吸入42%浓度×60 min,麻醉作用。有单纯性窒息作用,在高浓度时因缺氧窒息而引起中毒。空气中达到25%~30%时出现头昏、呼吸加速、运动失调。皮肤接触液化本品,可致冻伤。亚急性和慢性毒性:当空气中甲烷达25%~30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共济失调。若不及时脱离,可致窒息死亡。中毒机理:空气中甲烷浓度过高时,氧含量明显降低,达到一定程度,可造成机体急性缺氧。当空气中甲烷浓度达25%~30%时可发生窒息前症状。高浓度甲烷对呼吸道黏膜有强烈刺激作用,可致化学性肺炎,严重者可发生急性肺水肿、脑水肿和脑损伤。燃爆危险:本品易燃。 �应急医疗库诊断要点:1.急性中毒(1)吸入25%~30%的甲烷即可发生头晕、头痛、注意力不集中、气促、无力、共济失调、窒息等;浓度极高时出现猝死。(2)严重者可有不同程度的中毒性脑病的临床表现。2.冻伤皮肤接触液体甲烷后可引起冻伤。处理原则:1.急性中毒(1)立即脱离现场至空气新鲜处,安静、平卧、保暖,保持呼吸道通畅和吸氧等。(2)呼吸心跳停止时立即进行复苏,注意观察意识、瞳孔、脉搏、血压及呼吸等各项生命体征,及时发现和处理可能出现的脑水肿,必要时进行高压氧治疗。(3)忌用有抑制呼吸作用的吗啡和巴比妥类等药物。2.皮肤冻伤按外科原则处理。若冻伤处仍未完全解冻,可先用42℃左右的温水浸洗,待皮肤复温后再作创面处理。预防措施:预防甲烷中毒,必须采取以下综合措施:改善矿井的通风设施,以防沼气蓄积,并定期检测矿井中沼气的浓度。进入沼气含量较高的下道或矿井作业时应佩戴有效的防毒面具。沼气池或化粪应严密盖紧、加固,以防小儿及成人不慎跌入。

楼上都有复制或部分复制我在其他问题中的回答呀。没有计算公式!这是根据物质特性和观测统计给定的值,就好比物质的密度、比热,这些是物质的属性参数,不是通过计算得来的!再说的具体点,是根据其在大气中存在和转化的周期及其分解的难易程度确定的。IPCC第二次科学评估报告给定甲烷的增温潜力值(GWP)是二氧化碳的21倍,其中二氧化碳的GWP值规定为1;IPCC最新的科学评估报告给定甲烷的增温潜力值(GWP)是二氧化碳的25倍,其中二氧化碳的GWP值规定为1.

酮体含量检测论文

糖尿病是影响人民健康和生命的常见病,属于内分泌代谢系统疾病,以高血糖为主要标志,临床上出现烦渴、多尿、多饮、多食、疲乏、消瘦、尿糖等表现。糖尿病是因为胰岛素分泌量绝对或相对不足而引起的糖代谢,蛋白质代谢,脂肪代谢和水、电解质代谢的紊乱。 糖尿病任何年龄均可发病,但是60岁以上的老年人平均患病率为。 糖尿病酮症酸中毒是糖尿病的危重情况,是由于胰岛素严重不足而引起,病人血糖异常升高,脱水,迅速进入昏迷、休克、呼吸衰竭,死亡率为10%。 (一)酮症酸中毒是糖尿病的危重情况: 当各种诱因使糖尿病加重时,人体内脂肪分解加速,脂肪分解产生脂肪酸,大量脂肪酸经肝脏进行β氧化产生酮体,酮体是β�羟丁酸、乙酰乙酸、丙酮的总称。正常情况下血中酮体很少,为2毫克/100毫升血,尿中酮体不能检出。在酮症酸中毒时,血中酮体升高达50毫克/100毫升血以上称为酮血症;尿中出现酮体,称为酮尿。酮体以酸性物质占主要部分,大量消耗体内的储备碱,逐渐发生代谢性酸中毒。发生酮症酸中毒时,病人糖尿病的症状加重,同时伴有酮症酸中毒的表现。 (二) 糖尿病酮症酸中毒的诱因: 1、糖尿病治疗不当 胰岛素治疗中断或不适当减量;降糖药突然停药或用量不足;未经正规治疗的糖尿病。 2、感染 糖尿病人并发肺炎、泌尿系感染、坏疽等感染时。 3、饮食不当 暴饮暴食或饮食不节(洁)引起呕吐、腹泻。 4、其他 严重外伤或手术后。妊娠和分娩。 (三) 糖尿病酮症酸中毒的临床表现: 1、早期 糖尿病加重的现象如极度口渴、多饮、多尿、全身无力。 2、病情迅速恶化 出现食欲不振、恶心、呕吐、腹痛、腹胀。腹痛较重,常被误诊为急腹症。当酮症酸中毒好转时,腹痛很快消失。 3、精神及呼吸症状 头痛、嗜睡,烦躁,呼吸深而大,呼气时可有烂苹果味,酮体浓度高则气味重。 4、脱水症状 由于多尿和呕吐腹泻引起。病人皮肤干燥,弹性差,眼球下陷,淡漠,很快进入昏迷。由于失水而出现脉弱、血压降低、四肢发冷等休克表现。部分病人有发烧现象,体温38~39℃。 5、化验橙查 尿糖�~�,尿酮体阳性;血糖显著升高,多数300~600毫克/每100毫升血(毫摩尔~毫摩尔/每升血),少数可达1000毫克/每100毫升血(毫摩尔/每升血);血酮体增高。其他的化验检查都可以出现不正常,如血中白细胞计数增高,血钠、氯、钾离子均可降低。 6、注意与其他情况引起的昏迷进行鉴别 糖尿病人在家庭中突然出现昏迷时,大多可能有两种情况,一种是酮症酸中毒引起,另一种可能为低血糖昏迷,一般是在血糖低于50毫克/每100毫升血(毫摩尔/每升血)时发生,表现为面色苍白,出冷汗,神志不清,但呼吸、心跳等一般情况尚好。注射葡萄糖后病人迅速清醒。在家庭中无法鉴别这两种昏迷时,应及时送医院检查后再做处理。 (四) 救护措施: (1)应用胰岛素。这是抢救治疗的关键。必须在医院或医生指导下应用。根据病情皮下或静脉注射或静滴普通胰岛素。一般可酌情皮下注射12~20单位,再给予静滴每小时4~8单位量滴入,大多在24小时内控制病情,此时应停用其他降糖药。 (2)纠正脱水。能口服的尽量口服饮水。昏迷病人要给予静脉补液,24小时内可输液3000~6000毫升,心脏病或肾功不好的病人酌情减量。 (3)昏迷病人头侧位,及时清除呕吐物,保持呼吸道通畅和口腔清洁。有缺氧情况者给予吸氧,已发生感染的适当应用抗菌药物。 (4)详细记录病人的出入量,如饮水量、进食量、呕吐量、尿量、便量,报告给医生,提供诊断治疗依据。 (5)糖尿病酮症酸中毒病情复杂、严重、发展快,在治疗前后均要进行多种化验检查,以调整胰岛素的用量,输液量及种类。最好将病人送至医院急救,以免造成严重后果。 糖尿病患者患有勃起功能障碍(ED)的比例在50%以上。

