首页

> 论文发表知识库

首页 论文发表知识库 问题

数学中有哲学论文题目

发布时间:

数学中有哲学论文题目

1、几个带参数的二阶边界值问题的正解的存在性研究2、关于丢番图方程1+x+y=z的一类特殊情况的研究3、变限积分函数的性质及应用4、有限集上函数的迭代及其应用希望以上回答对你有帮助!————————————————————世界上没有任何东西是完美的,文章也是一样,我不敢保证我们团写出来的文章一定会让你捧上奖杯,获得名次。但这里面承载的心血和汗水不比任何写作团来的少,因为责任就是肩膀上的大山。不是我们写不出华丽清晰的文章,而是不可预定的因素太多,轻易地给您承诺说我是最好的恰恰说明了我的不成熟和轻浮。我想我简单的介绍并不能让你感觉眼前一亮,但你细细的品读定会感觉我们团靠谱务实的作风。

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!

最全组合数学论文题目

1、并行组合数学模型方式研究及初步应用

2、数学规划在非系统风险投资组合中的应用

3、金融经济学中的组合数学问题

4、竞赛数学中的组合恒等式

5、概率 方法 在组合数学中的应用

6、组合数学中的代数方法

7、组合电器局部放电超高频信号数学模型构建和模式识别研究

8、概率方法在组合数学中的某些应用

9、组合投资数学模型发展的研究

10、高炉炉温组合预报和十字测温数学建模

11、证券组合的风险度量及其数学模型

12、组合数学中的Hopf方法

13、PAR方法在组合数学问题中的应用研究

14、概率方法在组合数学及混合超图染色理论中的应用

15、一些算子在组合数学中的应用

16、陀螺/磁强计组合定姿方法的相关数学问题研究

17、高中数学人教版新旧教材排列组合内容的比较研究

18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究

19、基于数学形态学-小波分析组合算法的牵引网故障判定方法

20、证券组合投资的灰色优化数学模型的研究

21、一些算子在组合数学中的应用

22、概率方法在组合数学中的应用

23、组合数学中的Hopf方法

24、概率方法在组合数学中的某些应用

25、概率方法在组合数学及混合超图染色理论中的应用

26、竞赛数学中的组合恒等式

27、Stern-Lov醩z定理及在组合结构中的应用

28、几类特殊图形的渐近估计及数值解

29、Fine格路和有禁错排

30、基于DFL的Agent自主学习模型及其应用研究

31、基于DFL的多Agent自动推理平台设计

32、预应力混凝土斜拉桥施工监控概率方法研究

33、最大概率方法与最近邻准则下的图像标注

34、亚式期权定价的偏微分方程方法和概率方法

35、编目空间碎片的碰撞概率方法研究及应用

36、基于概率方法的机器人定位

37、民用建筑内部给水设计秒流量的概率方法研究

38、图论中的组合方法和概率方法

39、物理概率方法预估贮存寿命研究

40、静载下结构参数识别的误差分析和概率方法

41、概率方法在组合计数证明中的应用

42、基于非概率方法的结构全寿命总费用评估

43、概率方法在组合数学中的应用

44、概率方法与邻点可区别全染色的色数上界

45、既有钢筋混凝土结构耐久性评定的概率方法

46、概率方法在多任务EEG脑机接口中的应用研究

47、应用概率方法对居住小区给水设计秒流量的推求

48、概率方法与图的染色问题

49、概率方法对居住小区设计秒流量的推求

50、概率方法在组合数学中的某些应用

51、概率方法在组合恒等式证明中的应用

52、遗传算法的研究与应用

53、基于空间算子代数理论的链式多体系统递推动力学研究

54、关于Weidmann猜想及具有转移条件微分算子的研究

55、实数编码遗传算法杂交算子组合研究

56、基于OWA算子理论的混合型多属性群决策研究

57、序列算子与灰色预测模型研究

58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究

59、高精度径向基函数拟插值算子的构造及其应用

60、多线性算子加权Hardy算子与次线性算子的相关研究

数学建模论文题目

1、高中数学核心素养之数学建模能力培养的研究

2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例

3、培养低年段学生数学建模意识的微课教学

4、信息化背景下数学建模教学策略研究

5、数学建模思想融入解析几何的实际应用探讨

6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例

7、基于高等数学建模思维的经济学应用

8、以数学建模促进应用型本科院校数学专业的发展

9、高等代数在数学建模中的应用探讨

10、融入数学建模思想的线性代数案例教学研究

11、以“勾股定理的应用”为例谈初中数学的建模教学

12、经管概率统计中的数学建模思想研究——评《经管与 财税 基础》

13、数学建模实例——河西学院校内充电站最佳选址问题

14、基于数学建模探讨高职数学的改革途径

15、大数据时代大学生数学建模应用能力的提升研究

16、“数学写作之初见建模”教学设计及思考

17、大学数学教学过程中数学建模意识与方法的培养简析

18、基于建模思想的高等数学应用研究

19、小学数学建模教学实践

20、依托对口支援平台培养大学生的数学建模能力

21、跨界研究在数学建模教与学中的应用

22、基于结构参数的机织物等效导热率数学建模

23、数学建模对大学生综合素质影响的调查研究

24、计算机数学建模中改进遗传算法与最小二乘法应用

25、数学建模在高中数学课堂的教学策略分析

26、发动机特性数字化处理与数学建模

27、数学建模中的数据处理——以大型百货商场会员画像描绘为例

28、数学建模竞赛对医学生 学习态度 和自学能力的影响

29、数学建模思想与高等数学教学的融会贯通

30、试论数学建模思想在小学数学教学中的应用

31、浅析飞机地面空调车风量测控系统数学建模及工程实施

32、高中数学教学中数学建模能力的培养——基于核心素养的视角

33、注重数学建模 提炼解题思路——对中考最值问题的探究

34、在数学建模教学中培养思维的洞察力

35、刍议数学建模思想如何渗透于大学数学教学中

36、数学建模竞赛背景下对高校数学教学的思考

37、数学建模课程对高职学生创新能力的培养探究

38、高等数学教学中数学建模思想方法探究

39、初中数学教学中数学建模思想的渗透

40、无线激光通信网络海量信息快速调度数学建模

41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析

42、中学数学建模教学行为探究

43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究

44、基于数学建模活动的高校数学教学改革

45、数学建模与应用数学的结合研究

46、谈初中数学建模能力的培养

47、数学建模在初中数学应用题解答中的运用

48、基于数学建模思想的高等数学 教学方法 研究

49、数学建模融入高等数学翻转课堂模式研究

50、数学软件融入数学建模课程教学的探讨

最新小学数学教学论文题目

小学数学教材问题探析

小学数学生活化教学研究

小学数学___教学方法有效性分析

小学数学多媒体课件设计研究

小学生数学思维培养探究

小学数学中创新意识的培养

数学作业批改中巧用评语

新课标下小学数学教学改革研究

数学游戏在小学数学教学中的应用

《9和几的进位加法》教学设计

小学数学教学中素质 教育 研究

小学数学学困生的转化策略

小学数学教学中的情感教育

《六的乘法口诀》教学 反思

浅谈数学课堂中学生问题意识的培养

问答式学习课堂教学怎样转向小组合作学习

浅谈农村课堂的有效交流

浅谈在实践活动中提高学生解决实际问题的能力

浅谈小学应用题教学

浅谈学生合作意识的培养

“层次性体验”在数学课堂中的应用

数学课堂教学中学生探索能力的培养

小学数学低段学生阅读能力培养点滴

“观察、 品味、 顿悟” 我谈小学数学空间与图形教学

浅谈小学数学课堂教学中的“留白”

润物细无声--小班化数学作业面批有效策略的尝试

“我的妈妈体重 50 千克” 对培养良好数感的思考

“圆的面积” 教学一得

利用图解法解决逆推题

我教《24 时计时法》

《解简易方程》 教学反思

“可能性” 的反思

折线统计图折射出的“光芒”

《平均数》 教学反思

数学课堂上的“失误“也是一种资源

幽默语言在教学中的应用

“圆的认识” 教学片断与反思

计算机多媒体与小学数学教学的整

充分发挥学生的主体作用

“圆柱的体积” 教学反思

“平行四边形的面积” 听课反思

听“逆向求和应用题” 有感

小学低年级教学策略的实践与反思

“相遇问题” 建立“数学模型”

如何提高课堂语言评价的有效性

“20 以内退位减法” 教学反思

关于数学方向的优秀论文题目相关 文章 :

★ 关于数学专业毕业论文题

★ 数学方面毕业论文题目参考大全

★ 关于数学专业毕业论文题目参考

★ 数学的优秀论文

★ 数学优秀论文范文

★ 数学学术论文的题目

★ 数学教育论文题目

★ 数学教育方向的论文范文

★ 数学教育方向相关论文(2)

在数学的哲学中,直觉主义可谓引起引起了现代学术思想的一次革命。数学与哲学的关系一是人们谈论的问题。以下是我整理的数学与哲学的论文的相关资料,欢迎阅读!

摘要:在数学哲学中,直觉主义可谓引起引起了现代学术思想的一次革命。虽然直觉主义可以追溯到康德,甚至柏拉图。然而,它是近现代的,20世纪前20年,它作为一个独立的数学哲学思潮而闻名。它是逻辑学哲学中的一次风暴逆袭,是经典数学的有力挑战者。直觉主义强调“构造”,出发于“心智”。直觉主义把整个自然数论视为整个数学的基础,直觉主义拒绝排中律和反证律,抵制实无穷而推崇潜无穷。随着计算机的产生和发展,直觉主义在数字构造中起到了积极的应用。同时,直觉主义对数学哲学的创新 教育 等方面都有着不可忽视的影响。

