首页

> 论文发表知识库

首页 论文发表知识库 问题

大学数学论文大一

发布时间:

大学数学论文大一

高数学习应该按照这些套路来。

课前有的同学喜欢预习,这点在初高中数学,非常有效,可是在面对高数的时候蒙圈了,因为根本看不懂,不过没关系,高数不用课前预习,因为你也看不懂,但是,上课一定要 认真的听讲,记得是认真的听讲,特别是认真听讲老师的推倒过程,这点是非常重要的,高数不仅仅要知道结果,重要的是过程。

至于在课后,当然还是和普通的数学学习方法一样,及时的复习,复习当天的内容,特别是要做一定量的题目,理解消化和吸收。

当然作业也是一项非常重要的事情,做作业一定要认真,虽然大学抄作业不丢人,因为还有不写作业的,但是,你如果是抄作业那还不如不写,建议认真完成高数的作业,因为实在太重要了。

数学中的无穷以潜无穷和实无穷两种形式出现。

在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。

数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。

数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。

以上内容参考 百度百科-高等数学

高数学习对许多大一学生生来讲, 有些困 难,成绩不理想.教师一直在苦苦思考:虽 然教师在授课进程中尽了种种努力, 但还 是有许多学生学习不好, 这是什么原因? 调查显示:这部分学生或者学习兴趣不高, 或者学习不得要领.因而, 高数学习必须 充分调动学习者的积极性, 掌握适合的学 习方式,才能有所收获. 1 学习者要意识到学习高数的重要 性, 提高学习兴趣, 变被动学习为主 动学习 据懂得, 许多学生意识不到高数学习 的重要性,他们对大学课程里学习高数的 重要性不甚清楚,也没有学习的热情,更谈 不上积极性了. 1 . 1 数学教育具有重要的基本性作用与素 质教育作用 现代信息、空间技巧、核能利用、基 因工程、微电子、纳米材料等引领的新技 术111ttt, 以及现代人文科学的定量剖析需 要以数学为主要基本. 数学学科严密的定义方法、缜密的逻 辑思维、全面的系统剖析是辩证唯物主义 思想在数学学科中的集中反应, 在大学生 素质教育中起着不可替代的作用.素质表 现在数学意识、数学语言、数学技巧、数 学思维四个方面.素质的提高有助于学生 形成良好的思想道德素质,科学文化素质, 生理心理素质,从而提高人的素质. 这是有例子可以验证的.以北京大学 地质系为例,一个系就培养了48 位中科院 院士, 而这得益于李四光先生的理念—— 加强数理基本, 原因就是学生的工科数学 基本好、逻辑思维强、头脑清晰. 1 . 2 培养对高数的兴趣能激发学习热情 “兴趣是最好的老师”.心理学家布鲁纳 认为:“学习是主动的进程,对学生学习内因的 最好的激发是对所学教材的兴趣.”“有了兴 趣就会乐此不疲,好之不倦,就会挤时间学习 了.”学生只有对学习感兴趣,能把心理活动 指向和集中在学习的对象上,感知活泼,注意 力集中,察看敏锐,记忆持久而准确,思维敏锐 而丰盛,强化学习的内在动力,调动学习的积 极性,激发智力和创造力,提高学习效率. 提高学习高数的兴趣首先从了 解数学史做起 我们可以首先懂得中国数学史,懂得中 国数学的萌芽、发展、全盛、衰弱的进程 和原因;我们还可以从高数中的微积分发现 的历史谈起,通过对历史的懂得和感受来体 会到数学的博大高深,激发探求对数学美的观赏也可以提高学 习高数的兴趣 数学是美的,但是这种美不易被人觉察, 往往被人误认为数学是枯燥的.树枝的生 长和股票技巧中蕴含着斐波纳奇数列,斐波 纳奇数列中蕴含着黄金分割,黄金分割率大 到宇宙,小到微生物,无处不在,数学具有数 字美,符号美,图形美,思想美,方式美,撼人 心魄,令人着迷,可以有意识地主动懂得. 2 学习高数要注重基本知识( 基础概 念、基础理论、基础方式) 的懂得及 消化 华罗庚有一句话:“我研究数学、学习数 学是从小学一、二、三、四、五、六册开始 的,研究学问要从基本做起.”少年牛顿也是 从基本知识、基础公式重新学起,扎扎实实、 步步推进的.高职学生广泛基本薄弱,很多高 职学生也不注重对基本知识的懂得和掌握,往 往一知半解,好高骛远,结果是徒劳无益. 基础理论体现在定理的内容和论证,以 及实际问题抽象出的理论模型.认真思考 书上每个理论模型来源,明白是从哪个实际 情况中抽象出来的,会很大程度地提高解决 综合问题的能力.证明部分也要加以重视, 因为证明进程是一个逻辑推理进程,能很好 地锻炼大脑,会加深对定理的懂得,提高运 用能力.推导正是高数的精华所在,是需要 下工夫反复揣摩的,不懂之处要多问. 基础方式的领悟体现在形成一个知识关 系网络.比如高数中基础所有的重要概念 都是用它定义和研究的;用变量代替不变量 的常用技能,体现在常数变易法解微分方 程,微分的思想,非线性问题的线性化方式; 化整为零、积零为整、分割求和积分的思 想,应用问题中的元素法;由特殊到一般、以 及化庞杂为简单的研究思维方式等等. 学习和方式的运用中, 培养人的逻辑 思维、抽象思维、空间想象、以及自学能 力,培养科学的世界观,严密的科学态度, 增强学习意志,形成良好的个性品质. 3 高数学习要调整心理状态, 注重学 习方式 不要有畏难心理,要知道难是相对的, “面对悬崖峭壁,一百年也看不出条缝来, 但用斧凿,能进一寸则进一寸,能进一尺则 进一尺,不断积聚,飞跃必来,突破随之.” 树立三心:信心、决心、恒心.克服懒惰, 多思考、多归纳. 学习进程中遇到困难时, 一定不要气 馁,增强克服困难的信心与意志,相信自己 一定能学好,积极调整状态,探索学习方式. 3 . 1 紧跟教师的授课节奏, 做到高效听课 预习,先大略通读教材,不懂地方可以打 个问号;上课一定要认真听讲,对章节内容提 纲挈领,分清主次.感到重要的内容要记载 下来,不要一字不漏地记下来,只需简略几 笔,抓住精华即可.课后及时归纳总结,注意 思路的积聚,随时把收获、疑难、与前后知 识点的联系和区别、例题的不同解法等,一 切随时想到的体会整理下来,哪怕仅是大脑 的灵光一闪也要及时标注,以便于巩固加深 懂得.最好定期自我检查掌握情况. 3 . 2 采用适当的数学记忆方式 学习不仅要求懂得,还要有机械的记忆, 比如符号,公式,基础定义,解题技能和方式. 寻找适合的记忆法,助于知识的持久度. 采用形象记忆、类比记忆、系统记忆. 高数的符号较多,识记困难,造成学习 障碍.可以仔细察看特点,形象记忆.很多 是其英文解释的第一个字母,比如说微分, 其中可以懂得为英文“differential”(微分) 的首字母,积分号可以懂得为“sum”中首 字母的拉伸, 可以加深对定义的懂得.系 统记忆合适于对章节知识间的联系对照学 习中,有助于对知识整体脉络的梳理把握. 记忆方式是相辅相成的,可以交叉运用. 适当解题, 不断改正自己的思维 一定要做习题,初学新知识时,不妨参 照定理或公式依葫芦画瓢, 努力识记知识 点,再试图脱离教材独立练习,检查自己对 知识掌握程度,不会的内容,是自己思维的 断层,有些内容学习者可以自我改正,较难 内容,学习者需要请教教师或者参阅学习资 料,寻找一些知名教科书,注意察看,找出知 识的特点以及迁移,多角度、多方面地思 考,过于抽象的内容不妨举出具体例子来形 象思考,自己的思维慢慢就会全面而深刻, 知识也会融会贯通,厚书也就读薄了.去探 索的知识,才是掌握得最好的. 但也不提倡做大量的习题.习题并非 都有价值,尤其是现在题海中所遇到的题 目,很多都是在低级重复,反反复复并不能 得到有益启示.而有些综合题, 就是将一 些知识点揉在一起,而且明明能说得简单 的话, 却故意说得很庞杂、很曲折、绕圈 子、设陷阱.学习者应该坚持清醒,思考一 些真正富有启示性的问题, 多研究问题的 意义.通常,越是简化问题,就越是能得到 深刻而有价值的结论.做完一题, 不停留 在原有层次,多追问一些为什么,往往能导 致柳暗花明的新境界.有时要把不理解知 识暂时跳过,回过火看就解决了.

一、借鉴成果,博采众长——先粗保存,再归类保存,整理中顿生灵感对他人的研究成果,进行吸收消化,为我所用,这是每一个科研工作者都在做、并且必须做的事情.一个人的精力、能力、水平等毕竟是有限的,要弥补这个“先天性缺陷”,就一定要向他人学习借鉴.就中学数学教师而言,我们所涉猎的范围自然应以初中数学的教育教学科研信息为主,但还应兼顾高中和小学的数学,以及计算机、物理、化学等相关学科的信息,特别是教育学、心理学方面的知识和信息,信息的采集形式多种多样,大致可以分为三类:(一)书面形式,比如各种书籍、报纸、刊物等;(二)口头形式,比如各种会议、听课、交流、咨询等;(三)电子形式,比如网络。这些信息采集后的保存方式也各不相同,先粗保存。主要有四种方式:(1)制卡片,简要注明作者、题目、出处、摘要、编号、日期等项内容;(2)做摘记,写在本上;(3)复印或收藏;(4)电子信息存盘。电脑的使用可以把这些宝贵的文献资料,全部化为电子信息存盘,并整理归类。整理归类的过程,即便是文字输入的过程都能够使你顿生灵感,我记得一位台湾女诗人创作了一首诗《一生都在整理一张书桌》,我想,做学问人都应该“一生都在忙碌中整理一张书桌”。这样为论文写作,提供了强大的理论支持和众多的珍贵例子,从而萌生对某一题材的进一步研究和发掘,撰写成了论文。所以论文不是谁刻意写出来的,有一点瓜熟蒂落的感觉,无病呻吟成不了好文章。二、完备素材,厚积薄发——论文还自教研始,处处留心皆学问“论文还自教研始”、“论文在研不在写”等观点,有一定的道理。“厚积”是基础,没有来源于实践的经验教训、数据统计等素材的积累,想要写出比较有价值的论文,几乎是不可能的.这些素材源于何处?如何去发现这些素材呢?答案是那句古话“处处留心皆学问”. 具体说来,素材的来源主要有以下几方面:(1)课堂教学,它是教研工作的主阵地,也是素材最重要的来源,这不但是一个教学实践的过程,还是一个发现问题的过程,是一个向学生学习、自己提高的过程;(2)课后反思;(3)作业记录,从学生作业中不但能发现具有共性的问题,还提示我们教研的改革方向;(4)考试总结;(5)解题分析,并从中探索解题规律和命题趋势;(6)调查反馈,可以用谈心、问卷等多种形式进行,从中反馈的信息是难得的写作素材;(7)成果质疑,学习他人但不要迷信,发现不足甚至是错误之处,理由不充分的就要敢于质疑;(8)探讨争论,在日常探讨问题的过程中,持有不同观点的人发生激烈争论是常有的事,从中往往加深了对问题的理解程度;(9)灵感顿悟,事实上很多自选课题的素材是平时工作、学习、生活甚至睡梦中突然想到的,这种灵感是对问题深入思考的结果,如果没有自觉教研的精神,灵感就无从谈起.。三、立足实践,提炼新意——“冷点”、“热点”初中数学教师都从事着一线教学工作,最清楚教学中的困惑和喜悦,最了解学生的想法和看法,最直接的进行着实践和改革,这些是专门从事教育科研工作的专家、学者和部门所难以具备的.正因如此,一线教师的论文多数源于实践,具有强烈的实用性和鲜明的针对性,对于我们的这些优势应该有充分的认识,并不断保持和发展.再比如,教学中的一些“冷点”问题虽不常见,但一旦出现便会使学生无从插手。论文的新意如何出?我认为有两点非常重要:一是在主题上,立意新颖,视角独特;二是在时间上,意识超前,创作及时。四、从小到大,循序渐进——先文章、再论文,从小中见大好成文写论文需要一个过程,循序渐进,不可能一蹴而就. 按照一般情况,初写者先尝试以下两个步骤:第一步:练习写学习辅导类的文章.这些虽然一般称不上“论文”,但是进行这样的写作,既可以当作练笔,又可以用于教学,还可以视为一次小小的课题研究,通常有1000字左右;要求与教学同步。第二步,进行教学研究类论文的写作,先侧重于解题方法研究等实践性强的,由浅入深,不要急于写理论性太强的论文.可以先探讨解题技巧,再挖掘思想方法,后深究素质能力,进而分析命题原则,预测趋势走向等。如果写有些理论性的文章,可以从教学实践中去寻找适应教育发展趋势的新课题,需要指出的是,一篇论文的范围不求广,但求分析透彻,凝练精华,小中见大;论文篇幅不求长,一般在3000字左右;此类论文与学习辅导类的文章相比,格式要规范得多,应认真研读报刊风格。五、技巧和经验——复制、删除、添加当文思涌动,意欲写作时,先应确立文稿的题目,用小标题清晰地表达想写的几个方面。(1)为了借鉴别人的成果,有必要复制相关的文章段落,作为你的理论依据或论述的素材、旁例。但要讲究文德,切勿剽窃抄袭他人论文。这就要参考多遍文章,复制多款内容,不怕内容多,只怕内容不全,然后去粗取精,大刀阔斧地删除。留下的骨架再添加自己的思想,教学实践中的例证,自己平时积累的成果等,但文章一定要有更多自己的东西,这样才是真正自己的文章。(2)做有心人。经常阅读,选择有关书刊放在床头、沙发边或办公桌上,只要有空经常翻阅。一旦有想法,及时记录,并经常向这个方向思考和研究,再参考他人成果必能成就自己的文章。坚持不懈,持之以恒,“功夫不负有心人”。(3)抓住热点、冷点。