脂类代谢与人体健康 脂类物质包括脂肪和类脂二类物质,脂肪又称甘油三酯,由甘油和脂肪酸组成;类脂包括胆固醇及其酯、磷脂及糖脂等。脂类物质是细胞质和细胞膜的重要组分;脂类代谢与糖代谢和某些氨基酸的代谢密切相关;脂肪是机体的良好能源,脂肪的潜能比等量的蛋白质或糖高1倍以上、通过氧化可为机体提供丰富的热能;固醇类物质是某些激素和维生素D及胆酸的前体。脂类代谢与人类的某些疾病(如酮血症、酮尿症、脂肪肝、高血脂症、肥胖症和动脉粥样硬化、冠心病等)有密切关系,因此,脂类代谢对人体健康有重要意义。 一、脂类的消化与吸收 1.脂肪的消化与吸收 食物中的脂肪在口腔和胃中不被消化,因唾液中没有水解脂肪的酶,胃液中虽含有少量脂肪酶,但胃液中的pH为1~2,不适于脂肪酶作用。脂肪的消化作用主要是在小肠中进行,由于肠蠕动和胆汁酸盐的乳化作用,脂肪分散成细小的微团,增加了与脂肪酶的接触面,通过消化作用,脂肪转变为甘油一酯、甘油二酯、脂肪酸和甘油等,它们与胆固醇、磷脂及胆汁酸盐形成混合微团。这种混合微团在与十二指肠和空肠上部的肠粘膜上皮细胞接触时,甘油一酯、甘油二酯和脂肪酸即被吸收,这是一种依靠浓度梯度的简单扩散作用。吸收后,短链的脂肪酸由血液经门静脉入肝;长链的脂肪酸、甘油一酯和甘油二酯在肠粘膜细胞的内质网上重新合成甘油三酯,再与磷脂、胆固醇、胆固醇酯及载脂蛋白构成了乳糜微粒,通过淋巴管进入血液循环。 2.类脂的消化与吸收 食物中胆固醇的吸收部位主要是空肠和回肠,游离胆固醇可直接被吸收;胆固醇酯则经胆汁酸盐乳化后,再经胆固醇酯酶水解生成游离胆固醇后才被吸收,吸收进入肠粘膜细胞的胆固醇再酯化成胆固醇酯,胆固醇酯中的大部分掺入乳糜微粒,少量参与组成极低密度脂蛋白,经淋巴进入血液循环。食物中的磷脂在磷脂酶的作用下,水解为脂肪酸、甘油、磷酸、胆碱或胆胺,被肠粘膜吸收后,在肠壁重新合成完整的磷脂分子,参与组成乳糜微粒而进入血液循环。 二、脂肪的代谢 1.脂肪酸的合成 体内的脂肪酸的来源有二:一是机体自身合成,以脂肪的形式储存在脂肪组织中,需要时从脂肪组织中动员。饱和脂肪酸主要靠机体自身合成;另一来源系食物脂肪供给,特别是某些不饱和脂肪酸,动物机体自身不能合成,需从植物油摄取。它们是动物不可缺少的营养素,故称必需脂肪酸。它们又是前列腺素、血栓素及白三烯等生理活性物质的前体。前列腺素可使血管扩张,血压下降,并能抑制血小板的聚集。而血栓素作用与此相反,有促凝血作用。白三烯能引起支气管平滑肌收缩,与过敏反应有关。 脂肪酸的生物合成是在胞液中多酶复合体系催化下进行的,原料主要来自糖酵解产生的乙酸辅酶A和还原型辅酶Ⅱ,最后合成软脂酸。软脂酸在内质网和线粒体分别与丙二酰单酰辅酶A和乙酸辅酶A作用,均可以使碳链的羧基端延长到18~26℃。机体还可利用软脂酸、硬脂酸等原料,在去饱和酶的催化下,合成不饱和脂肪酸,但不能合成亚油酸、亚麻酸和花生四烯酸等必需脂肪酸。 2.脂肪的合成 脂肪在体内的合成有两条途径,一种是利用食物中脂肪转化成人体的脂肪,另一种是将糖转变为脂肪,这是体内脂肪的主要来源,是体内储存能源的过程。糖代谢生成的磷酸二羟丙酮在脂肪和肌肉中转变为 磷酸甘油,与机体自身合成或食物供给的两分子脂肪酸活化生成的脂酰辅酶A作用生成磷脂酸,然后脱去磷酸生成甘油二酯,再与另一分子脂酰辅酶A作用,生成甘油三酯。 3.脂肪的分解 脂肪组织中储存的甘油三酯,经激素敏感脂肪酶的催化,分解为甘油和脂肪酸运送到全身各组织利用,甘油经磷酸化后,转变为磷酸二羟丙酮,循糖酵解途径进行代谢。胞液中的脂肪酸首先活化成脂酰辅酶A,然后由肉毒碱携带通过线粒体内膜进入基质中进行 氧化,产生的乙酰辅酶A进入三羧酶循环彻底氧化,这是体内能量的重要来源。 4.酮体的产生和利用 脂肪酸在肝中分解氧化时产生特有的中间代谢产物——酮体,酮体包括乙酰乙酸、 羟丁酸和丙酮,由乙酰辅酶A在肝脏合成。肝脏自身不能利用酮体,酮体经血液运送到其它组织,为肝外组织提供能源。在正常情况下,酮体的生成和利用处于平衡状态。 三、类脂的代谢 1.胆固醇的代谢 体内胆固醇主要在肝细胞内合成,胆固醇在体内不能彻底氧化分解,但可以转变成许多具有生物活性的物质,肾上腺皮质激素、雄激素及雌激素均以胆固醇为原料在相应的内分泌腺细胞中合成。胆固醇在肝中转变为胆汁酸盐,并随胆汁排入消化道参与脂类的消化和吸收。皮肤中的7-脱氧胆固醇在日光紫外线的照射下,可转变为维生素 ,后者在肝及肾羟化转变为1,25- 的活性形式,参与钙、磷代谢。 2.磷脂的代谢 含磷酸的脂类称为磷脂,由甘油构成的磷脂统称为甘油磷脂,它包括卵磷脂和脑磷脂,是构成生物膜脂双层结构的基本骨架,含量恒定为固定脂。卵磷脂是合成血浆脂蛋白的重要组分。由鞘氨醇构成的磷脂称为鞘磷脂,是生物膜的重要组分,参与细胞识别及信息传递。磷脂酸是合成磷脂的前体,在磷酸酶作用下生成甘油二酯,然后与CDP-胆碱或CDP-胆胺反应生成卵磷脂和脑磷脂。鞘氨醇由软脂酸辅酶A和丝氨酸反应形成。鞘氨醇经长链脂酰辅酶A酰化而形成N-酸基鞘氨醇,即神经酰胺,又进一步和CDP-胆碱作用而形成鞘磷脂。 四、血浆脂蛋白代谢 1.血脂的组成及含量 血浆中所含的脂类统称血脂,它的组成包括甘油三酯、磷脂、胆固醇及其酯以及游离的脂肪酸等。血脂的来源有二:一为外源性,从食物摄取的脂类经消化吸收进入血液;二是内源性,由肝、脂肪细胞以及其它组织合成后释放入血液。血脂受膳食、年龄、性别、职业以及代谢等的影响,波动范围较大。正常人空腹12~24 h血脂的组成及含量见表1。 表1 正常成人空腹时血浆中脂类的组成和含量脂类物质 nmol/L mg/dl 脂类总量 4~7(g/L) 400~700甘油三酯 ~ 10~160胆固醇总量 ~ 150~250磷 脂 ~ 150~250游离脂肪酸 ~ 8~25血浆中脂类的正常值范围因测定方法不同而有一定的差别。另外,血脂含量与全身脂类相比,只占极小部分,但所有脂类均通过血液转运至各组织。因此,血脂的含量可以反映全身脂类的代谢概况。 血脂的来源与去路如下:2.血浆脂蛋白的分类、组成及功能 正常人血浆含脂类虽多,却仍清彻透明,说明血脂在血浆中不是以自由状态存在,而与血浆中的蛋白质结合,以血浆脂蛋白的形式运输。