关键词:数学哲学 直觉主义 传统逻辑 布劳威尔

一、 “存在必须是被构造”——直觉主义的产生

直觉(intuition)一词意为未经充分逻辑推理的,直观的,直接领捂事物本质的思考。与H.柏格森、B.克罗齐、E.胡塞尔等人的直觉主义不同,我们这里所研究的“直觉”并不是指主体对于客观事物的一种直接把握能力,而是指思维的本能上的一种心智活动。在这里,直觉主义提倡的直觉,并非辩证唯物主义的“直观的感觉”,其本意是“先验的心智构造”,以此为出发点,形成了对数学对象“存在性”与“可构造性”等同的要求。[1]直觉主义哲学是一种反理性主义的唯心主义哲学思潮。数学研究中的构造主义是一种有关数学基础的观点,它主张自然数及其某些规律和 方法 ,特别是数学归纳法,是可靠的出发点, 其它 一切数学对象和理论都应该从自然数构造出来。[2]“存在必须是被构造”,这是直觉主义派最著名的 口号 。也因此,直觉主义是一种构造逻辑。直觉派认为,数学中的概念和方法都是必须可以被构造的,非构造性的证明不是直觉主义者能接受的。在数学领域中,集合论悖论的问题不可能通过对已有的数学作某种局部的修改和限制加以解决,而必须依靠一些可信的标准对已有的数学进行全面的审视和改造。直觉主义认为逻辑依赖于数学,而非数学依赖逻辑。数学建立在直觉的基础上。同时,直觉主义认为哲学、逻辑甚至计数等概念都比数学复杂得多,不能作为数学的基础,数学的基础需要更简单、更直接的概念,它就是直觉,直觉是心智的一项基本功能。[3]一位直觉主义数学家阿伦特·海廷(Arend Heyting)在他的论文《数学的直觉主义基础》中指出:“立即处理数学的构造也许是符合直觉主义者的积极态度了。这个构造的最重要基石是一(unity)的概念,它是整数序列所依赖的构造原则。整数必须作为单位(units)来看待,这些单位仅仅由于在这个序列中的位置而相互区别。”[4]61

直觉主义者认为,数学的基础在于数学直觉,在他们看来,建立在数学直觉之上的理论能使“概念和推理十分清楚地呈现在我们面前”,即“对于思想来说是如此的直接,而其结果又是如此的清楚,以致不再需要任何铸的什么基础了”(A·黑丁:《直觉主义导论》)。任何数学对象被视为思维构造的产物,所以一个对象的存在性等价于它的构造的可能性。这和经典的方法不同,因为经典方法说一个实体的存在性可以通过否定它的不存在性来证明。对于直觉主义者,这是不正确的;不存在性的否定不表示可能找到存在性的构造证明。正因为如此,直觉主义是数学结构主义的一种;但它不是唯一的一类。直觉主义的基本哲学立场是,数学是人类心智“固有”的一种创造活动,是主体的自身的活动,而不是对外在的描述.数学概念是一种自主的智力活动的结果,智力活动则是研究自明定律所支配的思想构造。[5]

二、颠覆传统逻辑,形式主义的逆袭——直觉主义的特点

直觉主义不承认实无穷,拒绝实际无穷的抽象。也就是说,它不考虑像所有自然数的集合或任意有理数的序列无穷这样的无穷实体作为给定对象。数学上的实无穷思想是指:把无限的整体本身作为一个现成的单位,是已经构造完成了的东西,换言之,即是把无限对象看成为可以自我完成的过程或无穷整体。数学上存在着潜无穷与实无穷之争,就如同哲学上存在着唯物主义与唯心主义之争。而且必将长时间的持续的争论不休。数学上的潜无穷思想是指:把无限看作永远在延伸着的,一种变化着成长着被不断产生出来的东西来解释。举个形象点的例子就是,构成一条直线的点有无穷个,并且这条直线永远延伸着,不会有终结的一天。它永远处在构造中,永远完成不了,是潜在的,而不是实在。按照全称和条件量词的标准直觉主义,一个证明就是这样的潜无穷结构,这可能是合理的。(达米特《直觉主义逻辑的哲学基础》)[4]142按照此观点,所有的自然数可以构成一个集合,因为可以将所有的自然数看做是一个完成了的无穷整体。很显然,直觉主义支持潜无穷的观点,即把无穷集合看成无限延伸着的序列。

直觉主义反对排中律,这意味着直觉主义者可能和经典的数学家对一个数学命题的含义有不同理解。排中律和同一律、矛盾律并称为形式逻辑的三大基本规律。传统逻辑首先把排中律当作事物的规律,意为任一事物在同一时间里具有某属性或不具有某属性,而没有其他可能。排中律同时也是思维的规律,即一个命题是真的或不是真的,此外没有其他可能。例如,说A 或 B, 对于一个直觉主义者,是宣称A或B可以证明。但是,对于排中律, A 或 非 A, 是不被允许的,因为不能假设人们总是能够证明命题A或它的否命题。

直觉主义主要对抗的是形式主义。多个世纪以来,对数学规律的无懈可击的精确性的信念的依据是数学哲学研究的主要对象。直觉主义表示,精确性存在于人类心智之中,形式主义者认为,存在于纸面上。[4]90

直觉主义具有非逻辑性和整体性。数学直觉是作为逻辑的对立面而介定的一种认识方法,因此非逻辑性是数学直觉的最主要特性。可以说数学直觉的其他特性都是由它的非逻辑性所决定的,这是许多哲学家、科学家的共同见解。[6]直觉主义认为,数学是心灵的创造活动,心灵是丰富的,逻辑则是贫乏的。因此,坚决不能用贫乏的逻辑规则来全面准确地规划丰富的心灵活动。直觉主义的另一位代表人物阿伦特?海廷(Arend Heyting)说:“逻辑属于应用数学”。在对于直觉主义整体性上,一个日本数学家有如下精辟的解释:当一个人已经长期而持续地从事了研究并已成为一个完全成熟的研究人员时,他就已经在自己的头脑中形成了一种相对稳定的知识体系。经过他自己的努力,这种知识体系已被综合成为一种特殊的,确定的形式。而且自己综合的工作当然本身就是一种极有价值的 经验 。[7]

彭加勒在《数学中的直觉和逻辑》一文中写道:

哲学家告诉我们,纯逻辑永远也不能使我们得到任何东西;它不能创造任何新东西,任何科学也不能仅仅从它产生出来。在某种惫义上,这些哲学家是对的;要构成算术,像要构成几何学或构成任何科学一样,除了纯逻辑之外,还需要其他东西。为了称呼这种东西,我们只好使用直觉这个词。可是,在这同一谕后,潜藏着多少不同的意思呢?比较一下这四个公理:(1)等于第三个最的两个量相等;(2)若一定理对数1为真,假定它对N为真,如果我们证明它对N+1为真,则它对所有整数均为真;(3)设在一直线上,C点在A与B之间,D点在A与C之间,则D点将在A与B之间;(4)通过一个定点仅有一条直线与已知直线平行。所有这四个公理都归之于直觉,不过第一个阐明了形式逻辑诸法则中的一个法则;第二个是真实的先验综合判断,它是严格的数学归纳法的基础;第三个求助于想象:第四个是伪定义。直觉不必建立在感觉明白之上;感觉不久便会变得无能为力。[8]

值得注意的是,直觉主义不是神秘主义。直觉的“不可解释性”并不等于直觉的“神秘性”,尽管直觉是“不可解释”的,但它却有着确定的本质。我们认为,直觉是认识过程中的一种飞跃,因此它就不是一种经验的认识,而是原来的思想路线的中断,不可能按照通常的 思维方式 ,用结论和推理的环节把它连接起来,所以直觉是“不可解释的”。[9]

三、从Kant到Dummett,直觉主义派的主要人物及其思想

伊曼努尔·康德(Immanuel Kant, 1724-1804),从某种意义上来说,直觉主义是由哲学家康德开始的。1755到1770年,康德在哥尼斯堡大学教物理和数学,他认为我们所有的感觉都来自于一个预先假定的外部世界。虽然这些感觉不能提供任何知识,但是被感知到的物体间相互作用就产生了知识。心智将这些感觉梳理清楚,得到对空间和时间的直觉。康德说,感性直觉有两个纯形式,它们是先天知识的原则,这两个纯形式就是空间和时间。空间是外直觉的纯形式,而时间是内直觉的纯形式,它们都不是从外邻经验得来的,而是必然的、先天的观念。空间和时间不是客观存在的,而是心智的创作。心智理解经验,经验唤醒心智。虽然康德的思想有着直觉主义的影子,但是依旧没有直观地提出直觉主义,就数学基础的方法而言,直觉主义是现代的。[10]

亨利·彭加勒(常译作庞加莱,Henry Poincare,1854-1912),当代语境中的数学直觉主义的先驱。后人评价为数学哲学与当代数学直觉主义之间的一座桥梁。逻辑主义对于数学基础的理解是虚幻的。它使数学失去基础。然而数学的基础是存在的,它就是我们的直觉。它赋予数学以意义,从而给数学以对象。彭加勒指明了一座(本来就)架在人类精神和数学存在之间的桥梁,那便是我们的数学直觉。[11]彭加勒主张自然数是最基本的直觉,认为数学归纳法是一种包含直观的思维方法,是不能简单地归结为逻辑的。他主张使用有限个词能定义的概念,主张数学对象的可构造性。他还在另一种意义上理解和强调数学直觉,将其看做选择和发明的工具。彭加勒认为,我们有多种直觉。然而,最重要的可以归结为两类:一是“纯粹直觉”,即他通常所说的“纯粹数的直觉”、“纯粹逻辑形式的直觉”、“数学次序的直觉”等,这主要是解析家的直觉;二是“可觉察的直觉”,即想象,这主要是几何学家“形”的直觉。对于这两类直觉,他认为都是必要的,各自发挥着不同的作用。他认为,这两类直觉“似乎发挥出我们心灵的两种不同的本能”,它们像“两盏探照灯,引导陌生人相互来往于两个世界”。[12]

布劳威尔(,1881-1966),直觉主义真正的创始人和奠基人是布劳威尔。布劳威尔在数学上的直觉主义立场来源于他的哲学。1907年他在博士论文《数学基础》中提出直觉主义观点,认为数学的基础是先验的初始直觉。数学是起源于和产生于头脑的人类活动,不存在于头脑之外,因此,是独立于真实世界的。布劳威尔认为数学思维是智力构造的一个过程,它建造自己的天地,独立于经验,并且只受到必须建立于基本的数学直觉之上的限制。[10]布劳维尔发表的《数学基础》表明直觉主义的立场是强调“直觉”,这并不是说否认数学的逻辑性和严谨性,而只是突出直觉、灵感和创造力在数学中的地位。直觉主义者认为数学不仅是最讲究严格性的科学,也是最富有创造性的科学。布劳维尔认为数学的基础是先验的初始直觉,他和他的学生说他们所说的直觉正是人心对于它本身所构造的东西的清晰理解。[13]布劳维尔修改了康德的先验时空学说,放弃了“外直觉的纯形式”的先验时空概念,以适应非欧几何的发展;池把数学的基本直觉建立在“内直觉的纯形式”的先验时间概念的基础之上。[14]布劳威尔还提出了“二·一原则”(tow-oneness)。他认为这是数学的基本直觉。即假设N成立,则N+1成立。这个过程可以无限重复,创造了一切有限序数,因为“二·一原则”的元素之一可以被认为是一个新的“二·一原则”。布劳威尔认为,在这个数学的基本直觉中,联通和分离、连续和离散得到统一,并直接引出了线性连续统的直觉,即“介于”(between)的直觉。(布劳威尔《直觉主义和形式主义》)[4]93