“数学是美的。”经常有数学家这么讲,那么,数学到底美不美呢?大一第二学期我们接触了高数这门课,本来觉得应该比高中的数学稍微难一点吧,可是一上课才发现并不是难一点,而是难很多很多,比高中的数学更加抽象,更加难理解。但是慢慢的你会发现其实高数是一门学问,而且这门学问也有他的美。仔细想了想,发现数学的美体现在方方面面,就比如自然之美,简洁之美,对称之美,逻辑之美等等,中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样的颜色,这就是数学之美,总之,数学并不像有些人认为的那般鼓噪乏味,他不是定理公式的积累,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。也经常听到有同学发出这样的疑问:“我们为什么要学数学?”不知道这些人当中有没有认真思考过这个问题,我倒是稀里糊涂读到大学才明白一点的。数学,我们学的应该是一种严谨的思维,一种观念。出了学校门,如果我们还能经常使用数学的眼光来观察周围事物,那么,这个数学才没有白学。我一直觉得,如果你把函数真学懂了,对已知和未知的依存关系就会特别敏感,社会上的许多看似纷繁复杂的事件,在你眼里就能看到关键因素,形成函数式。你会有另一种看待万事万物人视野。我们学数学,目的是学解题技巧?是挤进名校的砝码?还是将来能谋份不错的职业?数学的发源地在希腊,注定数学的性格就是超越的,我们把它作为换取利益的工具时,一开始这条路就走岔来的。所以,要培养好我们学数学,最初就要培养我们有良好的数学素养,求真,求美,求善。当然,数学一直是人类文明发展的主要文化力量,同时人类文化的发展又极大地影响了数学的进步;而且,数学还是一种艺术,因此,数学不但具有科学价值,还具有文化和艺术的价值。那么,这就需要我们一步步的认知到数学的各种价值,可以从生活中的数学学得数学思想方法与文化以及数学与人文精神、文化素质间的联系。总之学好高数,此生不后悔。

大一大学数学论文范文

大学数学是大学生必修的课程之一,如何提升大学生数学学习兴趣,培养数学型人才,是每一个大学数学教师都需要思考的。下面是我为大家整理的大学数学论文,供大家参考。

大学数学论文 范文 一:大学数学网络 教育 论文

一、教师要转变观念

意识是行动的主宰者。首先,教师要充分认识到网络教学资源对大学数学教学所产生的深刻影响。在网络信息快速发展的当今时代,如果仍旧拘泥于传统教学方式,势必将会处于落伍的境地。不仅影响教学效率,往深层次讲,还会影响学生 毕业 走向社会的适应能力以及生存能力。因此,教师要积极主动投身于教学改革的先行者行列中,构建现代化网络教学平台、加强网络教学资源的建设。

二、进行有效引导

在现代网络信息资源的基础上,学生能够变传统被动接受知识为主动探索知识。因此,教师要进行适当引导,指导学生掌握有效运用现代网络资源的 方法 ,不断发挥学生的主观能动性,培养学生的自主学习与探索能力,进而实现学生主动探索、教师指导的理想教学模式。 课前预习 、课中学习、课后巩固等这些环节,教师均可以让学生先自主学习,而后再进行有效指导。

三、有效整合教学资源

现代网络为我们带来丰富多彩的教学资源的同时,也带来了一些垃圾信息。因此,在大学数学教学中,教师要具备有效甄选、整合教学资源的能力。要根据课程内容,选择适合课时内容的资源融入到教学中。在选择网络资源时要遵循趣味性原则、实用性原则以及内容相符原则。运用网络教学资源进行大学数学教学是提高大学数学教学质量与教学效率的有效途径与方法,也是教育教学发展的必然趋势。教师应当转变传统的教学观念,充分重视网络信息资源,以教材为中心,有效整合网络资源,并运用于教学中,提高学生的学习兴趣,不断培养学生的自主学习能力。

大学数学论文范文二:大学数学教学中网络教育资源研究

一、如何利用网络教育资源提高大学数学教育质量

(一)加强教师对网络教育资源的认知

以前的大学数学教学方式单一,与学生的交流也少之又少,但是随着网络资源的发展,这一切将会有很大的变化,这也是适应社会的发展,提高数学教学质量的一种必然趋势。学校也应加大网络资源建设,顺应社会发展的潮流,不要封闭在传统的教育理念之中。大学教师也应适应社会的发展,不断的学习,摆脱落伍的危机。

(二)教师要把网络教育资源的内容融入到教学之中

教师应该适应网络的发展,把网络教育资源融入到现代教学之中,但是不要盲目的引进,首先就要考虑引进内容的适用性,所引进的内容要与所学的内容有相关性,能起到补充,扩充的作用,这样能够开拓学生们的视野。其次引进的内容还要具有适用性,能够让学生们把所学的内容融入到生活,融入到社会,达到学生们能认识数学,应用数学,培养他们的能力。最后还要具有一定的趣味性,这样才能令学生更能接受所学内容,更愿意去学习数学,应用数学。所以教师合理的引进网络教育资源使十分重要的。

(三)教师要引导学生们自主利用网络教育资源

教师不但要学习引进网络教育资源,还要充分的引导学生利用网络资源,培养他们自主学习数学, 爱好 数学的良好作风。以前的数学教育中,以老师讲解为主,学生被动的接受知识,学习过后学生们无法应用,这是一个很大的失败,而现在的网络发展情况下,老师可以引导学生们更好的利用网络资源,引导学生们自主学习,可以布置学生做课前预习,到网络上寻求资料,还可以让学生们课后巩固学习内容,网上寻求交流,以便达到巩固知识的作用。

(四)增强学生自主学习能力和兴趣

现在大学数学教育尽管很重视学生的学习,教师又会安排课余时间组织学生们给他们进行答疑解惑,但是受到时间性和地域性的限制,效果往往是不太理想,现在网络资源的丰富,不再受时间和地域的限制, 网络技术 可以让学生和老师间进行多样化的交流和辅导,也可以让学生们通过一些论坛,邮箱,视频等等不断的学习巩固自己的知识。学习不再有时间地域的限制,学生们的积极性会大大提高,兴趣也会越来越高,提高数学成绩不再是难事。

二、结束语

大学数学教育充分有效的利用网络课程资源是提高大学数学教育质量的有效办法,教师应该打破传统教学的局限性,以课材为中心,充分利用网络资源融入到现在教学之中,补充课本上的不足,增强教育之中的趣味性,这样会开拓学生们的视野,培养学生们的 兴趣爱好 ,让他们更加具备学习数学的激情,更加具备自主学习的能力。只有这样学生们才会更加有发展,大学数学的教育才会更加成功。

大学数学论文范文相关 文章 :