载脂蛋白主要有apoA、apoB、apoC、apoD和apoE等五类,还有若干亚型。血浆脂蛋白的结构为球状颗粒,表面为极性分子和亲水基团,核心为非极性分子和疏水基团。各种血浆脂蛋白因所含脂类及蛋白质量不同,其密度、颗粒大小、表面电荷、电泳行为及免疫性均有不同,一般用超速离心法和电泳法将它们分为四类,彼此对应,即:HDL高密度脂蛋白( 脂蛋白)、VLDL极低密度脂蛋白(前 脂蛋白)、LDL低密度脂蛋白( 脂蛋白)和CM乳糜微粒。CM是在空肠粘膜细胞内合成,转运外源性脂肪;VLDL是在肝细胞内合成,转运内源性脂肪;LDL是在血浆中由VLDL转变而来,转运胆固醇至各组织;HDL是在肝细胞内合成,转运胆固醇和磷脂至肝脏。 五、脂类代谢紊乱引起的常见疾病 1.血浆脂蛋白的异常引起的疾病正常时,血浆脂类水平处于动态平衡,能保持在一个稳定的范围。如在空腹时血脂水平升高,超出正常范围,称为高血脂症。因血脂是以脂蛋白形式存在,所以血浆脂蛋白水平也升高,称为高脂蛋白血症。根据国际暂行的高脂蛋白血症分型标准,将高脂蛋白血症分为6型,各型高脂蛋白血症血浆脂蛋白及脂类含量变化见表2。 表2 各型高脂蛋白血浆脂蛋白及脂类含量变化类型 血浆脂蛋白变化 血脂含量变化 发生率 Ⅰ 高乳糜微粒血症 甘油三酯升高 罕见 (乳糜微粒升高) 胆固醇升高 Ⅱa 高 脂蛋白血症 甘油三酯正常 常见 (低密度脂蛋白升高) 胆固醇升高 Ⅱb 高 脂蛋白血症 甘油三酯升高 常见 高前 脂蛋白血症 胆固醇升高 (低密度脂蛋白及极 低密度脂蛋白升高 Ⅲ 高 脂蛋白血症 甘油三酯升高 较少 高前 脂蛋白血症 胆固醇升高 (出现“宽 ”脂蛋白 低密度脂蛋白升高 Ⅳ 高前 脂蛋白血症 甘油三酯升高 常见 (极低密度脂蛋白升高) 胆固醇升高 Ⅴ 高乳糜微粒血症 甘油三酯升高 高前 脂蛋白血症 胆固醇升高 不常见按发病原因又可分为原发性高脂蛋白血症和继发性高脂蛋白血症。原发性高脂蛋白血症是由于遗传因素缺陷所造成的脂蛋白的代谢紊乱,常见的是Ⅱa和Ⅳ型;继发性高脂蛋白血症是由于肝、肾病变或糖尿病引起的脂蛋白代谢紊乱。 高脂蛋白血症发生的原因可能是由于载脂蛋白、脂蛋白受体或脂蛋白代谢的关键酶缺陷所引起的脂质代谢紊乱。包括脂类产生过多、降解和转运发生障碍,或两种情况兼而有之,如脂蛋白脂酶活力下降、食入胆固醇过多、肝内合成胆固醇过多、胆碱缺乏、胆汁酸盐合成受阻及体内脂肪动员加强等均可引起高脂蛋白血症。动脉粥样硬化是严重危害人类健康的常见病之一,发生的原因主要是血浆胆固醇增多,沉积在大、中动脉内膜上所致。其发病过程与血浆脂蛋白代谢密切相关。现已证明,低密度脂蛋白和极低密度脂蛋白增多可促使动脉粥样硬化的发生,而高密度脂蛋白则能防止病变的发生。这是因为高密度脂蛋白能与低密度脂蛋白争夺血管壁平滑肌细胞膜上的受体,抑制细胞摄取低密度脂蛋白的能力,从而防止了血管内皮细胞中低密度脂蛋白的蓄积。所以在预防和治疗动脉粥样硬化时,可以考虑应用降低低密度脂蛋白和极低密度脂蛋白及提高高密度脂蛋白的药物。肥胖人与糖尿病患者的血浆高密度脂蛋白水平较低,故易发生冠心病。 2.酮血症、酮尿症及酸中毒 正常情况下,血液中酮体含量很少,通常小于1mg/100mL。尿中酮体含量很少,不能用一般方法测出。但在患糖尿病时,糖利用受阻或长期不能进食,机体所需能量不能从糖的氧化取得,于是脂肪被大量动员,肝内脂肪酸大量氧化。肝内生成的酮体超过了肝外组织所能利用的限度,血中酮体即堆积起来,临床上称为“酮血症”。患者随尿排出大量酮体,即“酮尿症”。酮体中的乙酰乙酸和 羟丁酸是酸性物质,体内积存过多,便会影响血液酸碱度,造成“酸中毒”。 3.脂肪肝及肝硬化 由于糖代谢紊乱,大量动员脂肪组织中的脂肪,或由于肝功能损害,或者由于脂蛋白合成重要原料卵磷脂或其组成胆碱或参加胆碱含成的甲硫氨酸及甜菜碱供应不足,肝脏脂蛋白合成发生障碍,不能及时将肝细胞脂肪运出,造成脂肪在肝细胞中堆积,占据很大空间,影响了肝细胞的机能,肝脏脂肪的含量超过10%,就形成了“脂肪肝”。脂肪的大量堆积,甚至使许多肝细胞破坏,结缔组织增生,造成“肝硬化”。 4.胆固醇与动脉粥样硬化 虽然胆固醇是高等真核细胞膜的组成部分,在细胞生长发育中是必需的,但是血清中胆固醇水平增高常使动脉粥样硬化的发病率增高。动脉粥样硬化斑的形成和发展与脂类特别是胆固醇代谢紊乱有关。胆固醇进食过量、甲状腺机能衰退,肾病综合症,胆道阻塞和糖尿病等情况常出现高胆固醇血症。 近年来发现遗传性载脂蛋白(APO)基因突变造成外源性胆固醇运输系统不健全,使血浆中低密度脂蛋白与高密度脂蛋白比例失常,例如APO AI,APO CIII缺陷产生血中高密度脂蛋白过低症,APO-E-2基因突变产生高脂蛋白血症,此情况下食物中胆固醇的含量就会影响血中胆固醇的含量,因此病人应采用控制膳食中胆固醇治疗。引起动脉粥样硬化的另一个原因是低密度脂蛋白的受体基因的遗传性缺损,低密度脂蛋白不能将胆固醇送入细胞内降解,因此内源性胆固醇降解受到障碍,致使血浆中胆固醇增高。 5.肥胖症 肥胖症是一种发病率很高的疾病,轻度肥胖没有明显的自觉症状,而肥胖症则会出现疲乏、心悸、气短和耐力差,且容易发生糖尿病、动脉粥样硬化、高血压和冠心病等。除少数由于内分泌失调等原因造成的肥胖症外,多数情况下是由于营养失调所造成。由于摄入食物的热量大于人体活动需要量,体内脂肪沉积过多、体重超过标准20%以上者称为肥胖症。预防肥胖,要应用合理饮食,尤其是控制糖和脂肪的摄入量,加上积极而又适量的运动是最有效的减肥处方。 脂肪是人体内的主要储能物质,机体所需能量的50%以上由脂肪氧化供给;脂肪还协助脂溶性维生素的吸收,因此,脂肪是人体的重要营养素之一;包括胆固醇、胆固醇酯和磷脂等在内的类脂广泛分布于全身各组织中,是构成生物膜的主要物质,它与膜上许多酶蛋白结合而发挥膜的功能,胆固醇还是机体内合成胆汁酸、维生素 和类固醇的重要物质。脂类代谢受多种因素影响,特别是受到神经体液的调节,如肾上腺素、生长激素、高血糖素、促肾上腺素、糖皮质类固醇、甲状腺素和甲状腺刺激素促进脂肪组织释放脂肪酸,而胰岛素和前列腺素的作用则相反。适量的含脂类食物的摄入和适当的体育锻炼,有利于脂类代谢保持正常,一旦某种因素发生变化引起脂类代谢反常时,便导致疾病,危害人体健康。