阿伦特·海廷(Arend Heyting,1898-1980),他是布劳威尔的学生。继承了布劳威尔有关数学直觉主义的思想。他认为,直觉主义是从一定的、多少有点任意的假设出发的。它的主题是构造性的数学思想。这使得它处于经典数学之外。形式主义和直觉主义的差别在于,直觉主义的进行独立于形式化,形式化只能追随在数学构造的后面。逻辑不是直觉主义的立足点,数学构造在头脑中是很直接的,结论也应该是很清楚的,所以不需要任何基础。海廷主张,在描述直觉主义数学时,应当在日常生活中去理解。比如,在注视那边树木时,我确信我看到树木,而实际上光波达到我眼中,使我构造出树木这一信念需要相当的训练。这种观点是自然的。两个人说话,我向你灌输意见,实际制造了空气的震动。这是理论的构造。(阿伦特·海廷《论辩》)[4]77-88

迈克尔·达米特(又译米歇尔·杜麦特Michael Dummett,1925-2011),当代数学直觉主义学派的代表人物。达米特认为,数学首先是先验的,然后是分析的。达米特曾经从语言学角度和意义理论角度为直觉主义辩护。直觉主义关于数学陈述意义的解释避免了以真概念为核心概念的意义理论的不足,它把说话者关于数学陈述的理解与说话者使用这个陈述的实际能力结合在一起,因此具有很大的优点。从直觉主义关于数学陈述的意义说明出发,达米特提出了以证实为核心概念的新的意义理论的构想。[15]202达米特指出:“对于直觉主义逻辑来说,排中律的双重否定是有效的语义原则,就像二值逻辑认为排中律本身是有效的一样:断言任何陈述既不真也不假是不一致的。”[4]132

四、直觉主义的意义以及合理性

直觉主义对古典逻辑中的排中律和双重否定律等原理中的部分原则以及非构造性的结论持否定态度,也不承认数学中的实无限的对象和方法。数学的历史也表明,数学知识与理论不仅无法脱离对外部世界的永恒的依存关系,而且数学的错误不是通过限制数学,如排斥非构造数学和传统逻辑而得到克服的。数学真理的积累以及对谬误的抛弃是通过数学知识的不断增长和理论的不断完善获得的。一句话、数学的生命在于生生不息的创造过程中。庆幸的是,直觉主义由十其思想体系中某种先天的弱点而末成为数学的统治思想。但也应看到其构造思想的重要价值。[16]123-124可以说,直觉主义学派在本质上是主观和荒谬的,以直觉上的可构造性为由来绝对的肯定直觉派数学是不能真正解决问题的。但是,直觉主义揭示了经典逻辑只具有相对的真理性,在具体的数学工作中具有重要意义。

首先,数学哲学中的直觉主义学派高度认可直觉和个人的创造性思维在科学实践中的作用,推动了现代递归函数论的建立和发展,这无疑对数学的进步起到了很积极的作用。其次,直觉主义者倡导的构造性的能行性的研究方法,促进了人工智能和计算机科学的发展。这种积极探讨可行性方法在计算机数学以及计算机科学中具有重大的现实意义。第三,直觉主义数学哲学的思想方法在素质教育理论研究与实践上,具有宝贵的参考价值。在数学教育中,逻辑的作用很明显,其特征为,从已知知识出发,依据逻辑规则进行推导和演算,一步一步地达到对研究对象的认识。而直觉主义可以跳跃式地认知,虽然能一步得到正确答案,却无法说清楚其中的步骤。直觉主义虽排斥传统逻辑,但与逻辑关系十分密切,对培养良好的数学逻辑观念有着不可忽视的作用。另外,直觉主义有助于培养数学教育中大胆猜测的思维习惯。这种创新和探索精神有利于数学的进步和发展。

参考文献:

[1] 傅敏.直觉主义数学哲学研究及其对数学素质教育的启示[J].西北师范大学学报(自然科学版),1996(1).

[2] 诸葛殷同.对传统逻辑的有力挑战——评《经典逻辑与直觉主义逻辑》[J].哲学动态,1990(4).

[3] 柯华庆.直觉主义数学哲学的两个阶段[J].学术研究,2005(2).

[4] 保罗·贝纳塞拉夫(美),希拉里?普特南(美).数学哲学[M].北京:商务印书馆,2003.

[5] 黄秦安.数学哲学与数学 文化 [M].西安:陕西师范大学出版社,1999.

数学哲学与数学史论文题目

论文参考题目

1、非10进制记数的利和弊。

2、数的概念的发展与人类认识能力提高的关系。

3、比较古代埃及人和古代巴比伦人解方程的方法,探讨他们各自对后来的数学发展的启迪作用。

4、为什么毕达哥拉斯学派关于不可公度量的发现会在数学中产生危机?

5、欧几里得《原本》中的代数。

6、欧几里德《几何原本》与公理化思想;

7、在几何学中有没有“王者之路”。

8、无所不在的斐波那契数列。

9、文艺复兴时期数学发展的重要因素。

10、达•芬奇与数学。

11、十进制小数的历史。

12、圆周率的历史作用。

13、“圆”中的数学文化。

14、明代中国商业算术处于突出地位的原因。

15、近代中国数学落后的原因。

16、芝诺悖论与微积分的关系。

17、未解决的问题在数学中的重要性。

17、黄金分割引出的数学问题。

18、试论数学悖论对数学发展的影响。

19、第一次数学危机及其克服。

20、第二次数学危机及其克服。

21、第三次数学危机及其克服。

22、数学对当代社会文化的影响。

23、试论数学的发展对人类社会的进步的推动作用。

24、从历史观看数学。

25、数学符号的价值。

26、谈对数学本质的认识。

27、试论数学科学的价值。

28、函数概念的发展。

29、空间概念的发展。

30、曲线概念的发展。

31、数学对天文学的推动。

32、数学中无穷思想的发展。

33、数学中的美。

34、音乐中的数学。

35、艺术中的数学。

36、浅谈数学语言的特点。

37、论数学的抽象性。

38、关于数学的严谨性。

39、关于数学的真理性。

40、数学家的不幸。

41、数学家的幸运。

42、从数学史中扩展的数学知识。

43、从程大位的《算法统宗》“首篇”河图、洛书等看《易经》与珠算之联44、梵语的盛行——十进制的发明之谜 45、中国古代数学发展缓慢的启示

46、从矩阵的萌芽论中国传统数学的文化底蕴

47、《九章算术》刘徽注中的算法分析工作与算法分析思想

48、《费马大定理》读后感 49、黎曼猜想浅谈

50、再论《巧排九方》——一个传统的数字推理趣题之详解及其推广

51.、数学史上的三次危机

52、笛卡儿解析几何思想的文化内涵 53、理性数学的哲学起源

54、中国数学教育史研究进展

希望对你有帮助。

在数学的哲学中,直觉主义可谓引起引起了现代学术思想的一次革命。数学与哲学的关系一是人们谈论的问题。以下是我整理的数学与哲学的论文的相关资料,欢迎阅读!

摘要:在数学哲学中,直觉主义可谓引起引起了现代学术思想的一次革命。虽然直觉主义可以追溯到康德,甚至柏拉图。然而,它是近现代的,20世纪前20年,它作为一个独立的数学哲学思潮而闻名。它是逻辑学哲学中的一次风暴逆袭,是经典数学的有力挑战者。直觉主义强调“构造”,出发于“心智”。直觉主义把整个自然数论视为整个数学的基础,直觉主义拒绝排中律和反证律,抵制实无穷而推崇潜无穷。随着计算机的产生和发展,直觉主义在数字构造中起到了积极的应用。同时,直觉主义对数学哲学的创新 教育 等方面都有着不可忽视的影响。

关键词:数学哲学 直觉主义 传统逻辑 布劳威尔

一、 “存在必须是被构造”——直觉主义的产生

直觉(intuition)一词意为未经充分逻辑推理的,直观的,直接领捂事物本质的思考。与H.柏格森、B.克罗齐、E.胡塞尔等人的直觉主义不同,我们这里所研究的“直觉”并不是指主体对于客观事物的一种直接把握能力,而是指思维的本能上的一种心智活动。在这里,直觉主义提倡的直觉,并非辩证唯物主义的“直观的感觉”,其本意是“先验的心智构造”,以此为出发点,形成了对数学对象“存在性”与“可构造性”等同的要求。[1]直觉主义哲学是一种反理性主义的唯心主义哲学思潮。数学研究中的构造主义是一种有关数学基础的观点,它主张自然数及其某些规律和 方法 ,特别是数学归纳法,是可靠的出发点, 其它 一切数学对象和理论都应该从自然数构造出来。[2]“存在必须是被构造”,这是直觉主义派最著名的 口号 。也因此,直觉主义是一种构造逻辑。直觉派认为,数学中的概念和方法都是必须可以被构造的,非构造性的证明不是直觉主义者能接受的。在数学领域中,集合论悖论的问题不可能通过对已有的数学作某种局部的修改和限制加以解决,而必须依靠一些可信的标准对已有的数学进行全面的审视和改造。直觉主义认为逻辑依赖于数学,而非数学依赖逻辑。数学建立在直觉的基础上。同时,直觉主义认为哲学、逻辑甚至计数等概念都比数学复杂得多,不能作为数学的基础,数学的基础需要更简单、更直接的概念,它就是直觉,直觉是心智的一项基本功能。[3]一位直觉主义数学家阿伦特·海廷(Arend Heyting)在他的论文《数学的直觉主义基础》中指出:“立即处理数学的构造也许是符合直觉主义者的积极态度了。这个构造的最重要基石是一(unity)的概念,它是整数序列所依赖的构造原则。整数必须作为单位(units)来看待,这些单位仅仅由于在这个序列中的位置而相互区别。”[4]61

直觉主义者认为,数学的基础在于数学直觉,在他们看来,建立在数学直觉之上的理论能使“概念和推理十分清楚地呈现在我们面前”,即“对于思想来说是如此的直接,而其结果又是如此的清楚,以致不再需要任何铸的什么基础了”(A·黑丁:《直觉主义导论》)。任何数学对象被视为思维构造的产物,所以一个对象的存在性等价于它的构造的可能性。这和经典的方法不同,因为经典方法说一个实体的存在性可以通过否定它的不存在性来证明。对于直觉主义者,这是不正确的;不存在性的否定不表示可能找到存在性的构造证明。正因为如此,直觉主义是数学结构主义的一种;但它不是唯一的一类。直觉主义的基本哲学立场是,数学是人类心智“固有”的一种创造活动,是主体的自身的活动,而不是对外在的描述.数学概念是一种自主的智力活动的结果,智力活动则是研究自明定律所支配的思想构造。[5]