1. 大学生论文范文

2. 大学论文格式范文

3. 大学生论文范文模板

4. 大学毕业论文范文

5. 大学生毕业论文范文

6. 大学毕业生论文范文

经济数学是属于经济学的一个分支,大一的经济数学是经济学管理专业的基础知识。下面是我为大家推荐的大一经济数学论文,供大家参考。大一经济数学论文 范文 篇一:《经济类高等数学分层教学的实践研究》 摘要:高等数学是经济类本科生一门重要的基础课程,对掌握好其专业课程知识和从事本专业更高层次的研究起着关键作用。为使该专业学生学好这门课程,我校对高等数学的教学试行了分层教学的教学模式。本文从分层的必要性、分层方式以及取得的效果等方面分析阐述了实行分层教学的优势。 关键词:高等数学;分层教学;因材施教 一、分层教学实施的必要性 高等数学是大学本科经济类专业学生的一门重要的基础课程,其重要性体现在学好这门课程不仅是学好其专业课的基本保障,更是提高思维素质的方式和进行更高层次研究的不可缺少的工具。因此,一般的本科院校对经济类的学生从一年级开学就开始开设高等数学课程。然而,高等学校扩大招生后,我国的高等 教育 已经从精英教育发展到大众教育阶段,使得高校各专业入学人数在激增的同时,生源质量下降已是不争的事实。而且学生来自全国各个省市地区,入学的数学成绩、水平参差不齐;不同学生的兴趣、 爱好 及发展方向各不相同。而相同专业所使用的教材、教学计划、教学大纲都是一样的,学生和教师基本没有选择的余地。这种统一的教学模式严重阻碍了高等数学 教学质量的进一步提高。目前,这一课程的教学面临的最大问题是学生的学习兴趣和学习成绩的下降。而造成这一问题的因素是多方面的,其中一个重要的原因是忽视学生对 教学 方法 、教学内容的不同需求。因此,根据学生的数学成绩、 兴趣爱好 、发展志向在适当尊重个人意愿的前提下对学生实施不同要求,不同方式的教学方式,就势在必行。本文以科学理论为基础,结合本校的教学实践,分析论述了分层教学的实施方法和取得的成果。 二、分层教学的理论基础 分层教学的理论基础是美国心理学、教育学家布鲁姆 ()“掌握学习”理论。布鲁姆认为:“只要在提供恰当的材料和进行教学的同时,给每个学生提供适度的帮助和充分的时间,几乎所有的学生都能完成学习任务或达到规定的学习目 标。”“掌握学习”理论要求教师的教学“应根据学生的实际发展水平、学习方式和个性特点来进行”。而一般高校的生源来自全国各个省市地区,近年来的高校扩招也造成了生源质量的下降。这就造成了学生的数学水平参差不齐,差异较大,而分层教学可以较好得体现上述思想。分层教学法还以多元智力理论为基础,尊重学生的个性差异,重视个性发展,遵循因材施教的原则,以学生的发展作为教学的出发点和归宿,真正体现“以学生发展为中心,以社会需要为方向,以学科知识为基础”的教育改革要求,也能真正体现素质教育的精神内涵。另外,其实在我国古代,教育家、思想家孔子就已经提出育人要“深其深,浅其浅,益其益,尊其尊”,即主张“因材施教,因人而异”。也就是说,教师的“教”,一定要适合学生的“学”。 三、分层教学的实施 分层教学,就是针对学生不同的学习水平和能力,以及学生自身对数学的兴趣爱好程度和要求有区别地制定学习目标,设计课程内容,创设不同的教学情境和教授方式,从而进行有针对性的因材施教,促进学生得到全面的锻炼和发展,进而实现更高效率,更好效果的教学模式。从2008学年开始,在我校教务处的大力支持下,我们在经济类专业的高等数学教学中试行了分层教学模式,和以往的不分层相比,两年来教学效果取得了显著的提高。具体实施方法是,对于经济类专业的两个学院,经济贸易学院和工商管理学院,我们采取不打乱院系,但是分层也分班的方式。层次分为两层,即A层和B层。A层是基本知识掌握、理论灵活运用、理论联系实际等方面要求较高的层次,教学计划和内容以 考研 和在专业领域进行深入研究为目标;B层相应要求较低,但是以打下扎实基础,使数学成为后继专业课学习的有力工具为基本原则。同时,由于A层班级的较高要求不易把握,由具有多年教学 经验 的教师担任授课工作。分层的依据有客观依据和主观依据。客观依据是学生的数学成绩水平,一方面参考高考成绩,另一方面,在新生入学伊始,进行一次数学“摸底”考试。“摸底”考试的试题由教学经验丰富的教师来出,大部分是一般难度的题目,但有少数较难题,由此可看出学生的数学成绩高下。分层的主观依据即是学生自己对数学课程的兴趣深浅程度和要求高低。比如,有的学生虽然成绩一般,但是对数学很感兴趣,或者有考研等在本专业领域继续研究的意向,我们可以考虑将该生分A层班级听课。反之,有的学生考试成绩虽高,但是对数学兴趣不大,只是当做一门必修基础课程来修,那么,就可以征求该生的意见,将其分在B层班级上课。考虑到班级人数和授课效果,我们采取相当三个“自然班”的人数为一个授课班。分层教学的根本目的是因材施教,因此,第一学期期末考试结束后,一些学生的数学成绩、对数学的兴趣态度等可能已经不再适合原来的班级教学目标,这就需要对班级进行调整,也就是说,分层教学具有一定的流动性。调整时也遵循上述分层依据,因为调整也是再一次分层。一方面是学生的试卷成绩,另外兼顾学生的主观意愿。但是实践证明,波动不宜过大,以不超过5%为宜。 四、分层教学的成效与思考 分层教学取得了一定的成效,较之08级以前不实施分层教学的学生成绩,不及格率有了较大幅度的降低。60-69,70-79分数段的人数有显著增加,而90分以上的优秀率有小幅增加,平均分明显提高。成绩分布呈正态分布。由此可见,分层教学符合大多数学生的愿望和要求,应当坚持和完善。分层教学有的放矢,因材施教,可以提高学生的学习兴趣,降低因学科本身的抽象枯燥造成的负担。使一些对数学没有信心,失去学习兴趣的学生达到了大纲的要求,较好解决了大学生数学学习两级分化太大的矛盾。08级以后的学生对分层次教学的认可度越来越高,适应数学学习的能力和学习数学的信心也大大地增强。实践证明,分层教学保证了面向全体学生,因材施教,做到了“优等生吃得饱,中等生吃得好,差等生吃得了”,同时,减轻了学生的课业负担,是全面提高教学质量和实施素质教育的行之有效的途径。虽然分层教学的实施使高等数学教学各方面有了大的改进,但是还有一些问题亟待解决。比如不同“自然班”的学生在同一个授课班上数学课,这就给课堂和作业管理造成了一定的难度,对教师和辅导员提出了新的要求。另外,考试过后需要将学生成绩按“自然班”排名,也造成了一些麻烦。我们的工作还仅仅是一个开始,今后将在实践中不断完善分层教学的教学方式,比如,在考核学生成绩方面,可以考虑不仅依据笔试的卷面成绩,再兼顾 其它 形式的考核成绩;在教学过程中,可适当借助计算机进行多媒体教学,以提高学生的学习兴趣。 参考文献: [1]阳妮.大学数学分层教学的理性思考[J].高教论坛,2007. (5):87-89. [2]郑兆顺.新课程中学数学教学法的理论与实践[M].北京:国防工业出版社,2006. [3]郭德俊,李原.合作学习的理论与方法[J].高等师范教育研究,1994,(3):43-54. [4]付海峰.在层次教学中培养学生的思维能力[J].中学数学参考,1997,(10). 大一经济数学论文范文篇二:《经济数学课的教改》 摘要:本文从教学内容的改革、教学方法的改革、教学手段的改革、以及 考试方法的改革等几个方面论述了 经济数学课的教学改革思路。其主导思想是:经济数学教学应当以“用数学贯穿于整个教学的始终。”以应用实践为主线,加强知识点的理解、运用和补充,培养学生建立数学模型、解决实际问题的能力。 关键词:经济;数学课;教改 很多人都知道,数学非常重要,但却不知道它重要在哪里,只知道各类考试都要考数学,似乎这是应试 教育的代名词。究竟学了数学有何作用,究竟在数学教学中应当怎样培养适应社会主义市场经济 发展需要的应用型、创新型人才?一直以来,成为我们教学改革所探讨的问题。本文从高职经济数学的教学内容、教学方法、教学手段、以及考试方法等几个方面的改革进行了论述。其主导思想是以“用数学贯穿于整个经济数学教学的始终。”以应用实践为主线,加强知识点的理解、运用和补充,培养学生建立数学模型、解决实际问题的能力。 一、教学理念上以“应用”为目标贯穿整个教学过程 经济数学与一般的高等数学相比有其特殊性,应使学生正确认识经济与数学的关系,在经济学领域,数学分析必须为经济分析服务,而不能本末倒置,应坚持“数学为体,经济为用”的原则。因此,在教学中,将经济融于数学。每章开始,都用当前经济生活中的 热点 问题激发学生学习有关数学知识的兴趣,进入各节内容,尽可能的以经济为例,使数学与经济逐步结合,最后,又以所学有关数学知识,分析每章开始时提出的经济问题。例如:讲函数时,以商品的产量受什么影响、手机话费与什么有关等引入函数的概念,讲完函数概念之后,以数学表达式给出上面提到的函数关系式,最后再给出经济分析中常见的函数(成本函数、收入函数、利润函数、需求函数等)。讲导数与微分时,问学生,在日常生活中见到过某商品突然降价而利润增加的现象吗?当学生举了很多例子、学习兴趣被激发后,引入变化率的问题,也就是将要引入的导数。讲完这一章后,再给出为什么商品降价反而利润增加的答案,就是“富有弹性”。也就是说,适当降价会使需求量较大幅度上升,从而增加收入。这样的教学,既帮助学生理解有关的数学原理和方法,也帮助学生了解它们在经济管理中的应用。 二、教学内容上以“必需、够用”为原则 经济数学课是高职经济管理类专业重要的基础课和工具课,通过对微积分、线性代数、线性规划等内容的学习,使学生初步具有解决经济管理问题的能力,并为今后学习经济管理课程和从事经济管理工作打下必要的数学基础。如何在有限的学时内,完成这么多内容的教学呢?那就要紧紧结合专业培养目标,按“必需、够用”的原则取舍经济数学的内容。教学内容的增删,首要的就是去掉一些抽象的、理论性强的、纯数学语言的概念及定理的证明,代之以定性的、通俗的描述性定义及几何解释。例如,函数极限概念,对高职学生来说,有一种感性认识,确立一种极限概念、思想也就足够了。重点介绍函数极限的概念,然后对整标函数——数列的极限仅仅作为函数极限的一个特例,简而述之。这样处理,凸现了函数极限概念。比以往的先介绍数列极限概念、性质,然后再介绍函数极限,节省了大量时间,教学效果也很好。在教学中,把重点放在幂函数、指数函数、线性函数、矩阵代数、线性方程组等内容上,删除了曲线的凹凸、由参数方程确定的函数的导数、旋转体的体积、行列式的部分内容等等,而把时间花在与他们今后学习和工作中天天都要接触的单利、复利、产量、收益、成本、最小投入、最大利润、弹性函数等内容上,对他们来说更实用,更有价值。这样,有利于我们所培养的人才在今后的工作中能够胜任岗位。 三、积极进行教学方法改革 (一)改革教学方法,让学生成为授课的主角。我们积极贯彻行动导向教学思想,一改传统教学模式中教师讲学生听的教学形式,让学生参与到课堂讲授中来,教师针对某一内容和知识点,灵活运用行动导向多种互动式的教学方法,以此实现学习由“要我学”向“我要学”的方向转变。本课程归纳并可应用多种互动式教学形式和方法,如头脑风暴法、专题演讲法、课堂讨论法、情景模拟法、角色演练法等。这些方法不仅能提升教学质量和效果,而且可以极大地激发学生学习该课程的积极性和热情。 (二)实现课堂教学与具体实践的互动。本课程在教学过程中,采取了课内实践与课外实践相结合,阶段实践和课程实践相结合的实践教学方式,教师针对讲授内容,除进行必要的课堂实践训练外,还积极组织学生进行社会调研,数学建模,以此培养学生运用所学知识分析解决实际问题的能力。 (三)将案例教学贯穿课程始终。本课程在内容设计上精心挑选了大量案例,理论联系实际,学以致用,通过案例的分析和讲解,使学生由单纯地死记硬背知识转变应用知识增长技能。 四、实现教学手段和评价手段的更新 教师在教学中充分利用 现代 教育技术手段,开发制作、使用多媒体课件和课程 网络资源,增强教学的直观性,以利于学生对知识的理解和消化。 考试是教学的指挥棒,对于引导学生端正 学习态度 ,把握学习重点起着有着至关重要的作用。高等职业教育的主要任务是培养高技能人才,这类人才,既要能动脑,又要能动手,所以必须用的职业教育的人才质量观去考核学生,多方位、多角度全面评价学生的学习成绩。为此我们进行了考试改革,改变了一卷定结果的做法。在对学生的评价上,一是以方式方法的灵活性提高评价的全面性。将日常评价拓展到课题活动、 经济数学小 论文、经济数学作业、小组活动、 自我评价 、相互评价、面谈、提问、日常情境观察等内容;二是以“统一”的方式来提高评价的可参照性。以重新组卷的方式实行期末考试,统一阅卷、统一评分。 在这方面我们曾经做过考核能力的试题的征集工作,但还是在摸索之中,一些原则性的意见可以归纳为: 重视基础,突出重点。基础知识掌握情况仍然是考试中不可缺少的内容。 注重思想,淡化技巧。繁难的技巧要淡化,经济数学中有普遍意义的数学思想与方法应是考试的重点。 重视应用,考查能力。要着重测试学生的潜在能力。使素质高、能力强、潜力大的学生在考试中占优势。 形式多样,富有弹性。可以尝试“开放性”试题,测试创造性思维能力,也可以尝试笔试与口试相结合。 五、积极开展第二课堂活动 开展第二课堂活动,重视学生个性 发展和能力的培养。数学建模活动是一项把数学知识直接应用于解决实际问题的最佳快捷、有效途径,是提高学生分析问题解决问题的能力、灵活运用数学知识处理问题的能力、激发学习兴趣、主动查阅资料、增强协作意识、培养创新能力的最佳手段。因此,在学完微积分后,给出与经济专业有关的建模训练题:产品利润问题、连续复利问题、由边际函数求最优化问题、最优批量问题等。在建模训练的过程中,学生就会认真地看书、查资料,经常向老师请教,互相探讨,这样学生的综合素质就会有很大提高。当然,由于高职学生的基础较差,建模作业完成的不会很好,但这需要教师不断在教学中渗透用数学思想可以解决许多经济中的问题,拓展了学生的知识面。 目前我校经济数学课的教学取得了良好的效果,学生对学习经济数学的兴趣提高了,恳于钻研,勤于思考的学生越来越多。总之,我们紧扣培养目标,将基础理论、数学建模有机融合,以必须的数学理论为基础,以丰富的实际问题为背景,以数学建模为突破口,取得了较好的成效。通过以上的教学改革使我们深刻体会到,学生的学习潜力是无限的,关键是教师如何培养和挖掘,为他们提供展示才能和发展的空间,所以我们要树立创新的教育教学理念,要坚信别人能做到的,我们也一定能做到并且会做得更好。 参考 文献: [1]高纪文.高职院校学生高等数学学习现状及对策[J]. 中国职业技术教育,2005,(6). [2]刘建清.石化学院高职数学教学改革与实践[D].西北师范大学,2005:8-11. [3]张拓.高职数学课教学改革探讨[J].教育与职业?理论版,2008,(1). 大一经济数学论文范文篇三:《经济学中数学统计方法的应用》 1 经济学与数学统计方法之间的融合历程 数学统计在经济学研究中的应用已经非常普遍,两者之间的联系也越来越紧密。回顾历史,早在17世纪,经济学与统计学之间的融合就已经表现出了必然的趋势。在当时,英国古典经济学家威廉·配第在《政治算数》一书中第一次利用数学方法来解决经济问题,这是两者的首次融合。不过在那个时期的研究由于受到社会发展的限制,研究方法还是以定性分析为主,并没有对统计学进行充分的运用。到了19世纪20年代以后,经济学与统计学之间的结合得到了进一步的深入。在这一时期,德国经济学家于1854年在其发表的论文中提出了一个结论,指出可以通过数学统计方法推导出“戈森定律”,其中还重点阐述了统计学方法应用于经济学是非常必要且重要的[1]。之后,英国经济学家斯坦利·文杰斯也对经济学与数学统计方法两者之间的关系进行了深入的研究,并在他1871年发表的书籍中提出了一个新的思想,也就是采用统计学的方法建立经济数学模型[2]。此后,经济学中数学统计方法的运用开始得到推广和发展。20世纪40年代之后,由于受到第三次科技革命的影响,经济学与统计学在实践上和理论上都得到了突破性的发展,并且两者之间的融合也得到了创新性的进步,进入了一个新的阶段。1955年,由美国经济学家摩根斯坦和数学家伊诺曼共同创作了《对策论与经济行为》,这本书籍的出版成为经济学与数学开始全新合作的里程碑[3]。自此之后,无论是在微观经济学中,还是在宏观经济学中,统计方法都得到了大量的运用,其重要性变得更加凸显。由此可见,从17世纪开始经济学与统计学出现融合的趋势,经历了长期的发展历程,目前两者之间的融合已经非常的深入和成熟,对于推动经济学的科学化发展起到了非常重要的作用。 2 数学统计方法应用于经济学的作用分析 数学统计方法可用于解决经济学问题 严谨精密的分析过程以及清晰准确的分析结果是数学统计方法的优势所在,而经济学问题的分析和解决中则对结果精确度和科学性要求非常高。由此可见,数学统计方法应用于经济学中具有重要的实际意义。数学统计方法很早就开始在经济学领域中得到应用,随着两者之间的结合和发展,现在在相关的研究领域已经出现了很多数学专业化理论,例如经济计量学、数理经济学等,这又进一步为两者的融合和共同发展提供了理论基础[4]。在经济学问题的解决中,数学统计方法的应用模式主要是“经济一数学—经济”,这也就是说,首先,以现实经济问题为出发点来建立数学模型,然后,采用数学方法来分析这一数学模型并得到结果,最后,再利用经济学原理和理论来评估所得的结果,得出相应的结论,其结论不仅可以用于指导经济活动,同时还可以用于预测经济发展方向。特别是在现代企业经济决策中,通过数学统计方法可以对经济活动进行从定性到定量的全面分析,可以较为科学、准确地预测决策执行后的结果,并充分利用企业的现有条件来对结果进行控制和优化,通过这种方式可以有效提高经济决策的可靠性与科学性,避免企业财力、物力的损失[5-6]。 数学统计方法可作为工具展开经济理论分析 从经济学与数学统计方法融合的初期发展到现在,数学统计学已经开始应用于各种重大经济问题的研究和分析中。再加上现代数学与现代经济理论之间的融合也在不断的深入,很多经济现象理论都可以通过数学方法来进行科学、合理的解释。特别是在这几年来,数学统计方法应用于经济现象和经济关系分析中的研究在不断进行,通过这种方式不仅可以从量的角度来确定结果,同时还可以从质的角度来做出判定[7-8]。由此可见,如果没有数学统计方法,就难以有效解决经济学问题。 3 数学统计方法应用于经济学的实例分析 在GDP分析模型中,可以通过数量分析和统计学方法来找出其中的统计指标,设计相应的指标体系,并结合社会现状来研究GDP值的计算方法和影响因素。在下面的研究中我们以某市2001—2012年的GDP纵向分布数据模型为例,采用分析数量经济法中的回归分析来展开统计学研究,并初步预测2014年之后的某个阶段。 表1即为某市的GDP数据统计结果,采用回归分析的方法来处理数据,并建立一个关于GDP与实践序列间关系的F(y)模型,其数据处理结果散点图如下所示。从图中我们可以看出,GDP呈现明显的非平稳增长趋势,通过回归分析和数据处理作出一阶差分,可以看出散点图为二次函数形式,因此可得F(y)=ax2+bx+c,采用回归分析来处理年份可以得到回归统计结果见表2。由此可得回归方程为F(y)=,检验其规定系数可知R=,与1非常接近,由此可知,该回归方程与实际数据有很好的拟合度,可以采用该方程对未来的某个阶段进行预测。 一般来说,实际的GDP受多因素影响,其变化不稳定,因此预测值都会有一定的偏差,根据某市2013年实际GDP总值为亿元,与上述预测的理论误差为: w=()/×100%= 这一误差值较大程度的偏离了回归曲线,分析其原因可能是由于在建设模型的初始条件时消除的政府主观态度、人们的消费亿元以及汇率和进出口关税等部分影响因素有着一定的联系。由于2014年级之后的年份都还没有确切的数据,因此本文仅限于探讨对2013年的预测。就本次模型来说,虽然 没有从整体上来进行考虑和分析,但是其理论与实际的核实可以看出这次预测并不是没有任何依据的,具有可行性。 4 结 论 总的来说,数学统计学对于经济的预测和 总结 起着非常重要的作用,数学统计方法应用于经济学中,对各项经济指标预测与评估以及决策和改革都有着深刻的影响意义。本文选择某市为例来进行数学统计方法分析,在实际的经济预测中,数据的收集并不能仅仅局限于纵向,同时也要注重横向幅度的收集,对数据的收集要全面,筛选要科学,只有这样才能够使理论分析更加有依据,其结果也更加具有理论效应。经济学中数学统计方法的应用,有利于帮助其掌握数据内在的规律性和本质变化,提高数据分析的质量和经济预测的科学性、准确性。 猜你喜欢: 1. 大一经济学论文范文 2. 关于大学经济学论文范文 3. 大一微观经济学论文 4. 大一经济学论文 5. 大学经济数学论文