相信很多人都对尿常规酮体看陌生,不知道它是什么意思。其实尿常规酮体是尿常规检查中是比较常见的,饮食、作息以及有糖尿病都有可能导致尿酮体的发生,孕妇及儿童也是尿酮体的易发人群,当出现尿常规尿酮体十1时是什么意思?下面一起来了解尿常规酮体的有关知识。尿常规酮体呈阳性,就表示身体机能出问题了,需要积极配合医生寻找病因并治疗。如果是阴性,则表示尿液中未检测到酮体,表示身体是健康的。在尿常规检查中,尿常规酮体以“+”表示阳性,“-”表示阴性,“+”越多,表示酮体含量越高,病情也越严重。当检查结果出现“+++”以上也就是强阳时,就需要特别注意了,这意味着糖尿酸中毒已经很严重了,容易发生中毒性昏迷,需要及时采取相应的治疗措施。引起尿常规酮体阳性的原因有很多,在绝大多数情况下,出现“+”并不是很严重,有可能是与我们的日常饮食或是休息有关。妊娠期妇女或是糖尿病患者因体质特殊也有可能会出现尿酮体为阳性的结果。尿常规酮体偏高的症状尿常规酮体偏高多表现为多尿、烦渴、乏力,紧接着会出现食欲减退、恶心、呕吐等症状,并伴随有嗜睡、头痛、烦躁、呼吸深且快。当呼气中有异味时就意味着病情很明显了。随着病情的进一步发展,会出现严重的失水,从而导致尿量减少,皮肤弹性差,眼球下陷,血压下降等特点。到晚期时会出现反射迟钝甚至是消失,嗜睡至昏迷的状态。少数病人会表现为腹痛,与急腹症类似,容易混淆。当出现上述这些症状时,需要及时到医院进行检查,当检测出有尿酮体时,需进行血糖检查,看是否为糖尿病,如果不是,需寻找具体的诱因并进行积极的治疗。尿酮体1个“+”是异常的表现,表明体内的脂肪代谢有点问题,但不一定就是疾病的症状。因为酮体正常是体内脂肪代谢时在尿中排泄,正常应该很微量,尿常规中不应该发现。如果发现1个“+”,有人可能是因为饥饿导致或者大量运动、出汗等都可以导致酮体增高。怀孕的女性酮体经常出现1个“+”或者2个“+”的改变,都是正常的生理现象。如果尿酮体出现1个“+”,患者有糖尿病,就要小心了。一般糖尿病的患者出现尿里有酮体,说明患者有酮症酸中毒,说明血糖控制不理想。一定要尽量用药控制血糖平稳,尿酮体才会恢复正常。[1]