二、颠覆传统逻辑,形式主义的逆袭——直觉主义的特点

直觉主义不承认实无穷,拒绝实际无穷的抽象。也就是说,它不考虑像所有自然数的集合或任意有理数的序列无穷这样的无穷实体作为给定对象。数学上的实无穷思想是指:把无限的整体本身作为一个现成的单位,是已经构造完成了的东西,换言之,即是把无限对象看成为可以自我完成的过程或无穷整体。数学上存在着潜无穷与实无穷之争,就如同哲学上存在着唯物主义与唯心主义之争。而且必将长时间的持续的争论不休。数学上的潜无穷思想是指:把无限看作永远在延伸着的,一种变化着成长着被不断产生出来的东西来解释。举个形象点的例子就是,构成一条直线的点有无穷个,并且这条直线永远延伸着,不会有终结的一天。它永远处在构造中,永远完成不了,是潜在的,而不是实在。按照全称和条件量词的标准直觉主义,一个证明就是这样的潜无穷结构,这可能是合理的。(达米特《直觉主义逻辑的哲学基础》)[4]142按照此观点,所有的自然数可以构成一个集合,因为可以将所有的自然数看做是一个完成了的无穷整体。很显然,直觉主义支持潜无穷的观点,即把无穷集合看成无限延伸着的序列。

直觉主义反对排中律,这意味着直觉主义者可能和经典的数学家对一个数学命题的含义有不同理解。排中律和同一律、矛盾律并称为形式逻辑的三大基本规律。传统逻辑首先把排中律当作事物的规律,意为任一事物在同一时间里具有某属性或不具有某属性,而没有其他可能。排中律同时也是思维的规律,即一个命题是真的或不是真的,此外没有其他可能。例如,说A 或 B, 对于一个直觉主义者,是宣称A或B可以证明。但是,对于排中律, A 或 非 A, 是不被允许的,因为不能假设人们总是能够证明命题A或它的否命题。

直觉主义主要对抗的是形式主义。多个世纪以来,对数学规律的无懈可击的精确性的信念的依据是数学哲学研究的主要对象。直觉主义表示,精确性存在于人类心智之中,形式主义者认为,存在于纸面上。[4]90

直觉主义具有非逻辑性和整体性。数学直觉是作为逻辑的对立面而介定的一种认识方法,因此非逻辑性是数学直觉的最主要特性。可以说数学直觉的其他特性都是由它的非逻辑性所决定的,这是许多哲学家、科学家的共同见解。[6]直觉主义认为,数学是心灵的创造活动,心灵是丰富的,逻辑则是贫乏的。因此,坚决不能用贫乏的逻辑规则来全面准确地规划丰富的心灵活动。直觉主义的另一位代表人物阿伦特?海廷(Arend Heyting)说:“逻辑属于应用数学”。在对于直觉主义整体性上,一个日本数学家有如下精辟的解释:当一个人已经长期而持续地从事了研究并已成为一个完全成熟的研究人员时,他就已经在自己的头脑中形成了一种相对稳定的知识体系。经过他自己的努力,这种知识体系已被综合成为一种特殊的,确定的形式。而且自己综合的工作当然本身就是一种极有价值的 经验 。[7]

彭加勒在《数学中的直觉和逻辑》一文中写道:

哲学家告诉我们,纯逻辑永远也不能使我们得到任何东西;它不能创造任何新东西,任何科学也不能仅仅从它产生出来。在某种惫义上,这些哲学家是对的;要构成算术,像要构成几何学或构成任何科学一样,除了纯逻辑之外,还需要其他东西。为了称呼这种东西,我们只好使用直觉这个词。可是,在这同一谕后,潜藏着多少不同的意思呢?比较一下这四个公理:(1)等于第三个最的两个量相等;(2)若一定理对数1为真,假定它对N为真,如果我们证明它对N+1为真,则它对所有整数均为真;(3)设在一直线上,C点在A与B之间,D点在A与C之间,则D点将在A与B之间;(4)通过一个定点仅有一条直线与已知直线平行。所有这四个公理都归之于直觉,不过第一个阐明了形式逻辑诸法则中的一个法则;第二个是真实的先验综合判断,它是严格的数学归纳法的基础;第三个求助于想象:第四个是伪定义。直觉不必建立在感觉明白之上;感觉不久便会变得无能为力。[8]

值得注意的是,直觉主义不是神秘主义。直觉的“不可解释性”并不等于直觉的“神秘性”,尽管直觉是“不可解释”的,但它却有着确定的本质。我们认为,直觉是认识过程中的一种飞跃,因此它就不是一种经验的认识,而是原来的思想路线的中断,不可能按照通常的 思维方式 ,用结论和推理的环节把它连接起来,所以直觉是“不可解释的”。[9]

三、从Kant到Dummett,直觉主义派的主要人物及其思想

伊曼努尔·康德(Immanuel Kant, 1724-1804),从某种意义上来说,直觉主义是由哲学家康德开始的。1755到1770年,康德在哥尼斯堡大学教物理和数学,他认为我们所有的感觉都来自于一个预先假定的外部世界。虽然这些感觉不能提供任何知识,但是被感知到的物体间相互作用就产生了知识。心智将这些感觉梳理清楚,得到对空间和时间的直觉。康德说,感性直觉有两个纯形式,它们是先天知识的原则,这两个纯形式就是空间和时间。空间是外直觉的纯形式,而时间是内直觉的纯形式,它们都不是从外邻经验得来的,而是必然的、先天的观念。空间和时间不是客观存在的,而是心智的创作。心智理解经验,经验唤醒心智。虽然康德的思想有着直觉主义的影子,但是依旧没有直观地提出直觉主义,就数学基础的方法而言,直觉主义是现代的。[10]

亨利·彭加勒(常译作庞加莱,Henry Poincare,1854-1912),当代语境中的数学直觉主义的先驱。后人评价为数学哲学与当代数学直觉主义之间的一座桥梁。逻辑主义对于数学基础的理解是虚幻的。它使数学失去基础。然而数学的基础是存在的,它就是我们的直觉。它赋予数学以意义,从而给数学以对象。彭加勒指明了一座(本来就)架在人类精神和数学存在之间的桥梁,那便是我们的数学直觉。[11]彭加勒主张自然数是最基本的直觉,认为数学归纳法是一种包含直观的思维方法,是不能简单地归结为逻辑的。他主张使用有限个词能定义的概念,主张数学对象的可构造性。他还在另一种意义上理解和强调数学直觉,将其看做选择和发明的工具。彭加勒认为,我们有多种直觉。然而,最重要的可以归结为两类:一是“纯粹直觉”,即他通常所说的“纯粹数的直觉”、“纯粹逻辑形式的直觉”、“数学次序的直觉”等,这主要是解析家的直觉;二是“可觉察的直觉”,即想象,这主要是几何学家“形”的直觉。对于这两类直觉,他认为都是必要的,各自发挥着不同的作用。他认为,这两类直觉“似乎发挥出我们心灵的两种不同的本能”,它们像“两盏探照灯,引导陌生人相互来往于两个世界”。[12]

布劳威尔(,1881-1966),直觉主义真正的创始人和奠基人是布劳威尔。布劳威尔在数学上的直觉主义立场来源于他的哲学。1907年他在博士论文《数学基础》中提出直觉主义观点,认为数学的基础是先验的初始直觉。数学是起源于和产生于头脑的人类活动,不存在于头脑之外,因此,是独立于真实世界的。布劳威尔认为数学思维是智力构造的一个过程,它建造自己的天地,独立于经验,并且只受到必须建立于基本的数学直觉之上的限制。[10]布劳维尔发表的《数学基础》表明直觉主义的立场是强调“直觉”,这并不是说否认数学的逻辑性和严谨性,而只是突出直觉、灵感和创造力在数学中的地位。直觉主义者认为数学不仅是最讲究严格性的科学,也是最富有创造性的科学。布劳维尔认为数学的基础是先验的初始直觉,他和他的学生说他们所说的直觉正是人心对于它本身所构造的东西的清晰理解。[13]布劳维尔修改了康德的先验时空学说,放弃了“外直觉的纯形式”的先验时空概念,以适应非欧几何的发展;池把数学的基本直觉建立在“内直觉的纯形式”的先验时间概念的基础之上。[14]布劳威尔还提出了“二·一原则”(tow-oneness)。他认为这是数学的基本直觉。即假设N成立,则N+1成立。这个过程可以无限重复,创造了一切有限序数,因为“二·一原则”的元素之一可以被认为是一个新的“二·一原则”。布劳威尔认为,在这个数学的基本直觉中,联通和分离、连续和离散得到统一,并直接引出了线性连续统的直觉,即“介于”(between)的直觉。(布劳威尔《直觉主义和形式主义》)[4]93

阿伦特·海廷(Arend Heyting,1898-1980),他是布劳威尔的学生。继承了布劳威尔有关数学直觉主义的思想。他认为,直觉主义是从一定的、多少有点任意的假设出发的。它的主题是构造性的数学思想。这使得它处于经典数学之外。形式主义和直觉主义的差别在于,直觉主义的进行独立于形式化,形式化只能追随在数学构造的后面。逻辑不是直觉主义的立足点,数学构造在头脑中是很直接的,结论也应该是很清楚的,所以不需要任何基础。海廷主张,在描述直觉主义数学时,应当在日常生活中去理解。比如,在注视那边树木时,我确信我看到树木,而实际上光波达到我眼中,使我构造出树木这一信念需要相当的训练。这种观点是自然的。两个人说话,我向你灌输意见,实际制造了空气的震动。这是理论的构造。(阿伦特·海廷《论辩》)[4]77-88

迈克尔·达米特(又译米歇尔·杜麦特Michael Dummett,1925-2011),当代数学直觉主义学派的代表人物。达米特认为,数学首先是先验的,然后是分析的。达米特曾经从语言学角度和意义理论角度为直觉主义辩护。直觉主义关于数学陈述意义的解释避免了以真概念为核心概念的意义理论的不足,它把说话者关于数学陈述的理解与说话者使用这个陈述的实际能力结合在一起,因此具有很大的优点。从直觉主义关于数学陈述的意义说明出发,达米特提出了以证实为核心概念的新的意义理论的构想。[15]202达米特指出:“对于直觉主义逻辑来说,排中律的双重否定是有效的语义原则,就像二值逻辑认为排中律本身是有效的一样:断言任何陈述既不真也不假是不一致的。”[4]132