大学大一数学论文结语

数学这门古老而又充满生命力同时兼顾理论性和应用性的课程,被誉为“思维的 体操 ”,其中无论是理论(纯数学)还是实践(应用数学),都包含丰富的知识和思维的技巧。下文是我为大家搜集整理的关于数学论文的内容,欢迎大家阅读参考!

浅析小学数学学习特点对教学的影响

小学数学是知识学习的起始点,与人类的学习比起来,小学数学的学习更有具体性。小学生对数量关系和空间形式知识的学习,具有抽象性,需要学生认真思考。要从学生的实际情况出发,分析学生在学习小学数学前在知识、能力、情感态度价值观等方面所达到的水平,使教师根据小学数学学习特点策划教学方案,为教学提供理论依据。本文从学习内容、学习过程以及学习方式三点来论述小学数学学习特点对教学的影响。

一、学习内容的抽象性与形象性

1.抽象性和形象性的特点

教材编写人员将富有抽象的数学知识转变为 儿童 易理解的形象化数学知识,通过转化,它不但没有失去数学学科的抽象性、逻辑性和严密性,而且更加形象生动。大大提高了学生的学习兴趣。教材通过丰富多样的图片和 故事 ,把数学知识以多种方式呈现在学生面前。使学生想学爱学。虽然小学数学学习内容很抽象,但经过多种方式的呈现,使知识更形象生动。这种 方法 解决了数学知识特点与小学生思维之间的矛盾问题。

2.抽象性和形象性特点对小学数学教学的影响

教师在讲解小学数学时要使形象性与抽象性相结合,通过各种教学方式把抽象的数学知识形象化。因此教师需恰当地解决具体与抽象之间的联系,即要解决以下四个问题:第一,怎样将学习内容的形象性与数学的本质结合起来;第二怎样进行抽象概括;第三,怎样对数学知识的理解深入到学生心中;第四,使学生学会用自己的语言来描述数学问题。

二、学习过程的渐进性和系统性

1.渐进性和系统性的特点

教学模式开发和应用的过程,是一个随着 教育 理论和教学实践不断发展的过程。它具有渐进性和系统性。这两种特性遵循了小学生的发展规律,对知识的学习是一个循环渐进的过程。在教学中要充分考虑学生的年龄特点和小学数学学习的特点,在具体活动中引导学生多动手、动脑和动口,调动各种感官参与活动,提高学习效率。渐进性和系统性是学生学习过程中的特点,它主要表现在,数学知识的逻辑性和系统性,数学知识具有扩展性,每个知识点要相互渗透,形成全面系统的知识。学会举一反三。对小学数学循序渐进学习。

2.渐进性和系统性特点对小学数学学习的影响

根据小学数学渐进性和系统性的特点,合理地选择教学方式。在教学过程中遵循学生发展的规律。将小学数学学习的渐进性和系统性恰当的结合起来,从而制定有效的教学方案,使得小学数学的教学有计划、高效的开展。适应这个特点需要满足以下两个方面:第一个方面,按照教科书为学生制定的数学学习顺序进行学习;第二个方面,在学习原理的基础上,使小学数学学习过程具有系统性。

三、学习方式的接受性和探索性

1.接受性和探索性在小学数学学习活动中的体现

小学数学的学习方式分为接受学习和发现学习两种。无论是哪种学习方式,都是学生将已存在的数学知识转化为自己知识的过程,来提高数学水平。转化知识的过程既是学生自己发现探索的过程,也是接受原有知识的过程。通过学生对数学学习方式的探索,小学数学的学习是在接受性和探索性及两者统一的基础上表现出来的。而对数学知识的再发现决定了小学数学学习的探索性,对数学知识的传递决定了其学习的接受性。接受性和探索性是小学数学学习的必要条件。

在教学过程中,教师要正确地认识和承认学生的差异,通过独立思考和小组合作交流,使学生能在不同的基础上得到发展,并能从教师对每一种方法的肯定中获得成功的喜悦。可以让学生选择自己喜欢的计算方法与同学交流,增加本节课学习的兴趣,提高教学效率。