皮下脂肪积累过多会导致肥胖,一血液中胆固醇的增高又会导致动脉硬化、冠心病等疾病。因此,常常一提到脂类,人们就会连连摇头。的确,体内脂肪过多是有害的,但脂类毕竟是人体必不可少的物质,对人体具有重要的生理意义。①体贮存能量和供给能量的主要场所。体脂主要分布于皮下、小肠膜、大肠膜及一些内脏器官的脂肪组织中,它为人体各种运动提供后备能量,所以通常被称作“脂库”。为什么说是提供后备能量呢?这是因为,人体消耗的能量首先来自糖元,只有当血液中的糖元容量减少到一定水平后,才开始利用体脂;但如肌肉和肝脏中的糖元已经能满足需要,则体脂是不轻易被动用的。②脂肪能保护内脏免受外界冲击。皮下和内脏器官周围都存在大量脂肪,这些脂肪成为内脏和外界的天然屏障,能缓解外界冲击。同时脂肪还可以起到固定内脏器官,防止其下垂的作用。③脂肪对保护人体体温有重要意义。人体体温必须常年维持在37℃左右,过高或过低的体温都会造成新陈化谢的紊乱,影响人体正常的生理功能。而脂肪传导热的能力非常弱,具有保持体温的作用。④一些人体必须的维生素和微量元素是非水溶性的,它们只有溶解在脂肪中才会被人体吸收利用。如果没有脂肪,这一些营养物质就得不到利用,只能白白浪费掉。⑤脂肪是人体各类腺体分泌物的重要源泉,特别是它能促进胆汁和腺岛素的分泌。为人体的正常生理功能作出重要贡献。⑥脂肪中所包含的类脂(胆固醇、磷脂)是人体细胞膜和大脑组织的重要组成成分,对人体细胞的正常功能和刺激的传递,都有重要意义。