四、直觉主义的意义以及合理性

直觉主义对古典逻辑中的排中律和双重否定律等原理中的部分原则以及非构造性的结论持否定态度,也不承认数学中的实无限的对象和方法。数学的历史也表明,数学知识与理论不仅无法脱离对外部世界的永恒的依存关系,而且数学的错误不是通过限制数学,如排斥非构造数学和传统逻辑而得到克服的。数学真理的积累以及对谬误的抛弃是通过数学知识的不断增长和理论的不断完善获得的。一句话、数学的生命在于生生不息的创造过程中。庆幸的是,直觉主义由十其思想体系中某种先天的弱点而末成为数学的统治思想。但也应看到其构造思想的重要价值。[16]123-124可以说,直觉主义学派在本质上是主观和荒谬的,以直觉上的可构造性为由来绝对的肯定直觉派数学是不能真正解决问题的。但是,直觉主义揭示了经典逻辑只具有相对的真理性,在具体的数学工作中具有重要意义。

首先,数学哲学中的直觉主义学派高度认可直觉和个人的创造性思维在科学实践中的作用,推动了现代递归函数论的建立和发展,这无疑对数学的进步起到了很积极的作用。其次,直觉主义者倡导的构造性的能行性的研究方法,促进了人工智能和计算机科学的发展。这种积极探讨可行性方法在计算机数学以及计算机科学中具有重大的现实意义。第三,直觉主义数学哲学的思想方法在素质教育理论研究与实践上,具有宝贵的参考价值。在数学教育中,逻辑的作用很明显,其特征为,从已知知识出发,依据逻辑规则进行推导和演算,一步一步地达到对研究对象的认识。而直觉主义可以跳跃式地认知,虽然能一步得到正确答案,却无法说清楚其中的步骤。直觉主义虽排斥传统逻辑,但与逻辑关系十分密切,对培养良好的数学逻辑观念有着不可忽视的作用。另外,直觉主义有助于培养数学教育中大胆猜测的思维习惯。这种创新和探索精神有利于数学的进步和发展。

参考文献:

[1] 傅敏.直觉主义数学哲学研究及其对数学素质教育的启示[J].西北师范大学学报(自然科学版),1996(1).

[2] 诸葛殷同.对传统逻辑的有力挑战——评《经典逻辑与直觉主义逻辑》[J].哲学动态,1990(4).

[3] 柯华庆.直觉主义数学哲学的两个阶段[J].学术研究,2005(2).

[4] 保罗·贝纳塞拉夫(美),希拉里?普特南(美).数学哲学[M].北京:商务印书馆,2003.

[5] 黄秦安.数学哲学与数学 文化 [M].西安:陕西师范大学出版社,1999.

一、调查报告参考选题1、学前数学教育所面临的问题与挑战;2、小学数学教育所面临的问题与挑战;3、高中数学教育所面临的问题与挑战;4、数学新教材的特点及存在问题;5、数学学习中困难生的研究;6、数学学习困难生的认知特点、成因及其教学对策;7、数学学习态度、学习策略对中学生数学学习的影响;8、中学生数学能力的性差别的调查报告。9、影响解决数学问题的心理因素;10、教学媒体在数学教学中的作用;二、研究报告参考选题1、数和算术的教与学的研究;2、中学代数的教与学的研究;3、中性几何的教与学的研究;4、数学教学的创新;5、数学史在数学教育中的作用;6、数学教学评估的研究;7、初中数学新旧教材比较研究;8、培养学生解题能力的研究; 9、数学应用题解题困难分析及教学策略研究; 10、培养学生直觉思维能力的实验研究; 11、图形在中学数学中的实践研究; 12、小议现行中学几何课本的逻辑体系;13、浅谈数学学习兴趣的培养;14、如何处理数学学习中的认知冲突;15、对数学教育现状的分析与建议;16、如何评价高中学生的数学素质;17、数学教学中的“理论联系实际”;18、浅析课堂教学的师生互动;三、数学专题参考选题1、解析证法初探;2、反例在数学教学中的应用;3、谈谈类比法;4、数学教学中如何渗透分类讨论;5、注重创新性试题的设计;6、生活中处处有数学;7、数学几种课型的问题设计;8、浅谈几何证明;9、在不等式教学中培养学生的探究思维能力;10、谈平面几何入门的概念教学;11、数学教学设计随笔;12、代数变形常用技巧及其应用;13、“特征信息”的捕捉与解题最优化;14、反思教学中的一题多解;15、谈反函数的教学;16、观察法及其在数学教育研究中的应用;17、直觉思维在解题中的运用;18、数学方法论与数学教学——案例三则。

我可以写,私信

哲学有关的论文题目

题目1、关于宗教起源的哲学思考题目2、试论宗教与哲学的关系题目3、关于宗教产生发展消亡过程的哲学思考题目4、关于道教对哲学的启示题目5、关于佛教对哲学的启示

正确、鲜明阐述作者观点的句子,是一篇文章的灵魂、统帅。任何一篇文章只有一个中心论点,一般可以有分论点。论点应该正确、鲜明、概括,是一个完整的判断句,绝不可模棱两可。①正确性:论点的说服力根植于对客观事物的正确反映,而这又取决于作者的立场、观点、态度、方法是否正确,如果论点本身不正确,甚至是荒谬的

毛思想·毛理想·毛心想·毛梦想·毛遐想·毛感想·毛预想·毛癔想·毛妄想·毛狂想·毛误想·毛错想·毛幻想·毛猜想·毛思想太伟大了——让他自己给拯渺小了毛思想太光荣了——让他自己给拯黑暗了毛思想太正确了——让他自己给拯错误了毛思想太伟大光明正确了毛行动太渺小黑暗错误了

论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,那么哲学的论文题目有哪些呢?下面是我带来的关于的内容,欢迎阅读!

一:哲学概论

1.哲学的价值

2.中西哲学的差异***从本体论视角、认识论视角、价值观视角、范畴论视角、语言学视角、人生观视角等进行一个限定***

3.本体论与方法论的关系研究

4.“反形而上学”研究

5.海德格尔的哲学观

6.逻辑实证主义的哲学观

7.“吾心即宇宙”和“存在就是被感知”比较研究

8.黑格尔和朱熹关于“理”的思想比较研究

9.高尔基亚的三个哲学命题研究

10.哲学何谓

二:西方哲学

1.古希腊哲学的主题及其逻辑嬗变

2.自然状态说的哲学价值

3.斯宾诺莎的自由观

4.康德的主体性思想

5.黑格尔关于本体论、认识论、逻辑学一致的思想

6.康德哲学的哲学史地位

7.黑格尔哲学的哲学史地位

8.休漠哲学对传统哲学的批判

9.笛卡儿哲学对西方哲学二元思维方式***即主体与客体***的影响

10.试比较经验论和唯理论

11.奥勒留的哲学智慧

12.恩披里克的怀疑论哲学

13.斯宾诺莎的伦理思想

14.海德格尔的良知经验及其阐释

三:逻辑学

1.类比推理与创新思维

2.先秦名辩学思想研究

3.墨家逻辑思想研究

4.亚里士多德逻辑思想研究

5.弗雷格逻辑思想研究

and Vanables ***常项与变项***

and Propositional Functions ***命题与命题函项***

and Quantifiers ***算符与量词***

logistic method ***逻辑斯谛方法***

and Semantics ***语形与语义***

11. 穆勒的名称理论

12. 皮尔士的三种推理型别

13. 莱欣巴哈的日常语言分析

14. 论空名称

有关哲学的小论文题目

正确、鲜明阐述作者观点的句子,是一篇文章的灵魂、统帅。任何一篇文章只有一个中心论点,一般可以有分论点。论点应该正确、鲜明、概括,是一个完整的判断句,绝不可模棱两可。①正确性:论点的说服力根植于对客观事物的正确反映,而这又取决于作者的立场、观点、态度、方法是否正确,如果论点本身不正确,甚至是荒谬的

论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,那么哲学的论文题目有哪些呢?下面是我带来的关于的内容,欢迎阅读!

一:哲学概论

1.哲学的价值

2.中西哲学的差异***从本体论视角、认识论视角、价值观视角、范畴论视角、语言学视角、人生观视角等进行一个限定***

3.本体论与方法论的关系研究

4.“反形而上学”研究

5.海德格尔的哲学观

6.逻辑实证主义的哲学观

7.“吾心即宇宙”和“存在就是被感知”比较研究

8.黑格尔和朱熹关于“理”的思想比较研究

9.高尔基亚的三个哲学命题研究

10.哲学何谓

二:西方哲学

1.古希腊哲学的主题及其逻辑嬗变

2.自然状态说的哲学价值

3.斯宾诺莎的自由观

4.康德的主体性思想

5.黑格尔关于本体论、认识论、逻辑学一致的思想

6.康德哲学的哲学史地位

7.黑格尔哲学的哲学史地位

8.休漠哲学对传统哲学的批判

9.笛卡儿哲学对西方哲学二元思维方式***即主体与客体***的影响

10.试比较经验论和唯理论

11.奥勒留的哲学智慧

12.恩披里克的怀疑论哲学

13.斯宾诺莎的伦理思想

14.海德格尔的良知经验及其阐释

三:逻辑学

1.类比推理与创新思维

2.先秦名辩学思想研究

3.墨家逻辑思想研究

4.亚里士多德逻辑思想研究

5.弗雷格逻辑思想研究

and Vanables ***常项与变项***

and Propositional Functions ***命题与命题函项***

and Quantifiers ***算符与量词***

logistic method ***逻辑斯谛方法***

and Semantics ***语形与语义***

11. 穆勒的名称理论

12. 皮尔士的三种推理型别

13. 莱欣巴哈的日常语言分析

14. 论空名称

《人类的心理与神秘的哲学》,你不就要个题目吗?给你。

给你个建议,可以从存在主义入手去论述它相对于心理学的核心区分与应用价值这两者就好像都是把刀,看似相同,但一个用来切西瓜,一个用来动手术! 两者利用同样的方法但却基于完全相反的假设。我曾去印度学习过一阵子Osho,对这个方向很感兴趣。如果你在北京,找机会研讨 :) 我有不少资料可以提供给你,不过大多都是我从印度带回的英文书籍

数学哲学论文

拯救哲学

摘要:哲学原本是指导具体科学的,但因历史发展的原因,使得当今的哲学严重滞后。具体科学在没有哲学的制约下,像脱缰的野马一样肆意地发展。它不仅肢解了哲学还抢占了哲学的位置,逼得哲学无路可走,使之处于非常尴尬的境地。不仅如此,具体科学的肆意发展还造成了地球生态失衡、环境污染、资源能源匮乏、自然灾害频发、人为的争夺战此起彼伏等凶险恶劣局面。为了改变现状,必须先拯救哲学。只有哲学得到拯救和振兴,具体科学才会规范有序地发展,恶劣的环境才会得到遏制,人类才能持续发展。反之,人类将走向衰败和灭亡。