2.接受性和探索性特点对小学数学教学的影响

接受性和探索性特点是通过教与学的方式对小学数学教学产生影响。教师要以学生为主体,在小学数学的教学过程中起引导作用,教师要采用多种教学方式引导学生思考,且根据学生接受的程度和讲授的数学知识恰当地选择教授方法,这样学生既能运用多种方法学习数学,又能掌握知识,小学数学教学过程的进步需要靠多样的学习方式和先进的 教学方法 来完成,使学生能够在玩中学,提高学习兴趣,达到教学目的。在教学过程中需要关注以下三点:第一,以多种多样的学习方式指导学生;第二,在教学过程中,要注重培养学生自己探索发现数学问题及解决数学问题的能力;第三,根据小学数学的学习特点采用多种教学方式提高学生学习的主动性和积极性。

四、结语

小学数学教学过程中必须要关注小学生学习数学的特点,根据其特点采用多种教学方法进行教学。教学内容应生动形象而不缺抽象,教授过程中要把系统性与渐进性相结合,接受性与探索性相结合,遵循小学数学学习的特点,循环渐进地掌握知识,达到期望的教学目标。小学数学学习的特点对教学既有指导性,也有探索性,只要充分理解其特点,才能使小学数学的教学向着有利于学生接受的方向迅速前进,从而提高教学效率,达到教学目标。

浅析新课改下高中数学导数教学的发展

最近几年来,伴随着我国市场经济的飞速发展,社会也在不断的发生着变化,同期我国的科学技术水平也迈上了一个新的台阶。为了能够更好的发展,同期也需要我们的自然学科进行相应的发展,这样可以更好的适应社会发展的需要。众所周知,数学学科是高中素质教育中不可或缺的重要组成部分之一,自从我国教育体制开始形成之时,数学科目就开始存在,所以说数学在素质教育中占据的地位非常重要,而导数作为帮助学生解决函数、数列等难点的工具,同时又能紧密联系其他学科,更是有着十分重要的地位。在实行新课改后,微积分作为教学内容而列入高中数学教材,这对学生的导数知识掌握能力提出了更高的要求。因此本文对新课改实施背景下,如何通过教学方法的改进来提高学生导数掌握能力进行研究。

一.现阶段高中数学导数教学的现状

(1)教学模式单一,对学生 学习方法 引导不够

在文理分科的背景下,导数在高中数学学科中是作为一门选修课程来学的,这造成了文科学生由于对导数的应用了解不深而不能很好地掌握,利用导数求解函数参数问题也就无从谈起。同时由于实行新课改后,数学学科的课时被压缩,很多教师为了在短时间内完成大纲规定的内容,在教学过程中一般来说都是采取的教师讲授或者板书,毫无疑问,在整个教学的过程中学生都是被动听课的方式进行教学的,这种教学方式在一定程度上大大压制了学生思维的活跃性和课堂参与的积极性。这就造成了学生由于导数内容太难而失去学习激情,这更加不利于导数知识的掌握,不利于教学活动的开展。

(2)应试教育观念导致的教学僵化

一直以来,我国的应试教育体制在教育体系中的地位都比较稳固,甚至到现在为止还没有得到完全的消除。即使实行了新课改,很多教师由于教学观念没有转换过来,在教学过程中过于重视考试题型的讲解和练习,而忽视了帮助学生对数学思想和内涵进行正确认识,这导致了学生在导数学习中纯粹以考试为目的,机械式地背诵公式,无法将所学导数知识运用于生活和其他学科的内容学习中,这与新课改提倡的素质教育理念是不相符的。导数教学的难点在于学生对于导数的认识不足,难以理解导数概念,这需要老师利用物理学科或者生活中的场景进行深入了解,而不是用纯粹的理论化的数学概念来对学生进行“填鸭教育”。

二、新课改下提高数学导数教学质量的 措施

(1)帮助不同的学生制定不同的 学习计划

总的来说,学习方法是学生进行有效学习的基础,而且在一定程度上对学生的学习起着举足轻重的作用。正确的学习方法是学生有效掌握所学知识的保证,这就要求数学教师在课堂教学中除了对学生进行课堂内容讲解外,还需要通过一定的测试和沟通来了解学生的导数内容掌握情况,对于掌握不足的学生应该帮助制定相应的学习计划,测试的目的不是为了成绩,而是为了掌握学生的学习情况,同时针对学生的学习情况对教学计划进行适当的调整,如果后续的学习计划制定没有跟上,那么测试也就失去了意义。

(2)借助案例帮助学生加深对导数的理解

导数由于其对于高中学生来说过强的理论性,造成了学生对于导数的理解和应用往往掌握不够,这种情况下纯粹的理论教学只会造成学生进一步的不理解,这十分不利于学生的学习效率和老师的课堂效率,所以在导数的课堂教学中,老师要注意借助导数应用案例来激发学生的学习热情,比如物理运动的速度变化问题、加速度变化问题等,这样不仅能够帮助学生更好地理解导数内涵,而且能够使学生在加强对其他学科知识的理解的同时主动思考导数知识在生活中的应用,大大提高了教学质量和效率。

(3)加强导数技巧性和应用训练

在平时的教学中应该多鼓励学生应用导数内容求解函数等相关问题,这样可以进一步提高学生对导数的理解程度和应用水平。同时老师也可以针对导数的应用多出一些技巧性的题目对学生进行训练,比如利用导数知识来画出二阶、三阶函数的图像等,学生要做出这种题目就需要一定的技巧,随着解答的技巧性题目数量的增多,学生对于导数的应用也就更熟练。同时在导数的初学阶段,由于学生对于导数理解不够,老师可以出一些含有生活案例的题目让学生来解答,比如将学生骑车时速度变化的问题加入到导数题目中,这样可以促使学生主动思考导数知识,加深对导数的理解,为以后的导数深入学习打下基础。

三、结语

综上所述,我们可以知道,高中数学的导数教学具有其一定的独特性,究其原因是因为在一定程度上不但具有数学学科严密的逻辑性,而且同时还具有初中数学不具备的抽象性,所以在教学中需要教师根据高中数学的特点进行相应的教学。高中导数的有效教学不但需要教师采用积极引导的教学,同时还需要学生培养出数学思维进行学习,只有通过教师和学生共同努力,这样才能在新课改的情况下,让高中数学导数教学得到稳定可持续的发展。

浅谈初中生数学问题意识的培养

一、初中生问题意识培养的意义

问题意识即在学科学习过程中能够主动思考、认真探究,从而针对某个方面提出问题的思想准备。在数学课堂上,学生常常不敢或不愿回答课堂提问,不能或不善提出问题,能够经常积极回答问题的只有少数学生,能够在课堂中提出问题的学生更是少之又少。学生缺少问题意识,不能提出问题,不利于学生思维的发展,不利于学习能力的进一步提升。朱永新关于新课程的核心理念之一:教给学生一生有用的东西。而学生自主学习、勤学好问的习惯一定是学生一辈子受益的。心理学研究表明,意识到问题的存在是思维的起点,学生没有问题本身就是大问题.被称为现代科学之父的爱因斯坦曾指出:“提出一个问题往往比解决一个问题更重要。”初中生数学问题意识的培养,是学习习惯和学习能力培养的重要方面,是新课程改革的需要。

二、初中生问题意识培养策略

如何培养学生问题意识呢?我们通过教学实践进行了相关探索,并初步形成了一些策略。

1、改变评价方式,鼓励提问

造成学生问题意识缺失的原因是多方面的。我们的评价导向不利于学生问题意识的培养是原因之一,多数时候我们对回答问题对、考试分数高大加赞赏,对于学习有困难的学生缺少鼓励指导。大批循规蹈矩的学生,不敢也不会去质疑。学生学习中的问题本应该由学生主动提出,而实际教学中常常是学生被老师问。如何改变这一现状?我们可以采用多种方式鼓励学生提问。(1)注意运用表扬或激励性语言,逐步使学生感受到课堂中能提出问题和敢于回答问题一样都是值得肯定和鼓励的。(2)把学生课堂提问是否积极作为对学生评价的一个重要方面。(3)有目的进行一些提问竞赛等活动。

2、夯实学习基础,让学生能问

教学实践中我们体会到学生能否提出问题与学生学习基础有密切关系,学习基础较好的学生更容易提出问题。因此,教师要注重夯实学习基础、培养学生勤学好问的品质,让学生坚实的学习基础成为产生问题的土壤.

3、营造轻松学习氛围,使学生敢问

数学课堂上学生没有提出问题,并不是没有问题,更多时候是因为紧张等原因导致有问题不敢提出。学生只有在宽松、和谐的氛围中,思维潜力才会得到最大限度的开启。为了消除学生在课堂上的紧张和害怕的情绪,教师需要尽可能营造轻松、和谐、民主的学习氛围,可以先让学生在学习小组内交流、质疑,再让学生在全班内提出或解答问题。教师以微笑、平和、宽容、鼓励的心态指导学生,与学生交流探讨,帮助学生树立自信,拉近师生情感距离,使学生做到想问就问。

数学教学应教会学生会思考。让学生经历观察、猜想、操作、实验、合情推理的过程,不仅有利于培养学生的独立性、能动性和创新精神,而且学生在轻松学习氛围中能够 消除紧张 因素,有问题时敢于提出。

4、教师示范引领,诱导学生善问

如果一个人没有问题,就不会有新的发现,就不会有真正的成长。学生没有问题意识就会学得被动低效,教师没有问题意识就会阻碍专业成长。教师要让学生有问题意识,就首先自己具有问题意识。教师强烈的问题意识能起到很好的示范作用,能促进学生的问题意识发展。

案例2.三角形三边关系教学

(1)让生拿出课前准备好的三根长度不一样的塑料吸管。

(2)把这三根吸管“首尾顺次连结”你有何发现?这时学生发现有的能构成三角形,有的却不能。

(3)教师再继续提出三个问题:①你的三根吸管的长度各是多少?②三根吸管的长度具有怎样关系时能“首尾顺次连结”组成三角形?③是否具有任何长度的三条线段都能“首尾顺次连结”构成三角形?

在上述探究过程中,正是教师不断追问诱导,集中学生的思维,引发了学生的不断质疑,思考层层深入,结果不断涌现,惊喜不断。长此以往,学生就会善于提问。

5、利用现代媒体技术,促学生提问

《义务教育课程标准(2011版)》(以下简称《标准》)指出:数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程的整合。把信息技术作为学生学习数学和解决问题的有力工具,有效地改进教和学的方式,使学生乐意投入到现实的、探索性的数学活动中。现代信息技术应用于数学教学能达到其他方式无法比拟的效果,有力于学生在“问题空间”自主探究。教师为学生设置环境,提供他们需要使用的工具与资源,促使学生提出问题并进行探索,激发学生解答问题,实现学生自己建构知识。

现代信息技术为数学活动的开展提供了广阔的天地,只要学生投入到运用媒体软件做数学的活动过程中,必然发现或提出各种问题、引发自主探究。

三、结语

总之,真正的教育应该是以学生的发展为本,老师不仅关注如何教,更应该关心学生如何学.我们要求学生创造出能够提出问题、敢于提出问题、善于提出问题的学习环境,从而培养学生的问题意识和创新精神.