硫酸盐检测论文

材料专业毕业论文开题报告

开题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用写作文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家收集的关于材料专业毕业论文开题报告,欢迎大家阅读!

论文题目: 高聚物对水泥抗蚀性能的影响

1、国内外研究现状、水平及存在的问题:

随着建筑科技的进步与发展,一种新型化学建材正悄悄的却又以飞快的速度在中国建筑界得到应用和发展,这就是聚合物水泥基复合材料。聚合物水泥基复合材料通常按其化学构成大致分为两类,一类是以聚合物为基、水泥作为填充料组合成的,最常见的如目前大量应用于工程防水的“聚合物水泥防水涂料”;另一类是以水泥为基,以聚合物单体或数种聚合物对水泥进行改性而组合成的材料,如各种聚合物水泥混凝土及各种聚合物水泥砂浆等[1]。原则上讲,聚合物水泥是聚合物改性水泥,它保持了水泥水化物的一系列优点,并用聚合物的优点弥补了水泥制品的不足。因此,聚合物水泥显示出了较大的抗压、抗冲击、抗穿刺能力及耐磨性,优良的抗渗性、抗腐蚀性及抗老化性,适当的弹性模量,而不需要刻意追求高的断裂延伸率[2]。

1923 年克莱森(Cresson)首次申请了有关聚合物硬化水泥体系的专利。他把天然橡胶乳液作为填料加入道路路面建筑材料中。1924年,Lefebure申请了用天然橡胶乳液使水泥砂浆及水泥混凝土改性的专利,第一次提出了用聚合物对水泥砂浆及混凝土进行改性的概念。从此,拉开了混凝土中添加聚合物的历史性序幕。1932年,Band第一个提出了利用人造橡胶改性水泥砂浆及水泥混凝土,也获得了专利。20世纪40 年代,人们先后尝试了用合成聚合物乳胶改性,以及把聚乙烯乙酸酯也用于改性的方法。50年代,这一领域的研究与尝试开始受到各国材料界专家学者的重视,并获得了很多项研究成果,许多成果在工程上也都得到了广泛的应用。60-70年代, 人们开始研究用液态和固态的聚合物,诸如聚合物单体、树脂、聚合物乳胶粉等对水泥砂浆及水泥混凝土进行改性。80年代,各国都投入了大量的人力、物力、财力,对混凝土改性进行了研究,随着科研成果的不断出现,这一领域也得到了极大的推动,研究水平得到了极大的提升。美国是世界上聚合物水泥基复合材料研究开发的先行国家,最早于50年代就开始了对其进行实际应用的尝试。

由于我国在聚合物水泥基复合材料方面的研究起步比较晚,所以,至今还没有出台相关方面的行业标准与测试方法。多数学者认为聚合物水泥基材料的增强机理主要是由于剔除了粗骨料,降低了细集料的粒径,从而提高匀质性,使集料所得集配曲线为非连续性的;另外聚合物在水泥浆内部聚结成网络结构,起到了很好的阻裂增韧作用。近年来,人们逐渐开始从微观结构方面对聚合物改性水泥基材料进行研究,认为聚合物颗粒的分散和聚合物薄膜的形成是聚合物水泥改性的主要原因。研究认为聚合物从两方面影响了改性水泥浆的结构: (1)混合后一部分聚合物粒子吸附在水泥颗粒表面,形成薄膜;(2)另一部分聚合物分散在孔中的液相中,当自由水完全被水化和蒸发消耗掉后,聚合物在孔中形成薄膜[3]。此外,关于聚合物在改性水泥砂浆中的分布,目前还存在一些异议。 按照著名的Ohama[4] 模型,聚合物均匀分散在水相中,随着水泥水化,水分减少,聚合物逐渐凝聚成膜,因而聚合物主要存在于改性砂浆的孔隙中。 Su[5] 等对新拌改性水泥浆水相成分的分析表明,在拌合开始就有相当多的聚合物被吸附在水泥颗粒表面,他们还发现,拌合初期被吸附在水泥颗粒表面的聚合物的量与聚合物乳液种类和乳液掺量有关。 通过含氯聚合物改性砂浆的EDAX 分析表明,在聚合物改性砂浆中,水泥浆体与骨料之间的界面上聚合物的含量较高。 Ollit rault-Fichet 等的研究也说明,聚合物颗粒最初会被水泥颗粒吸附,并最终被包埋在水化水泥的颗粒之中[6]。