关键词:哲学 具体科学 环境污染 拯救哲学 哲学创新

现今,很多哲学人士不明白哲学的含义,也不知道哲学应该如何发展,怎样发展,只能是偏解和糊弄。有的教授说,哲学研究的是超越了我们经验的东西,一些纯粹的东西。比如,研究纯粹的“红”,这就是哲学的工作。这种观点是分解了具体的实物和抽象的概念后产生的。还有教授说,我们只能解读伟人的哲学理论,不能创新。只解读不创新哲学能得到发展吗?更叫人不可理解的是一些教授竟然说,我们无法回答什么是哲学,哲学无法定义。既然不明白哲学的概念,不清楚哲学研究的是什么,如何教授学生哲学?如何研究和创新哲学?这种混乱的局面说明哲学在当今的处境很尴尬,很弱势。为了拯救哲学,就让我们务必弄清楚哲学的定义、研究对象、作用及其创新和发展。

一 哲学在当代的困境

现今,哲学被人们称为是无用的“糊涂学”。认为它什么都解释不清,什么都做不了,是无用的。因为哲学不能解决任何实际问题,不能创造任何财富。那些晦涩、抽象难懂的概念只能使人头痛,不能给人带来任何帮助和经济利益,所以哲学应该被具体科学替代或淘汰。

具体科学则正好相反,它“如日中天”的发展着。不仅抢占了哲学的位子,还把哲学撕成碎片,溶进每门学科中,使得每门具体科学后面都可以挂上哲学两个字,像物理哲学、化学哲学、数学哲学、生物哲学、分析哲学、系统哲学、科学技术哲学、语言哲学……这些学科把哲学分吃殆尽后,哲学就只剩下一具空壳。这些现象表面看起来哲学似乎无处不在,任何具体科学中都有哲学的影子,好像是哲学渗透和覆盖了所有的具体科学,在所有具体科学中发挥着巨大的不可缺的指导作用。实则不然,这种发展情形等于把哲学撕成碎片撒到具体科学中,成为调剂和美化具体科学的调料和脂粉,使哲学成为具体科学的附庸,使哲学彻底失去自我,迷失自己的发展方向,无力创新和发展,无法解释清楚很多社会发展急待解决的问题,使之处于现今的“无用”尴尬状态,成为被人冷落的“糊涂学”。

其实,哲学应该研究的是宇宙的整体本质和规律,要回答的是本原问题。具体科学应该研究的是宇宙具体事物的本质和规律,要回答的是具体事物生灭的问题。但现在的情形是,具体科学研究和解释哲学的本原问题(比如大爆炸学说),哲学研究和说明具体科学的特性问题,哲学和具体科学调换了研究对象。在这里,具体科学抢了哲学的道,跑在社会发展的最前端,支配和左右着哲学的发展。哲学被具体科学压制的无路可走,只能是委屈自己,研究点具体科学的残羹剩饭。

很多哲学研究者在这样的情形下很迷茫,竟不知道什么是哲学,也不明白哲学研究的是什么。要么研究东西方哲学比较,要么研究东西方哲学的融合,要么把中国传统的思想同哲学结合着研究,要么跟着西方的某些思潮混混,要么始终坚持唯物主义,把唯物主义搞的再丰润一些,然后穿上一件新潮的衣服粉饰一下,要么拼命在具体科学里寻找哲学能够栖身的一席之地,卑微地想着与具体科学合作祈求发展,但这也只是蹭饭吃,遭白眼,找不到真正属于哲学的位置。基于这种状况,一些外国哲学家竟然说,中国没有哲学,只有思想。不过,在全球哲学都处于弱势的情况下,西方的哲学光景也不是太好,他们要么把先哲们的观点翻新一下,要么流行一些哲学思潮,要么也把哲学溶入具体科学中来研究。总之,西方的哲学也没有实质性的创新和发展。既然哲学得不到创新,就不能求得发展,不能发展就会被具体科学压制和替代,形成一边倒的弱势状态。哲学的弱势必然造成具体科学的疯狂和强势,具体科学的强势又从某种程度上形成对哲学的挤兑,这样的情形使得哲学既尴尬又无奈,形同虚设。

哲学滞后并不可怕,可怕的是失控的具体科学的肆意发展把地球环境搞的一塌糊涂。人类面临的是生态失衡、环境污染、资源能源匮乏、自然灾害频发,信仰迷失、人为的争夺战此起彼伏……的凶险恶劣局面。如果这种局面继续发展下去得不到控制,最后的结果必然是人类整体的衰败和灭亡。这种情形要求,哲学必须要发展,而且要正确揭示宇宙的真实面目,以用来遏制具体科学的疯狂和肆意妄为。只有这样,环境才能得到治理,人类才可能持续发展。

二 哲学滞后的原因

哲学滞后首先是自身发展的原因造成的。我们知道,宇宙只有一个,正确的宇宙发展规律也只有一个。但由于人类发展的局限性,使人不能一下就能正确认识宇宙的全貌,只能是“盲人摸象”般的众口不一的认识宇宙。这样就出现了百花齐放、百家争鸣的众宇宙观平起共存的混乱繁杂的发展局面。每一种宇宙观都认为自己是正确的,别人是错误的,但由于自身所存在的局限性,又都不能全面正确地解释宇宙的真实面目,以彻底否定对方,这就形成了唯物观和唯心观、认识论和本体论、形而上学和辩证法、可知论和不可知论等宇宙观的对立和抗衡。众宇宙观的这种绝对对立和莫衷一是就造成了哲学无法发展下去的境地。又因为现今具体科学的迅猛发展,和具体科学的实用性,更是把哲学逼到了死胡同。具体科学以他强大迅猛的发展态势,几乎覆盖了人类生活的方方面面,使得哲学失去了用武之地,致使人们觉得哲学已死,哲学无用,哲学不能解决任何问题,哲学不能创造任何财富……

其次,哲学的滞后还有一个至关重要的原因,那就是哲学所具有的政治属性。由于各国的国情不一样,宗教信仰不一样,发展速度不一样,使得哲学在很多方面不同程度地受阻。在中国,哲学与政治的关系非常密切,所以出于对政治的堤防,哲学的发展很大程度上会受到阻碍。那些发达国家虽然不像中国这样,但他们为了争霸和扩张,都大力发展高科技和军事武器,很少把精力用到发展哲学上,这从某种程度上也阻碍了哲学的发展。

除去以上原因,哲学自身众多抽象的概念和以往哲学家晦涩难懂的语言,以及哲学高智慧的特性等,也从某种意义上阻碍了哲学的发展。如果哲学简单易学一点,如果哲学语言通俗一点,恐怕也会对哲学的发展有益处。

另外,还有一个原因就是哲学的普遍性属性和规律给人的混乱感觉。因为哲学是人们对宇宙整体把握和认识的知识,是关于整个宇宙的普遍本质和规律的学问,是对宇宙万物共性属性和规律的概括和总结。表面看起来好像哲学无处不在,但落实到具体层面上又不能准确把握和界定。这就使一些人认为,哲学无法定义。还因为人们对有限和无限、概念和实物等矛盾的分解,也使很多人无法看清哲学的真实面目。这都不同程度地阻碍了哲学的发展,导致了哲学的滞后。

三 哲学和具体科学的定义及关系

什么是哲学?哲学的概念是什么?很多人对这个问题很迷惑,包括罗素和黑格尔这样的哲学大家都感到什么是哲学难以回答,难以定义。这真让人不可理解,这真是对哲学家的讽刺!如果说对哲学是什么都搞不明白,弄不清楚,很难想像他们能正确地研究哲学,正确地研究宇宙的规律性,正确地回答宇宙的很多疑难问题。

要想正确地定义哲学,就得明白哲学是研究什么的。我们知道,人类生存在宇宙间,想要看清楚宇宙的真实面目,想要弄明白宇宙是怎么来的,它的边际和中心在哪里,它有没有始终,人类与宇宙的关系是什么,人类是怎样产生的,宇宙中有没有外星人,人类能否认识宇宙的全貌,宇宙是谁创造的?宇宙之外有没有“上帝”和“神灵”?……人们对宇宙的这么多问题的研究就形成了人类的科学知识。人类的科学知识包括哲学和各门具体科学。哲学是人们对宇宙整体的把握和认识,是对宇宙万物的共性属性和规律的概括和总结,它研究的是整个宇宙产生——发展——灭亡更替的规律性,想要回答的是宇宙的本原问题。即是说,哲学是关于整个宇宙的普遍本质及其规律的学问,它不是关于宇宙具体事物的特殊本质及其规律的学问。各门具体科学是人们对宇宙具体事物的把握和认识,是对具体事物的属性和规律的概括和总结,它研究的是宇宙具体事物生灭更替的规律性。就是说,具体科学是关于宇宙具体事物的特殊本质及其规律的学问,而不是关于宇宙整体的普遍本质及其规律的学问。具体科学无法把握和全面正确地回答宇宙整体的规律性,更是无能为力解释清楚宇宙的本原问题。如果认为只有具体科学才是获得真理的最好方法,只有具体科学才能最终解释宇宙的本原,只有具体科学才能找到宇宙的开端,只有具体科学才能正确引导人类走向未来……这些都是极其谬误的观点。因为各门具体科学都存在着自身无法逾越的障碍和不能超出的局限,这些局限性限制了具体科学的发展,使得它们只能在自己的范围内有所创造和发挥作用。这就说明,具体科学无论怎样迅猛火热地发展,无论怎样具有实用性,它也不能替代哲学和包揽哲学,去完成哲学所能完成的任务,去发挥哲学所能发挥的作用。

以上看出,哲学和具体科学各自都有自己的定义和研究对象,也都有自己的任务和作用。哲学不能替代具体科学,具体科学也不能替代哲学。哲学具有理论指导性,具体科学具有实用性,两者既有差异又有统一,且相互影响,相互作用共同发展,两者的统一构成人类整体的科学知识。

通常,具体科学必须以哲学为指导,通过一定的哲学观来研究宇宙具体事物的特殊本质及其规律。而哲学也需要从各门具体科学中概括宇宙的普遍本质及其规律,以高瞻的姿态来指导具体科学的发展。哲学不能脱离具体科学,具体科学也必须以哲学为指导,两者是相互作用共同发展的,两者的关系是对立统一的矛盾关系。但如今,具体科学则处于主导地位,左右着哲学的发展,使哲学处于尴尬淘汰的局面。这种情形非常危险,需要人们高度警惕和反思。