大学数学是大学生必修的课程之一,如何提升大学生数学学习兴趣,培养数学型人才,是每一个大学数学教师都需要思考的。下面是我为大家整理的大学数学论文,供大家参考。

大学数学论文 范文 一:大学数学网络 教育 论文

一、教师要转变观念

意识是行动的主宰者。首先,教师要充分认识到网络教学资源对大学数学教学所产生的深刻影响。在网络信息快速发展的当今时代,如果仍旧拘泥于传统教学方式,势必将会处于落伍的境地。不仅影响教学效率,往深层次讲,还会影响学生 毕业 走向社会的适应能力以及生存能力。因此,教师要积极主动投身于教学改革的先行者行列中,构建现代化网络教学平台、加强网络教学资源的建设。

二、进行有效引导

在现代网络信息资源的基础上,学生能够变传统被动接受知识为主动探索知识。因此,教师要进行适当引导,指导学生掌握有效运用现代网络资源的 方法 ,不断发挥学生的主观能动性,培养学生的自主学习与探索能力,进而实现学生主动探索、教师指导的理想教学模式。 课前预习 、课中学习、课后巩固等这些环节,教师均可以让学生先自主学习,而后再进行有效指导。

三、有效整合教学资源

现代网络为我们带来丰富多彩的教学资源的同时,也带来了一些垃圾信息。因此,在大学数学教学中,教师要具备有效甄选、整合教学资源的能力。要根据课程内容,选择适合课时内容的资源融入到教学中。在选择网络资源时要遵循趣味性原则、实用性原则以及内容相符原则。运用网络教学资源进行大学数学教学是提高大学数学教学质量与教学效率的有效途径与方法,也是教育教学发展的必然趋势。教师应当转变传统的教学观念,充分重视网络信息资源,以教材为中心,有效整合网络资源,并运用于教学中,提高学生的学习兴趣,不断培养学生的自主学习能力。

大学数学论文范文二:大学数学教学中网络教育资源研究

一、如何利用网络教育资源提高大学数学教育质量

(一)加强教师对网络教育资源的认知

以前的大学数学教学方式单一,与学生的交流也少之又少,但是随着网络资源的发展,这一切将会有很大的变化,这也是适应社会的发展,提高数学教学质量的一种必然趋势。学校也应加大网络资源建设,顺应社会发展的潮流,不要封闭在传统的教育理念之中。大学教师也应适应社会的发展,不断的学习,摆脱落伍的危机。

(二)教师要把网络教育资源的内容融入到教学之中

教师应该适应网络的发展,把网络教育资源融入到现代教学之中,但是不要盲目的引进,首先就要考虑引进内容的适用性,所引进的内容要与所学的内容有相关性,能起到补充,扩充的作用,这样能够开拓学生们的视野。其次引进的内容还要具有适用性,能够让学生们把所学的内容融入到生活,融入到社会,达到学生们能认识数学,应用数学,培养他们的能力。最后还要具有一定的趣味性,这样才能令学生更能接受所学内容,更愿意去学习数学,应用数学。所以教师合理的引进网络教育资源使十分重要的。

(三)教师要引导学生们自主利用网络教育资源

教师不但要学习引进网络教育资源,还要充分的引导学生利用网络资源,培养他们自主学习数学, 爱好 数学的良好作风。以前的数学教育中,以老师讲解为主,学生被动的接受知识,学习过后学生们无法应用,这是一个很大的失败,而现在的网络发展情况下,老师可以引导学生们更好的利用网络资源,引导学生们自主学习,可以布置学生做课前预习,到网络上寻求资料,还可以让学生们课后巩固学习内容,网上寻求交流,以便达到巩固知识的作用。

(四)增强学生自主学习能力和兴趣

现在大学数学教育尽管很重视学生的学习,教师又会安排课余时间组织学生们给他们进行答疑解惑,但是受到时间性和地域性的限制,效果往往是不太理想,现在网络资源的丰富,不再受时间和地域的限制, 网络技术 可以让学生和老师间进行多样化的交流和辅导,也可以让学生们通过一些论坛,邮箱,视频等等不断的学习巩固自己的知识。学习不再有时间地域的限制,学生们的积极性会大大提高,兴趣也会越来越高,提高数学成绩不再是难事。

二、结束语

大学数学教育充分有效的利用网络课程资源是提高大学数学教育质量的有效办法,教师应该打破传统教学的局限性,以课材为中心,充分利用网络资源融入到现在教学之中,补充课本上的不足,增强教育之中的趣味性,这样会开拓学生们的视野,培养学生们的 兴趣爱好 ,让他们更加具备学习数学的激情,更加具备自主学习的能力。只有这样学生们才会更加有发展,大学数学的教育才会更加成功。

大学数学论文范文相关 文章 :

1. 大学生论文范文

2. 大学论文格式范文

3. 大学生论文范文模板

4. 大学毕业论文范文

5. 大学生毕业论文范文

6. 大学毕业生论文范文

大学数学文化教学研究优秀论文

当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。下面是我整理的大学数学文化教学研究优秀论文,欢迎大家分享。

大学数学文化教学研究论文

大学数学是由高等数学、线性代数、概率论与数理统计等课程所组成的基础学科。传统意义下的大学数学教学是传授数学知识和技能,培养学生用数学方法和思维分析问题、解决问题。但普遍而言,很多学生对于一些知识点,不知道怎么学、为什么学以及学了如何用。教师的教学方法始终以灌输式为主,缺乏以问题为导向的教学实践,等等。因此,如何激发学生学习数学的兴趣,是大学数学教学的一个重点和难点。而数学文化对于大学数学教学来说是一种十分有效、不可或缺的工具。本文研究的正是解决这一问题的方法之一———数学文化。认识到其在大学数学教学中的重要作用,并将数学文化与大学数学教学合理结合,不但能有效地激发学生学习数学的兴趣,增强大学生的学术专业水平,更能够提升大学生的数学文化素质。数学文化的内涵不仅表现在知识本身,还寓于它的历史。通过对数学文化的学习,不仅可以激发学生的学习兴趣,也有利于学生对数学概念、数学方法和数学原理的理解与认识的深化。在此过程中,可以使学生在接受数学专业训练的同时,获得人文科学方面的修养,提高学生的人文素质。数学文化中的数学史可以引导学生学习数学家的优秀品质,坚持真理,不畏强权,努力追求,使学生正确认识学习过程中遇到的困难,树立学习数学的兴趣和信心;数学文化中蕴含的美可以培养学生的美学修养,感受数学的简洁美、统一美,形成对数学良好的情感体验,提高学生的数学素养和审美素质。

一、数学文化教育渗透于大学数学教学中的重要性

1.有利于活跃课堂气氛,激发学生的学习兴趣。学生跨入大学校门,不适应高等数学的思想方法。这就要求高校数学教师在传授知识的同时,培养他们的兴趣。如果用历史回顾和名家轶事来点缀教学一定会使学生远离数学的抽象、复杂,再适时地将数学的概念与方法贯穿其中,能够将内容由抽象变具体,使枯燥的数学教学变得生动活泼,从而使学生热爱数学,激发其学习的兴趣。

2.有助于体会数学本身的美著名数学家陈省身先生曾不止一次地提出:“数学是美的。”数学的美体现在方方面面,数学中处处充满着简洁美、奇异的美、对称的美、抽象的美。比如对称美:12×12=144,21×21=441;13×13=169,31×31=961;102×102=10404,201×201=40401。再比如,0.618…它被中世纪学者、艺术家达芬奇誉为“黄金数”,他也被德国天文学家、物理学家、数学家开普勒赞为几何学中的两大“瑰宝”之一(另一个为“勾股定理”)。事实上,无论是古埃及的金字塔,还是古雅典的巴特农神庙以及今日的巴黎的埃菲尔铁塔,这些世人瞩目的建筑中都蕴涵着0.618…这一黄金比值(它显然展示着数学美感)。而数学中更为一般的对称,则体现在函数图像的对称性和几何图形上。前者是运用在建筑、美术领域后给人以无穷的美感,后者则为我们探求函数的性质提供了方便。爱因斯坦说过:“这个世界可以由音乐的音符组成,也可以由数学的公式组成”。数学文化则是数学美的主要表现形式。数学是无国界的,大部分学生对于数学的公式和符号心生畏惧,但这些数学公式和符号的实质是一种数学语言的表现,如同音乐的韵律一般。数学是一种理性的美,音乐是感性的美。在教学过程中,介绍数学中的美学,将增加数学本身的魅力,提高学生的学习兴趣,从而使学生真正的喜欢上数学,最终提高教学效率,提升大学生自身的数学素养。

3.有助于数学知识的掌握数学教学中充满了对公式的推理和应用,教学过程重视严密性、逻辑性和系统性。因此,需要培养学生的逻辑思维能力,而这种能力的培养要求给学生传授专业的数学知识,并且加以练习。但是,在课程教学过程中,部分教师很少讲数学精神以及数学思想等一系列数学文化给学生听,甚至一些数学专业的大学生都对数学学科发展史以及一些著名数学家这一系列的数学文化内容知晓甚少。笔者认为,许多数学知识体系的'建立都是通过不断进步最终形成的较为完善的体系。可很多学生只知其然,不知其所以然的模式导致只是为学习而学习,却不知道这些公式的原理。故了解知识背后的数学文化,能够使学生避免成为填鸭教学的受体,真正地成为数学魅力的感受者和学习者。

二、如何将数学文化渗透于大学数学教学中

大学数学教学的主要任务是让学生掌握数学的概念、思想和方法,在课堂教学中,要有目的地再现数学历史情景。如讲导数概念时可讲授微积分的创立过程,要用问题式、启发式和发现式等方式使学生有意识地分析数学家们原来的创造思维活动脉络,体会数学思想的整体连贯性,不能简单的回顾历史。这样才会全面深刻地理解极限概念,从而对以后用极限作为基础的微积分学、级数论等会更容易接受,大学数学也就变得具体、简单了。具体地,

1.高校教师加强对数学文化的认识如果一个大学数学老师在课堂上只侧重于理论的证明、推导,数学的概念,定理证明的过程,而不是概念的由来,也不是发现定理的过程,这对于学生对知识的全面掌握和理解是十分不利的。因此大学数学教师应该转变数学教育观念,把数学教学看成一种文化系统,利用数学文化的教育来启蒙学生的思想,让学生了解数学知识和方法背后的数学文化价值。比如,高等数学中微积分的教学,应该介绍微积分产生的发展史和思想史,而后是讲授概念、定理及相关方法,最后是介绍其具体的应用价值。

2.运用多媒体技术辅助数学文化教学多媒体通常是指录像带与录像机、幻灯片与幻灯机、投影片与投影机、光盘与VCD、CAI课件与计算机,等等。“课件”是通过计算机将文本、图形、声音、图像、动画、视频等多种媒体进行综合处理制作而成的、用于课堂教学的软件。多媒体是现代化教育技术的重要组成部分,它可以丰富和优化传统教学方法。借助现代教学手段,数学文化可以更好地与教学过程相结合,提高资源的利用率,使大学数学教学活动焕发青春、充满活力。比如,在介绍定积分概念时,我们可以溯源到牛顿的“分析学”,计算任意曲线下图形的面积。此时,可以利用多媒体课件制作动态的图形分割,而后近似求曲边梯形的面积,利用数学软件再现此过程无疑是生动形象的,很有利于学生从直观上理解这种基于积分思想的求面积的方法,同时使学生感受到了纯数学与现代科技相结合的巨大魅力。

三、结语

在大学数学教学过程中突出数学的文化功能,可以提高数学教学的效率,扩展学生的视野,加深学生对数学知识的理解,使学生在学习数学知识与思想方法的同时,进一步了解数学、喜欢数学、爱上数学,最终达到事半功倍的效果。

自主构建知识初中数学教学研究论文

【摘要】

随着我国教育事业的进一步发展,教育部门对课堂教学质量提出了进一步要求,对于课堂主体与课堂教学目标等,也做出了明确规定。结合实际情况,对以学生自主构建知识为核心初中数学教学顺利进行的有效途径进行分析,以期为今后的各项工作提供宝贵经验。

【关键词】

自主构建知识;数学教学;提问

初中数学学科具有一定的抽象性与难度,若是学生缺乏对相关知识的正确理解,将会直接影响到数学学习质量。因此,初中数学教师需要在尊重学生主体地位的前提下,鼓励学生自主构建知识,使得学生在这一过程中可以深入了解数学知识,为培养其自主学习能力、良好的思维模式奠定有利基础。