在实际工程中,硅酸盐水泥易在酸和酸盐溶液中遭受侵蚀是因为:(1)硅酸盐水泥中含有大量的氢氧化钙及高碱性的水化C-S-H 凝胶、水化铝酸钙等水化产物,酸溶液中的H+与Ca(OH)2发生中和反应,使水泥石碱度急剧降低,进而造成高碱性水化硅酸钙和水化硫铝酸钙等水化产物分解,转变成低碱性水化产物,最后变成无胶结能力的SiO2·nH2O 及Al(OH)3等;(2)硫酸盐溶液中的硫酸根能和水泥石中的Ca(OH)2及水化铝酸钙等[7]发生化学反应,生成有膨胀性的石膏和钙矾石晶体,当这些结晶体在水泥石毛细孔隙中逐渐积累和长大,产生孔内应力,当应力大于临界破坏应力时,造成水泥试样破坏。由于水泥石本身也不密实,有很多毛细孔通道,使砂浆产生渗透性,使得水泥的使用性能下降。同时,侵蚀性介质容易进入其内部,以致由其配制的砂浆易受到腐蚀,导致水泥材料的耐久性下降。普通水泥砂浆不饱满、不密实,不能有效地形成具有防水抗渗作用的整体不透水层。它也存在抗压强度低、耐腐蚀能力不高等缺陷,其使用范围也受到了很大的局限。

而聚合物改性水泥由于聚合物及活性成分的掺入,改善了聚合物水泥砂浆的物理、力学及耐久性能,扩大了其应用范围。对水泥性能的改善主要体现在如下几个方面:

(1) 活性作用 聚合物乳液中有表面活性剂,能够起减水作用。同时对水泥颗粒有分散作用,改善砂浆和易性,降低用水量,从而减少了水泥的毛细孔等有害孔,提高砂浆的密实度和抗渗透能力。

(2) 桥键作用 聚合物分子中的活性基因与水泥水化中游离的Ca2+、Al3 + 、Fe2 + 等离子进行交换, 形成特殊的桥键,在水泥颗粒周围发生物理、化学吸附,成连续相,具有高度均一性,降低了整体的弹性模量,改善了水泥浆物理的组织结构及内部应力状态,使得承受变形能力增加,产生微隙的可能性大大减少。即使产生微裂隙,由于聚合物的桥键作用,也可限制裂缝的发展。

(3) 充填作用 聚合物乳液迅速凝结,形成坚韧、致密的薄膜,填充于水泥颗粒之间,与水泥水化产物形成连续相填充了孔隙,隔断了与外界联系的通道[8]。从而阻止了腐蚀性介质进入水泥石内部,提高了抗腐蚀和抗渗能力。

孙炎[9]曾研究冷混合沥青混凝土,用于道路工程;聚合物改性砂浆用于钢筋混凝土结构的永久模板,结果证明它们都可以更好地防止氯离子渗透和更好地抗碳化作用,从而提高钢筋混凝土结构的耐久性,掺加有硬沥青的钢桥面也具有更高的抗腐蚀性能[10]。鉴于此我们可以通过在水泥中掺杂沥青和石腊,来改善水泥的内部结构并填充其内部孔隙,从而提高水泥的抗蚀性,解决水泥抗蚀性较差的问题。

2、选题的目的、意义:

在我国,尤其是西部地区的盐碱地、盐湖区以及地下水中普遍存在着硫酸盐对水泥混凝土的侵蚀。在某些特种工业设施中,还存在有硫酸和硫酸盐的混合腐蚀以及H2S、CO2腐蚀等。从一些实例中我们可以看出,破坏水泥混凝土的主要原因一般都不是机械应力, 而是多种腐蚀或者是自身内部发生化学反应。这就引起了人们对水泥混凝土的耐久性能的讨论。因此,研究水泥的抗腐蚀性能不仅对建筑材料具有至关重要的作用,而且会对提高各种工程建筑的耐久性能有重大的经济价值和使用价值。关于聚合物对水泥砂浆改性的主要途径是在其中加入能起到改性作用的聚合物。从前人的研究中可看到,聚合物水泥基复合材料都显著高于普通混凝土的`力学性能,比如抗折强度、抗压强度、粘结强度等都得到了极大的提高。与普通硅酸盐材料相比,聚合物水泥基复合材料有着自身的优势见表1。

表1 聚合物水泥基复合材料与普通混凝土的比较 性能

材料 普通混凝土 PCC

W/C

断裂 1 50~60

冲击 5 80

密度

抗拉强度 2~3

抗折强度 5~7 150~200

抗压强度 40~50 200~300

此外,聚合物水泥基复合材料还具有良好的耐化学腐蚀、抗渗性、低温下的抗裂性等。这就使得聚合物改性水泥基复合材料在一定范围内部分取代了钢铁、高分子材料(像MDF 水泥基复合材料制作的唱片、轮胎都是具体的实例)[11]。它能提高水泥石的抗腐蚀能力主要是因为聚合物的添加提高了提高水泥石的密实度。混凝土结构正常情况下可以存在至少30年,但如果存在源于生物的硫酸腐蚀不过短短几年就会被破坏掉[12]。修复或完全取代这种腐蚀结构越来越有必要,但这种修复代价昂贵一直不能满足社会。然而通过沥青或石蜡对水泥进行改性,可大大提高水泥的抗蚀性,这无疑会节约了资源,减少了不必要的浪费,为社会积累更多的财富。