四 哲学的作用和解释宇宙的方法

很多人认为,具体科学可以用具体的公式、定义、公理和算式等来证明、计算、验证和解释宇宙万物的规律性,因此,只有具体科学才能正确解释宇宙。哲学全是抽象的概念,它无法用某种具体的手段来证明自己的观点和理论,更无法确切地说明和解释宇宙,只有具体科学才能正确科学地解释宇宙。这其实是一种误解。因为哲学解释宇宙的方法与具体科学解释宇宙的方法不同,哲学需要从所有具体科学中概括总结宇宙的普遍本质和规律,再把这些普遍本质和规律高度概括成一些抽象的概念,然后,再用这些概念说明和解释宇宙存在的始因及生灭的规律,还有万物存在的始因、生灭规律以及相互之间的关系等。由于抽象的哲学概念很难使人一下明白其中的道理,还由于混乱繁杂的宇宙观所导致的人们的错乱认识,都使人们无法正确认识宇宙,也造成一些人的哲学无法证明和解释宇宙,哲学是无用的观点。

其实。哲学具有世界观和方法论的属性,哲学既可以教人们如何认识宇宙,也可以引导人们正确地进行具体科学的研究。比如,哲学如果把宇宙是一个矛盾体,宇宙的始终是统一在一起的这样一个简单的事实告诉科学家,科学家在进行具体科学研究时就不会徒劳地寻找宇宙的开端。像物理学家为了证明宇宙起始于一个致密炽热的奇点的大爆炸,曾经进行了很多次的科学研究和实验,这些研究和实验既浪费人力也浪费物力,到最后还是无法正确说明宇宙的起始原因。这说明如果没有正确的哲学理论的指导,具体科学会走很多弯路。

当然,正确的宇宙观会正确地引导具体科学的发展,谬误的宇宙观也会错误地引导具体科学的发展。就像现在的一元论的宇宙观,这种观点认为,矛盾的一个方面可以独自派生另一个方面,单纯的物质或意识就能独自派生意识、精神或物质。在这样的宇宙观的引导下,一些科学家认为整个世界是一个纯正物质世界,这个正物质世界一定是由它的对立面(反物质)派生出来的,所以,如果找到了反物质也就找到宇宙产生的终极原因了。我国的物理学家就花大力气和高额的科研经费,组织很多人甚至与外国科学家联合研究,进行多次的科学实验,力求寻找到宇宙中的反物质,使之解答宇宙的生成原因。这其实也是徒劳的,因为宇宙本身就是一个矛盾体。宇宙万物的存在原本都有正反的两种统一存在形式,

宇宙根本不是一个纯正物质世界,它是正物质和反物质统一起来的矛盾世界,而不是说单纯的反物质可以独自派生正物质世界,就像单纯的一个男人不能独自派生出一个女人一样。如果科学家能够认识到这一点,就不会徒劳地进行这方面的科学研究了。这说明,正确的哲学观点对人类的发展和人类的科学研究起着至关重要的指导作用,谬误的宇宙观会错误地引导具体科学的研究和发展。这种情形要求哲学必须正确地认识宇宙,正确地解释宇宙,正确地创新和发展,然后,正确地引导具体科学的发展。

五 哲学的创新和发展

综观当今的社会环境和地球自然环境的状况,人类社会未来的发展受到了严重威胁。很多现实的社会问题急待解决,但具体科学因为自身的局限性使它不能一手遮天的解决所有的社会问题,这就使哲学的作用凸显出来。为了充分发挥哲学的作用,哲学的创新和发展就势在必行,是当务之急。

为了拯救哲学使哲学得到创新和发展,更是为了人类可持续发展,哲学和具体科学必须各就各位。具体科学不能再肆无忌惮地欺辱哲学了,哲学应该回到它原来的位置上,恢复自己应有的指导职责,让自己正确的观点渗透到各门具体科学中,用强有力的先进的思想来指导和制约具体科学的发展。具体科学也要回到它自己的位置上,在哲学的指导下,收敛自己的行为,有计划地科学规范地发展。

那么,怎样拯救哲学呢?要想拯救哲学,必须创新哲学,哲学得到创新才能得到拯救。对于哲学的创新和发展很多人感到迷茫,不知道如何创新。有人认为,哲学与具体科学结合起来研究就是哲学的创新和发展。这种观点是非常谬误的。因为,哲学和具体科学结合起来就会形成哲学的具体科学化,这样的话,哲学就会失去自我,失去存在的意义。

其实要发展哲学首先要解决哲学自身的问题。这个问题就是要明确什么是哲学,哲学研究的是什么,只有明确了这些问题,才能很好地发展哲学。当然,要解决哲学自身的问题,还要正确地回答宇宙的本原和终结问题、中心和边际问题等,还要搞清宇宙的属性和发展规律,更要把物质和意识两个绝对对立的概念统一起来,不要在认识论和本体论、形而上学和辩证法、存在主义和思辨哲学、唯物主义和唯心主义、有神论和物活论……之间徘徊和纠缠,因为这些对立的观点会混乱人们的思想,误导人们的认识。就是说,物质和意识的对立不是小问题,人们千万不要小视了物质和意识的绝对对立,就是因为两者的长期对立才形成了诸多谬误的不全面的宇宙观,才造成了当今哲学发展的困境,才产生了有限的人类无法认识无限的宇宙的“难题”,和抽象的苹果无法食用的困难,以及普遍的哲学概念无法界定的尴尬局面。这说明,物质和意识的确切概念及其正确的关系对哲学的发展起着至关重要的作用。

物质和意识原本是一对矛盾,是宇宙的两个基本组成方面,两者始终共存于一个宇宙矛盾体中。物质是宇宙的组成元素,意识是宇宙的组成规定,两者的关系是一个问题两个方面的对立统一的矛盾关系,而不是派生关系。但通常人们总是把人类的思维认为是纯意识,具体的实物认为是纯物质,这就从根本上分解了物质和意识这样一对最基本的概念,也彻底把一个宇宙分成了自然和超自然的两个世界,致使人们无法正确认识宇宙。这里看出,要发展哲学,就要正确而全面地揭示宇宙存在的真实面目,正确回答人们无法解答的宇宙“难题”,建立一套科学正确的反映宇宙生灭规律的哲学体系,给人们一个认识宇宙,拯救环境,拯救自我和与自然和谐相处的世界观、方法论、思想武器和科学工具。

宇宙原本是一个矛盾体,这个矛盾体的基本载体是物质和意识的统一体,简称物意体,物意体承载了宇宙间所有的矛盾属性,是各种矛盾的统一体。这个矛盾统一体在对立统一的矛盾作用中,时刻都处在新和旧、始和终、产生和消亡、运动和静止、有限和无限……的矛盾更替中,没有哪一瞬间是绝对单纯的新世界运动的开始,也没有哪一瞬间是绝对单纯的旧世界静止的终结,整个宇宙就是在这种矛盾更替中永恒地发展着的。

从整个矛盾着的宇宙来看,物意体是宇宙的基本载体,矛盾性是宇宙的根本属性,辩证法是宇宙的存在法则,整个宇宙就是一个对立统一的矛盾体。只是因为人类发展的局限性,才分解了它所有的矛盾,致使一个宇宙整体人为的分成了两个(一个客观自然的物质世界,一个主观超自然的意识、精神世界),人们陷在两个世界之间始终无法认识宇宙的真实面目,也人为地给自己制造很多无法解答的宇宙“难题”。像宇宙的始终问题,中心和边际问题,物质和意识的统一难问题等等,这些所谓的“难题”其实很简单,只要人们真正认识宇宙是个矛盾体这个最简单的事实,这些问题就不解而自答。

为了说明这些“难题”很简单,我解答两个题就能说明问题。1、有限的人为什么无法认识无限的宇宙?2、具体的人为什么无法吃到抽象的苹果?我们知道,有限和无限是一对矛盾,两者始终共存于一个宇宙矛盾体中,两者的关系是一个问题两个方面的对立统一的矛盾关系,而不是派生关系。无数个有限组成了无限,无限是有限的集合体,有限是无限的组成和发展瞬间。没有有限就没有无限,没有无限同样没有有限,两者不能分解开独自存在,也不能分解开独立来看。而宇宙(人类是宇宙的一部分)的存在就是有限和无限的矛盾统一存在形式。如果把有限和无限分解开,宇宙不能存在,人类也不能存在。但通常,人们总是把无限和有限分开来看,把人视为单纯的有限,把宇宙视为单纯的无限,让有限的人去认识无限的宇宙,这就出现了有限的人类无法认识无限的宇宙的难题,这个命题本身就是一个错误。因为,宇宙不是单纯绝对的无限,它是无限和有限相统一的矛盾体,人在其中“花开花落”生灭不止,也不是绝对单纯的有限。所以,只要人们正确认识无限和有限的矛盾性,正确认识宇宙这个矛盾体的矛盾存在规律也就认识了宇宙。之所以会出现有限的人无法认识无限的宇宙的“难题”,那是因为人们分解了有限和无限这样一对矛盾。

同样的道理,抽象和具体也是一对矛盾,两者也始终共存于一个宇宙矛盾体中,两者的关系也是一个问题两个方面的对立统一的矛盾关系,两个矛盾方面也是无法分解开独立来看的。就是说,宇宙间的任何事物都是抽象和具体的统一体,都包含了实物和概念两方面的东西。当我们在吃实物苹果的时候,我们同时也在吃概念苹果;当我们在乘实物火车的时候,我们同时也在乘概念火车。就是说,事物的规定和组成元素是统一在一起的,概念和实物也是统一在一起的,概念不是脱离实物独立存在的,它是隐藏在具体实物中的。如不然,人就不能用思维把实物中的概念抽出来形成知识而认识事物的规律了。所以,如果把具体的实物组成和抽象的概念规定分解开,形成单纯具体的人和单纯抽象的概念,那我们就吃不到苹果,乘不上火车了。可以这么说,宇宙中所有的矛盾都是一个问题两个方面的对立统一的矛盾关系,而不是派生关系,且都不能分解开独立看待。如果分解了它们,人们永远无法认识宇宙的真实面目,永远无法找到宇宙的开端和末端,永远不知道人类生存的意义,永远在自然界和超自然界之间徘徊,永远无法正确界定哲学的概念……

其次,要发展哲学还要摆脱旧哲学的牵绊和脱离政治的束缚。在哲学发展的历史长河中,不同时代都会产生不同时代的哲学知识。这些哲学知识的存在一方面是新时代哲学知识产生的基础,一方面也是新时代哲学知识发展的绊脚石。就像现时代,哲学的创新总是走不出旧哲学的圈子,总是受着旧哲学极深刻的影响和制约。如果不能摆脱旧哲学的牵绊,哲学的创新肯定是艰难的。另外,哲学由于自身所具有的指导性,总是被阶级所占有,被党派所利用,被国家所推崇。当哲学具有了政治色彩,拥有了权威性,哲学的发展和创新就注定受政治的束缚和左右。如果新哲学的出现与原有哲学相冲突或不一致,那么,就会被认为是反叛的思想而受压制。这说明,哲学的创新和发展如果不能脱离政治的束缚,也是很难得到发展的。