一、鼓励学生提问

问题是促使学生进行思考的根本动力与源头,只有在发现问题以后,学生才会从心里引起重视,并充分开动脑筋进行思考,有助于培养学生良好的思维能力与自主学习能力。这就需要初中数学教师在进行课堂教学的过程中,加强对学生的引导,引导学生及时发现各种问题,对此教师可以通过启发诱导、设置疑问、类比分析等方式来展示问题,使得学生可以在教师正确的引导下,对问题进行思考。值得注意的是,教师在这一过程中还需要充分激发学生的学习兴趣,虽然问题设置可以在一定程度上引起学生的好奇心,但是若是学生缺乏足够的兴趣,将会影响到学生思考效果。因此,初中数学教师可以通过为学生创设情境的方式,来吸引学生,刺激学生思维,从而达到引导学生思考数学问题的目的。与此同时,为了使学生在今后的数学学习过程中,提高自主学习能力,教师还需要针对学生的问题意识进行培养,让学生将学习、阅读、课堂中的无法理解的内容以问题的形式提问,以培养其问题意识,而教师则是可以让学生通过小组合作探讨的方式,让学生对问题进行思考与探索,加强学生之间的交流与沟通,为进一步提高其自主学习能力奠定有利基础。

二、鼓励学生自主发现问题并进行探索得出结论

新时期,传统教学模式已经无法满足现下教育部门对于初中课堂教学的要求,同时要求教师必须尊重学生的主体地位,且要以培养学生的个人能力、开发学生思维为目标而开展各项工作,这就需要初中数学教师及时改变教学方式、教学模式等,以适应当前教育需求。为了帮助学生实现自主构建知识,教师在实际教学的过程中,需要充分发挥自身引导作用,鼓励学生勇于提问、发现问题,并充分利用自身所掌握的数学知识对问题进行自主探索,使得学生可以通过自己思考,来学习相关知识,并深化对于数学知识的理解。例如,教师在为学生讲授《点、线、面之间的位置关系》这一部分内容时,可以通过话语对学生进行引导:“在我们生活中,点、线、面是非常常见,那么在你们的生活中会遇到哪些与点、线、面相关的事物呢?”由此来引起学生的思考,在学生指出这些存在于生活中的点、线、面时,教师又可以引导学生对这些事物的特点进行概括,从而总结出有关点、线、面位置关系的相关性质,让其在思考与探索中得出结论,培养其思维能力与自主学习能力,从而实现自主构建知识。

三、引导学生得出结论后进行反思,实现自主构建知识

在学生通过思考与自主探索得出结论以后,并不意味着教学环节就此结束,教师还需要结合学生的实际情况、思维情况等方面,引导学生进行反思,做到学与思之间的相互结合。通过引导学生进行反思,有助于进一步加强学生对相关数学知识的理解,而学生也可以对自己从提问、思考、探索、得出结论的整个过程进行思考,以便于学生及时发现自身问题。为了使学生今后的努力方向更加明确,初中数学教师应根据实际情况,对学生进行全面、综合性的评价,在肯定其思想上闪光点的同时,指出学生在思考、探索过程中存在的偏差,促使学生在今后思考的过程中加以改正,对于培养学生良好的思维能力、自主学习能力等方面具有重要意义。此外,通过对整个过程进行反思,还可以帮助学生发现知识之间的内在联系,从而为其构建完成的知识脉络奠定有利基础。

四、结束语

综上所述,在时代发展的过程中,传统教学模式无法适应当前国家教育部门对于学生各方面的要求,且教学手段的滞后性也会在一定程度上限制人才培养有效性的进一步提升,而中学作为培养学生思维能力、自主学习能力的重要阶段,对于学生今后学习与发展具有重要影响。这就需要初中数学教师充分利用课堂教学时间,引导并帮助学生实现知识的自主构建,深化学生对于各项数学知识理解,并在知识之间建立起联系,从而有效提高课堂教学质量。

参考文献:

[1]马贤.初中数学自主学习能力的培养[J].学周刊,2017,(28):99.

[2]党晓红,徐大贵.初中数学教学中学生自主学习方式初探[J].中国校外教育,2017,(07):61.

[3]肖瑶.中学数学教学中培养学生探索和自主学习的能力[J].现代妇女,2014,(02):116.

作者:沈爱华 单位:江苏省连云港市海庆中

大一高数数学论文1500

2000字,还得原创,哥们真是省时省力啊,学习不是靠百度的,就算我帮你写一次,那也是对我有帮助,对你就是应付老师而已。你宁愿看到自己写个千八百字,找人帮忙改,也不愿意帮助你这种没有求知欲,只会靠别人,而且还是应付老师的人。怪我自己话多了,我先道歉,帮不了你。。。。。。

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

高数学习应该按照这些套路来。

课前有的同学喜欢预习,这点在初高中数学,非常有效,可是在面对高数的时候蒙圈了,因为根本看不懂,不过没关系,高数不用课前预习,因为你也看不懂,但是,上课一定要 认真的听讲,记得是认真的听讲,特别是认真听讲老师的推倒过程,这点是非常重要的,高数不仅仅要知道结果,重要的是过程。

至于在课后,当然还是和普通的数学学习方法一样,及时的复习,复习当天的内容,特别是要做一定量的题目,理解消化和吸收。

当然作业也是一项非常重要的事情,做作业一定要认真,虽然大学抄作业不丢人,因为还有不写作业的,但是,你如果是抄作业那还不如不写,建议认真完成高数的作业,因为实在太重要了。

数学中的无穷以潜无穷和实无穷两种形式出现。

在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。

数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。

数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。

以上内容参考 百度百科-高等数学

像这种论文的话,你可以到网上搜索一下相关的范文来参考一下,你可以输入一些关键字关键词来进行查找。

大一数学学生论文范文大全

数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文

数学这门古老而又充满生命力同时兼顾理论性和应用性的课程,被誉为“思维的 体操 ”,其中无论是理论(纯数学)还是实践(应用数学),都包含丰富的知识和思维的技巧。下文是我为大家搜集整理的关于数学论文的内容,欢迎大家阅读参考!

浅析小学数学学习特点对教学的影响

小学数学是知识学习的起始点,与人类的学习比起来,小学数学的学习更有具体性。小学生对数量关系和空间形式知识的学习,具有抽象性,需要学生认真思考。要从学生的实际情况出发,分析学生在学习小学数学前在知识、能力、情感态度价值观等方面所达到的水平,使教师根据小学数学学习特点策划教学方案,为教学提供理论依据。本文从学习内容、学习过程以及学习方式三点来论述小学数学学习特点对教学的影响。

一、学习内容的抽象性与形象性

1.抽象性和形象性的特点

教材编写人员将富有抽象的数学知识转变为 儿童 易理解的形象化数学知识,通过转化,它不但没有失去数学学科的抽象性、逻辑性和严密性,而且更加形象生动。大大提高了学生的学习兴趣。教材通过丰富多样的图片和 故事 ,把数学知识以多种方式呈现在学生面前。使学生想学爱学。虽然小学数学学习内容很抽象,但经过多种方式的呈现,使知识更形象生动。这种 方法 解决了数学知识特点与小学生思维之间的矛盾问题。

2.抽象性和形象性特点对小学数学教学的影响

教师在讲解小学数学时要使形象性与抽象性相结合,通过各种教学方式把抽象的数学知识形象化。因此教师需恰当地解决具体与抽象之间的联系,即要解决以下四个问题:第一,怎样将学习内容的形象性与数学的本质结合起来;第二怎样进行抽象概括;第三,怎样对数学知识的理解深入到学生心中;第四,使学生学会用自己的语言来描述数学问题。

二、学习过程的渐进性和系统性

1.渐进性和系统性的特点

教学模式开发和应用的过程,是一个随着 教育 理论和教学实践不断发展的过程。它具有渐进性和系统性。这两种特性遵循了小学生的发展规律,对知识的学习是一个循环渐进的过程。在教学中要充分考虑学生的年龄特点和小学数学学习的特点,在具体活动中引导学生多动手、动脑和动口,调动各种感官参与活动,提高学习效率。渐进性和系统性是学生学习过程中的特点,它主要表现在,数学知识的逻辑性和系统性,数学知识具有扩展性,每个知识点要相互渗透,形成全面系统的知识。学会举一反三。对小学数学循序渐进学习。

2.渐进性和系统性特点对小学数学学习的影响

根据小学数学渐进性和系统性的特点,合理地选择教学方式。在教学过程中遵循学生发展的规律。将小学数学学习的渐进性和系统性恰当的结合起来,从而制定有效的教学方案,使得小学数学的教学有计划、高效的开展。适应这个特点需要满足以下两个方面:第一个方面,按照教科书为学生制定的数学学习顺序进行学习;第二个方面,在学习原理的基础上,使小学数学学习过程具有系统性。

三、学习方式的接受性和探索性

1.接受性和探索性在小学数学学习活动中的体现

小学数学的学习方式分为接受学习和发现学习两种。无论是哪种学习方式,都是学生将已存在的数学知识转化为自己知识的过程,来提高数学水平。转化知识的过程既是学生自己发现探索的过程,也是接受原有知识的过程。通过学生对数学学习方式的探索,小学数学的学习是在接受性和探索性及两者统一的基础上表现出来的。而对数学知识的再发现决定了小学数学学习的探索性,对数学知识的传递决定了其学习的接受性。接受性和探索性是小学数学学习的必要条件。

在教学过程中,教师要正确地认识和承认学生的差异,通过独立思考和小组合作交流,使学生能在不同的基础上得到发展,并能从教师对每一种方法的肯定中获得成功的喜悦。可以让学生选择自己喜欢的计算方法与同学交流,增加本节课学习的兴趣,提高教学效率。

2.接受性和探索性特点对小学数学教学的影响

接受性和探索性特点是通过教与学的方式对小学数学教学产生影响。教师要以学生为主体,在小学数学的教学过程中起引导作用,教师要采用多种教学方式引导学生思考,且根据学生接受的程度和讲授的数学知识恰当地选择教授方法,这样学生既能运用多种方法学习数学,又能掌握知识,小学数学教学过程的进步需要靠多样的学习方式和先进的 教学方法 来完成,使学生能够在玩中学,提高学习兴趣,达到教学目的。在教学过程中需要关注以下三点:第一,以多种多样的学习方式指导学生;第二,在教学过程中,要注重培养学生自己探索发现数学问题及解决数学问题的能力;第三,根据小学数学的学习特点采用多种教学方式提高学生学习的主动性和积极性。

四、结语

小学数学教学过程中必须要关注小学生学习数学的特点,根据其特点采用多种教学方法进行教学。教学内容应生动形象而不缺抽象,教授过程中要把系统性与渐进性相结合,接受性与探索性相结合,遵循小学数学学习的特点,循环渐进地掌握知识,达到期望的教学目标。小学数学学习的特点对教学既有指导性,也有探索性,只要充分理解其特点,才能使小学数学的教学向着有利于学生接受的方向迅速前进,从而提高教学效率,达到教学目标。

浅析新课改下高中数学导数教学的发展

最近几年来,伴随着我国市场经济的飞速发展,社会也在不断的发生着变化,同期我国的科学技术水平也迈上了一个新的台阶。为了能够更好的发展,同期也需要我们的自然学科进行相应的发展,这样可以更好的适应社会发展的需要。众所周知,数学学科是高中素质教育中不可或缺的重要组成部分之一,自从我国教育体制开始形成之时,数学科目就开始存在,所以说数学在素质教育中占据的地位非常重要,而导数作为帮助学生解决函数、数列等难点的工具,同时又能紧密联系其他学科,更是有着十分重要的地位。在实行新课改后,微积分作为教学内容而列入高中数学教材,这对学生的导数知识掌握能力提出了更高的要求。因此本文对新课改实施背景下,如何通过教学方法的改进来提高学生导数掌握能力进行研究。