3、实施方案及主要研究手段:

、实验方案

、原材料的准备;

(1) 沥青粉的研制

制得分别过200目和300目筛的沥青粉,并适量添加矿物掺合料来减小沥青粉的粒度。

(2) 石蜡粉的研制

通过在石蜡中添加矿物掺合料来粉磨石蜡,并制得掺有石蜡的粉末。

、正交实验

(1) 因素水平表

因素水平用量(V%) 粒度(目) 温度(℃)

1 2() 100 100

2 4() 200 120

3 6() 300 150

(2) 根据正交表L9(34)列出以下几组实验:

序号用量(V%)粒度(目) 温度(℃)

指标

腐蚀前 抗压强度

(MPa) 抗Na2SO4腐蚀强度 (MPa) 抗Na2CO3腐蚀强度(MPa)

1 2() 100 100 2

2()

200

120

6

3 2() 300 150 4 4() 100 120 5 4() 200 150 6 4() 300 100 7 6() 100 150 8 6() 200 100 9

6()

300

120

注:括号内为石蜡的用量

、以硅酸盐水泥为基体,按以上正交方案分别掺加沥青、石蜡成型,每种高聚物与水泥的复合分别作空白样,3天强度测试样,腐蚀样。分别测定抗压强度,抗硫酸盐及碳酸盐侵蚀的能力。

、在把水泥块放入腐蚀液中前和从腐蚀液中取出,分别称取其质量,查看其质量损失。

、每一个过程留样分别作物相分析和微观分析,进行腐蚀机理分析。

、通过各组实验试样的对比,确定聚合物在水泥中的最优抗蚀配比。

、研究手段

(1)用扫描电镜观察沥青、石蜡改性水泥的微观形貌,以及硫酸盐、碳酸盐腐蚀后的微观形貌。

(2)用X射线衍射仪分析沥青、石蜡改性水泥的物相组成。

(3)用压汞仪测试水泥试样的孔结构;

(4)利用粒度分析仪测试各添加物的粒径。

4、选题的创新之处:

目前已有许多聚合物乳液(如苯丙乳液、纯丙乳液、乙丙乳液等) 用于水泥砂浆的改性,而采用沥青和石腊这两种聚合物对水泥砂浆进行改性的研究却相对较少。实验利用沥青和石腊高分子的熔胀性,在水泥水化过程中,沥青和石腊受外界刺激产生一定的熔胀从而填充水泥石的内部孔隙,提高水泥的密实度,达到提高水泥抗蚀性的目的。

5、预期研究成果:

沥青、石蜡与水泥混合成型后,一部分沥青、石蜡颗粒填充在水泥孔隙里,另一部分沥青、石蜡颗粒在一定外界条件影响下分散在孔中的液相中,当自由水完全被水化和蒸发消耗掉后形成膜。这两方面共同作用大大提高了水泥的密实度并阻止了腐蚀液与水泥浆体的接触,从而使水泥的抗蚀性能得到改善。

参考文献:

[1] 陈建辉, 黄金莲. 小议聚合物基水泥基复合材料[J]. 建筑技术开发, 2004, 31(10):115-116.

[2] 袁大伟. 聚合物水泥若干问题探讨[J]. 中国建筑防水, 2001,(4): 22-24

[3] 王茹, 王培铭. 聚合物改性水泥及材料性能和机理研究进展[J]. 材料导报, 2007, 21(1): 93-96.

[4] Ohama Y. Polymer2based admixtures[J ]. Cement and Concrete Composites ,1998 ,20 (3):189-212.

[5] Su Z , Sujata K, Bijen J M J M , et al. The evolution of the microstructure in styrene acrylate polymer modified cement pastes at the early stage of cement hydration[J]. Advn Cem Bas Mat ,1996 , (3): 87-93.

[6] 钟世云, 王培铭. 聚合物改性砂浆和混凝土的微观形貌[J]. 建筑材料学报, 2004, 7(2): 168-173.

[7] 吴国林, 文梓芸, 殷素红. 土壤聚合物耐酸性能的研究[J]. 新型建筑材料, 2006, 2: 5-7.

[8] 张文渊. TK聚合物砂浆在混凝土表面修补加固中的应用[J]. 腐蚀与防护, 2003, 24(7):300-302.

[9] 孙炎, 徐晓蕾, 钱玉林. 我国混凝土聚合物复合材料的研究现状及发展[J]. 建筑技术,2007, 38(1): 12-14.

[10] Yang Jun. Study on low temperature performance ofGus sa sphalt on steel decks with hard bitumen[J]. Journal of Southeast University (English Edition), 2003, 19(2): 160-164.

[11] 李民强. 聚合物水泥基复合材料研究及进展[J]. 广东建材, 2007 , 7 : 10-12.

[12] J. Monteny, N De Belie, E Vinck.,W Verstraete, et al. Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer- modified concrete[J]. Cement and Concrete Research, 2001,31: 1359-1365.

我认为可能是这样的:不溶于硝酸的沉淀有两个:硫酸钡和氯化银,加如氯化钡,再加入硝酸酸化,出现白色沉淀,有可能含银离子,也有可能含硫酸根离子 出现这种情况,肯定排除含银离子的可能,(加入过量盐酸没出现白色沉淀),那么只可能含硫酸根离子,但出现这种情况,唯一的原因是你用的是第一次用过的溶液(硫酸根已经除去)

相关百科

热门百科

首页
发表服务