除去以上的限制和束缚,哲学的发展还要挣脱社会环境的限制才能得到创新和发展。这种限制是指某一特定的社会发展阶段在广度和深度方面都同样有限的知识和见解的限制,以及该社会发展阶段的现状对哲学的需求度。就是说,一个社会发展阶段必定产生相对应的科学知识和哲学知识,在这个社会发展阶段有限的知识和见解的限制下,科学的发展和哲学的发展都会受到相应的制约。比如,古时候,人们对宇宙的认识就局限在很浅很简单的层面上,因此,那时候哲学的发展也就只有一些朴素的宇宙观。随着社会的发展,科学技术不断发展,人们对宇宙的认识也逐步深入,这种环境下就出现了很多理论性和逻辑性很强的宇宙观,哲学在其中就得到了很大发展。现时代,具体科学迅猛发展,人们的生活日益丰富,这时候,社会的方方面面对哲学的需求度不大,这必然阻碍哲学的发展。但由于具体科学的肆意发展又导致了环境污染,生态失衡,人们面临严重的生存危机。这时候,社会发展现状对哲学的需求度就非常大。因为人们信仰的缺失,道德的沦丧,环境的污染等等,都需要正确的哲学知识来引导和整治,这就要求哲学一定要发展,要创新,要正确解释宇宙和人类的关系,正确揭示宇宙存在和发展的规律性,以用来正确指导具体科学的发展和人类的发展,达到治理环境、拯救人类的目的。在这里,创新哲学就是拯救哲学,拯救哲学就是拯救人类自己。

数学和哲学之间的关系,一直受到人们的探讨,有很多的论文都对数学和哲学作出了深刻的描写。以下是我精心整理的数学和哲学的关系论文的相关资料,希望对你有帮助!

摘要:本文首先介绍柏拉图的数学哲学思想,接着讲述一下数学哲学,再介绍必然性和先天性知识,接着介绍三大主义,以及数学哲学的现代发展,最后简单 总结 数学哲学。 关键词: 柏拉图 数学哲学 先天性 必然性知识 三大主义

正文:

一:柏拉图的数学哲学思想

柏拉图的数学哲学思想主要体现在数学本体论的问题上,而在数学的本体论问题上他采取了实在论的立场,即认为数学的对象是他所说的“理念世界”中的真实存在。柏拉图的这一认识是建立在对数学绝对真理性的信念之上的。他认为数学对象就是一种独立的、不依赖于人类思维的客观存在。

除去实在论的观点外,柏拉图还强调了数学认识活动的先天性。按柏拉图的观点,理念世界是理性认识的对象,而且,这种认识只能通过“对先天的回忆”得到实现;由于对象也是理念世界中的存在,因此,在柏拉图看来,数学就从属于研究理念的科学——“辨证法”,即是一种先天的认识。

另外,除去数学的先天性以外,柏拉图还强调数学认识在一般的理性认识中的作用:由于数学对象被说成是感性事物与理念之间的“中介对象”,因此,数学的认识也就具有一种“桥梁”作用,它能刺激人们,从而引起灵魂对“先天知识”的回忆。柏拉图说:“几何会把灵魂引向真理,产生哲学精神„„。”

二:数学哲学

数学在形式化和抽象化方向上的发展,数理逻辑和数学基础研究的进展,以及悖论的发现,开创了数学哲学的研究的新时期。

数学家们认为,数学是建立在一系列自明原则基础上的。一个数学家的责任是尽可能完全地发现由这些原则所得出的结论。他应该坦率地承认这些原则本身是一些明显的洞察,因而它们形成一个无可懈击的、永恒的基础。与此相反,哲学家会听任数学家去探索由这些原则得出结论;他对这些结论并不感兴趣。然而他必须对下述事实作出解释,即我们具有供我们使用的、此类自明性所适用的一些洞察力,他还需要说明与这些洞察有关的对象。他们同意数学的对象不属于物质世界,数学洞察不可能以 经验 作为依据,因为适合于数学原则的这类自明性决不属于我们的经验知识而是数学原则所特有的。

三:必然性和先天性知识

数学哲学在很大程度上是认识论——在哲学中处理认知和知识的部分——的一个分支。但是,数学至少表面上与其他求知的努力不同。特别是与科学追求的其他方面不同。数学命题,像7+5=12有时被当做必然真理的范例,简直不可能有其他情况。

科学家会乐意承认她的较为基本的论题可能是假的。这种谦恭被科学革命的历史所印证,在革命中,长期存在且深信不疑的信念被推翻了。数学也能严肃地支持这种谦恭吗?能怀疑数学归纳法对自然数成立吗?能怀疑5+7=12吗?有没有数学革命,其结果是推翻长期存在的核心的数学概念?恰恰相反,数学 方法 论似乎并不像科学那样是或必然性的。与科学不同,数学通过证明展开,一个成功的、正确的证明扫除了所有基于理性的怀疑,不仅仅

是所有有理由的怀疑。一个数学证明要表明它的前提逻辑地蕴涵它的结论。前提为真而结论为假是不可能的。

“先天”这个词的意思差不多是“先于经验”或“独立于经验”。它是一个认识论的概念,如果知识不是基于任何“关于现实世界中事件的特殊过程的经验”,那一个命题就定义为先天获知的。

有些哲学家认为不存在先天知识,而对其余的哲学家来说典型的先天知识包括“所有红色物体是有颜色的”和“没有什么东西能在同一时刻既是完全红的又是完全绿的”。数学似乎不像科学一样基于观察之上,而基于证明之上。

因此任何完整的数学哲学有义务说明数学的至少表面看起来的必然性和先天性。 四:三大主义

关于数学的逻辑及认识论的基础问题至今尚未完全解决。这问题无论对数学家或者哲学家都是至关紧要的,因为在“一切科学中最可靠的科学”的基础中,任何一点不确凿都将是令人极度不安的。迄今为解决这个问题而做出的各种努力中。还没有一种能称得上已经解决了所有困难。这些努力主要是沿着三个方向:以罗素为主要倡议者的逻辑主义,布劳威尔所提倡的直觉主义,和希尔伯特的形式主义。

数学基础的最重要问题之一是数学与逻辑的关系。逻辑主义的理论是数学能归约为逻辑,据此,数学无非是逻辑的一部分。逻辑主义的论点可以分为两部分,一是数学概念能通过明确的定义从逻辑概念中导出。另一部分是数学定理能通过纯粹的逻辑演绎从逻辑公理中推导出来。

直觉主义数学家建议把数学工作作为他的智力的一种自然功能,作为思想的一种自由的有生气的活动。在他看来,数学是人类精神的产物。他运用语言,不论是自然的或形式化的,只是为了交流思想,也就是使别人或自己能懂得他自己的数学想法。这个语言伴随物不是数学的代表,更不是数学本身。

立即处理数学的构造也许是最符合直觉主义者的积极态度了。这个构造的最重要基石是一的概念,它是整数序列所依赖的构造原则。整数必须作为单位来看待,这些单位仅仅由于在这个序列中的位置而相互区别。

希尔伯特证明论的主导思想是,即使经典数学的陈述从内容上说竟然是错误的,然而经典数学含有一个内在封闭的程序,这程序是按所有数学家都知道的固定规则操作的,它基本上在于相继地构造原始符号的一些组合,而这些组合被认为是“正确性”或“已被证明的”。而且这个构造程序是“有限性的”和直接构造性的。

五:数学哲学的现代发展

自20世纪50年代起数学哲学便进入了一个新的发展时期,与数学基础研究相比,这一新的发展表现出了一些显著的不同特点。

(1)研究立场的转移,即由严重脱离实际数学活动转移到了与其密切结合。具体地说,在数学基础研究中,尽管逻辑主义等学派提出了不同的主张,但他们所实际从事的都是一种趋于规范性的工作。现代数学哲学认为,数学哲学应当是数学家们工作中的“活的哲学”,即研究人员、教师和使用数学者对他们所从事的工作的哲学见解。

研究立场的转移直接导致了新的数学观念。例如,正是基于对数学家实际言行及数学史上实例的考察,经验主义才得以在现代数学哲学中“复兴”。

(2)研究的内容和方法表现出了明显的开放性,特别是由一般科学哲学中吸取了不少重要的研究问题和有益的思想,这就和以往的封闭式的数学基础研究大相径庭。

例如,I. Lakatos 所倡导的拟经验的数学观事实上就是将K. Popper 的证伪主义科学哲学理论推广应用到了数学的领域。又如,在T. Kuhn 的科学哲学研究的影响下,出现了关于数学的社会—— 文化 研究。显然,这关于数学的动态研究是与先前的研究传统,亦即单纯着

眼于数学知识的逻辑结构的静态分析大相径庭的。

另外,新的研究的又一重要特点则是突出强调了数学研究的社会性。最后,与实际的数学活动的密切联系也可看成为现代数学哲学研究开放性的一个重要表现。特别是,作为对于思想方法的研究,数学方法论的研究在现代得到了新的发展。

六:总结

数学和哲学是同门异户,声息相通的,你敲开一家门,另一家就会立刻向你敞开窗户。 数学哲学是在不断变化的,随着时代的发展,会有不同的表现,人们研究也会跟以前不一样。

参考文献

(1)《西方数学哲学》 夏基松 郑毓信 著

人民出版社 1986年1月出版 p10--p13

(2)《数学哲学译文集》自然科学哲学问题译丛 林夏水 主编

知识出版社 1986年7月出版 p24--p25

(3)《数学哲学--对数学的思考》西方数学文化理念传播译丛 丛书主编 汪宁

【美】斯图尔特·夏皮罗 著 郝兆宽 杨督之 译

复旦大学出版社 2009年2月出版 p20--p23

(4)《数学哲学》 【美】保罗·贝纳塞拉夫 希拉里·普特南 编

商务印书馆 2003年2月出版 p47--p76

(5)《徐利治读数学哲学》 徐利治 著

大连理工大学出版社 2008年1月出版 p73--p82

2012年4月6日

黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则°——°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 已解决问题收藏 转载到QQ空间 有关数学文化方面的论文,3000字左右200[ 标签:文化 论文,数学,论文 ] 语言性论文,可以是数学的历史,发展,以及数学与其他领域方面的关系和影响 匿名 回答:3 人气:11 解决时间:2008-11-17 19:53 满意答案数学的文化价值 一、数学是哲学思考的重要基础 数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。 (一)数学——-根源于实践 数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。 数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。 其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。 其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。 但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。 总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。 (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗? 事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。 数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。 有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。 就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。

相关百科

热门百科

首页
发表服务