一.现阶段高中数学导数教学的现状

(1)教学模式单一,对学生 学习方法 引导不够

在文理分科的背景下,导数在高中数学学科中是作为一门选修课程来学的,这造成了文科学生由于对导数的应用了解不深而不能很好地掌握,利用导数求解函数参数问题也就无从谈起。同时由于实行新课改后,数学学科的课时被压缩,很多教师为了在短时间内完成大纲规定的内容,在教学过程中一般来说都是采取的教师讲授或者板书,毫无疑问,在整个教学的过程中学生都是被动听课的方式进行教学的,这种教学方式在一定程度上大大压制了学生思维的活跃性和课堂参与的积极性。这就造成了学生由于导数内容太难而失去学习激情,这更加不利于导数知识的掌握,不利于教学活动的开展。

(2)应试教育观念导致的教学僵化

一直以来,我国的应试教育体制在教育体系中的地位都比较稳固,甚至到现在为止还没有得到完全的消除。即使实行了新课改,很多教师由于教学观念没有转换过来,在教学过程中过于重视考试题型的讲解和练习,而忽视了帮助学生对数学思想和内涵进行正确认识,这导致了学生在导数学习中纯粹以考试为目的,机械式地背诵公式,无法将所学导数知识运用于生活和其他学科的内容学习中,这与新课改提倡的素质教育理念是不相符的。导数教学的难点在于学生对于导数的认识不足,难以理解导数概念,这需要老师利用物理学科或者生活中的场景进行深入了解,而不是用纯粹的理论化的数学概念来对学生进行“填鸭教育”。

二、新课改下提高数学导数教学质量的 措施

(1)帮助不同的学生制定不同的 学习计划

总的来说,学习方法是学生进行有效学习的基础,而且在一定程度上对学生的学习起着举足轻重的作用。正确的学习方法是学生有效掌握所学知识的保证,这就要求数学教师在课堂教学中除了对学生进行课堂内容讲解外,还需要通过一定的测试和沟通来了解学生的导数内容掌握情况,对于掌握不足的学生应该帮助制定相应的学习计划,测试的目的不是为了成绩,而是为了掌握学生的学习情况,同时针对学生的学习情况对教学计划进行适当的调整,如果后续的学习计划制定没有跟上,那么测试也就失去了意义。

(2)借助案例帮助学生加深对导数的理解

导数由于其对于高中学生来说过强的理论性,造成了学生对于导数的理解和应用往往掌握不够,这种情况下纯粹的理论教学只会造成学生进一步的不理解,这十分不利于学生的学习效率和老师的课堂效率,所以在导数的课堂教学中,老师要注意借助导数应用案例来激发学生的学习热情,比如物理运动的速度变化问题、加速度变化问题等,这样不仅能够帮助学生更好地理解导数内涵,而且能够使学生在加强对其他学科知识的理解的同时主动思考导数知识在生活中的应用,大大提高了教学质量和效率。

(3)加强导数技巧性和应用训练

在平时的教学中应该多鼓励学生应用导数内容求解函数等相关问题,这样可以进一步提高学生对导数的理解程度和应用水平。同时老师也可以针对导数的应用多出一些技巧性的题目对学生进行训练,比如利用导数知识来画出二阶、三阶函数的图像等,学生要做出这种题目就需要一定的技巧,随着解答的技巧性题目数量的增多,学生对于导数的应用也就更熟练。同时在导数的初学阶段,由于学生对于导数理解不够,老师可以出一些含有生活案例的题目让学生来解答,比如将学生骑车时速度变化的问题加入到导数题目中,这样可以促使学生主动思考导数知识,加深对导数的理解,为以后的导数深入学习打下基础。

三、结语

综上所述,我们可以知道,高中数学的导数教学具有其一定的独特性,究其原因是因为在一定程度上不但具有数学学科严密的逻辑性,而且同时还具有初中数学不具备的抽象性,所以在教学中需要教师根据高中数学的特点进行相应的教学。高中导数的有效教学不但需要教师采用积极引导的教学,同时还需要学生培养出数学思维进行学习,只有通过教师和学生共同努力,这样才能在新课改的情况下,让高中数学导数教学得到稳定可持续的发展。

浅谈初中生数学问题意识的培养

一、初中生问题意识培养的意义

问题意识即在学科学习过程中能够主动思考、认真探究,从而针对某个方面提出问题的思想准备。在数学课堂上,学生常常不敢或不愿回答课堂提问,不能或不善提出问题,能够经常积极回答问题的只有少数学生,能够在课堂中提出问题的学生更是少之又少。学生缺少问题意识,不能提出问题,不利于学生思维的发展,不利于学习能力的进一步提升。朱永新关于新课程的核心理念之一:教给学生一生有用的东西。而学生自主学习、勤学好问的习惯一定是学生一辈子受益的。心理学研究表明,意识到问题的存在是思维的起点,学生没有问题本身就是大问题.被称为现代科学之父的爱因斯坦曾指出:“提出一个问题往往比解决一个问题更重要。”初中生数学问题意识的培养,是学习习惯和学习能力培养的重要方面,是新课程改革的需要。

二、初中生问题意识培养策略

如何培养学生问题意识呢?我们通过教学实践进行了相关探索,并初步形成了一些策略。

1、改变评价方式,鼓励提问

造成学生问题意识缺失的原因是多方面的。我们的评价导向不利于学生问题意识的培养是原因之一,多数时候我们对回答问题对、考试分数高大加赞赏,对于学习有困难的学生缺少鼓励指导。大批循规蹈矩的学生,不敢也不会去质疑。学生学习中的问题本应该由学生主动提出,而实际教学中常常是学生被老师问。如何改变这一现状?我们可以采用多种方式鼓励学生提问。(1)注意运用表扬或激励性语言,逐步使学生感受到课堂中能提出问题和敢于回答问题一样都是值得肯定和鼓励的。(2)把学生课堂提问是否积极作为对学生评价的一个重要方面。(3)有目的进行一些提问竞赛等活动。

2、夯实学习基础,让学生能问

教学实践中我们体会到学生能否提出问题与学生学习基础有密切关系,学习基础较好的学生更容易提出问题。因此,教师要注重夯实学习基础、培养学生勤学好问的品质,让学生坚实的学习基础成为产生问题的土壤.

3、营造轻松学习氛围,使学生敢问

数学课堂上学生没有提出问题,并不是没有问题,更多时候是因为紧张等原因导致有问题不敢提出。学生只有在宽松、和谐的氛围中,思维潜力才会得到最大限度的开启。为了消除学生在课堂上的紧张和害怕的情绪,教师需要尽可能营造轻松、和谐、民主的学习氛围,可以先让学生在学习小组内交流、质疑,再让学生在全班内提出或解答问题。教师以微笑、平和、宽容、鼓励的心态指导学生,与学生交流探讨,帮助学生树立自信,拉近师生情感距离,使学生做到想问就问。

数学教学应教会学生会思考。让学生经历观察、猜想、操作、实验、合情推理的过程,不仅有利于培养学生的独立性、能动性和创新精神,而且学生在轻松学习氛围中能够 消除紧张 因素,有问题时敢于提出。

4、教师示范引领,诱导学生善问

如果一个人没有问题,就不会有新的发现,就不会有真正的成长。学生没有问题意识就会学得被动低效,教师没有问题意识就会阻碍专业成长。教师要让学生有问题意识,就首先自己具有问题意识。教师强烈的问题意识能起到很好的示范作用,能促进学生的问题意识发展。

案例2.三角形三边关系教学

(1)让生拿出课前准备好的三根长度不一样的塑料吸管。

(2)把这三根吸管“首尾顺次连结”你有何发现?这时学生发现有的能构成三角形,有的却不能。

(3)教师再继续提出三个问题:①你的三根吸管的长度各是多少?②三根吸管的长度具有怎样关系时能“首尾顺次连结”组成三角形?③是否具有任何长度的三条线段都能“首尾顺次连结”构成三角形?

在上述探究过程中,正是教师不断追问诱导,集中学生的思维,引发了学生的不断质疑,思考层层深入,结果不断涌现,惊喜不断。长此以往,学生就会善于提问。

5、利用现代媒体技术,促学生提问

《义务教育课程标准(2011版)》(以下简称《标准》)指出:数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程的整合。把信息技术作为学生学习数学和解决问题的有力工具,有效地改进教和学的方式,使学生乐意投入到现实的、探索性的数学活动中。现代信息技术应用于数学教学能达到其他方式无法比拟的效果,有力于学生在“问题空间”自主探究。教师为学生设置环境,提供他们需要使用的工具与资源,促使学生提出问题并进行探索,激发学生解答问题,实现学生自己建构知识。

现代信息技术为数学活动的开展提供了广阔的天地,只要学生投入到运用媒体软件做数学的活动过程中,必然发现或提出各种问题、引发自主探究。

三、结语

总之,真正的教育应该是以学生的发展为本,老师不仅关注如何教,更应该关心学生如何学.我们要求学生创造出能够提出问题、敢于提出问题、善于提出问题的学习环境,从而培养学生的问题意识和创新精神.

2017大学数学论文范文

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。

几类特殊函数的性质及应用

【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。

【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分

1.引言

特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。

特殊函数定义及性质证明

特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。

特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。

2.伽马函数的性质及应用

伽马函数的定义:

伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。

Г函数在区间连续。

事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。

,伽马函数的递推公式

此关系可由原定义式换部积分法证明如下:

这说明在z为正整数n时,就是阶乘。

由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....

用Г函数求积分

贝塔函数的性质及应用

贝塔函数的定义:

函数称为B函数(贝塔函数)。

已知的定义域是区域,下面讨论的三个性质:

贝塔函数的性质

对称性:=。事实上,设有

递推公式:,有事实上,由分部积分公式,,有

由对称性,

特别地,逐次应用递推公式,有

而,即

当时,有

此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为

由上式得以下几个简单公式:

用贝塔函数求积分

解:设有

(因是偶函数)

例贝塔函数在重积分中的应用

计算,其中是由及这三条直线所围成的闭区域,

解:作变换且这个变换将区域映照成正方形:。于是

通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。

贝塞尔函数的性质及应用

贝塞尔函数的定义

贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。

贝塞尔函数的'递推公式

在式(5)、(6)中消去则得式3,消去则得式4

特别,当n为整数时,由式(3)和(4)得:

以此类推,可知当n为正整数时,可由和表示。

又因为

以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。

为半奇数贝塞尔函数是初等函数

证:由Г函数的性质知

由递推公式知

一般,有

其中表示n个算符的连续作用,例如

由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。

贝塞尔函数在物理学科的应用:

频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令

称为的Fourier变换。它的逆变换是

若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,

这就是Shannon取样定理。Shannon取样定理中的母函数是

由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:

以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。

首先建立取样定理

设:

其中是零阶贝塞尔函数。构造函数:

经计算:

利用分部积分法,并考虑到所以的Fourier变换。

通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:

类似地

经计算:

经计算得:

则有:设是的Fourier变换,

记则由离散取样值

因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。

例,利用

引理:当

因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式

首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:

(1)

其中

函数的幂级数展开式为:

则关于幂级数展开式为: (2)

由引理及(2)可得

(3)

由阶修正贝塞尔函数

其中函数,且当为正整数时,取,则(3)可化为

(4)

通过(1)(4)比较系数得

又由被积函数为偶函数,所以

公式得证。

3.结束语

本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。

参考文献:

[1] 王竹溪.特殊函数概论[M].北京大学出版社,,90-91.

[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)

[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.

[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.

[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.

[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.

[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,.

[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.

[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.

[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.

相关百科

热门百科

首页
发表服务