首页

> 论文发表知识库

首页 论文发表知识库 问题

检测论文视频

发布时间:

检测论文视频

每到答辩时,大家几乎对于论文重复率还是比较关心的,因为大家都希望自己能顺利通过答辩拿到毕业证。综合目前一些情况来看,论文查重系统的重复率高于30%的硕博论文或学位论文,通常都会被要求重新修改,并且在相同的学习中,不会给予学生2次答辩机会,所以大家对于论文重复率这一方面还是比较重视的。那在进行实际检测的时候,通常也有更多的要求,一般来说对于学士学位的论文要求不要超过10%,在进行实际检测的过程当中,到底该怎样检测论文重复率?怎样选择论文查重系统? 论文段落和格式 检测论文抄袭率要结合自己的实际情况来做有效检测论文检测基本上都是和整篇文章有直接性的关系,当整篇文章上传之后,论文检测的软件要对一部分文章进行划分,上交所有论文的时候,要确保最终的稿件格式对抄袭率会有较大影响,不同段落的划分可能就会造成更多小段落的检测出现问题,所以说我们一定要保证每一个段落划分的时候都是控制在合理的字数内,只有这样才能够发挥降低抄袭率的作用。 数据库 检测论文抄袭率的时候,如果大家想要通过数据库来进行有效检测的话,那么基本上就是针对于已经发表的毕业论文来进行检测,因为数据库里面的所有论文的收入都是已经发表过的,其实他们在数据库进行检测的时候,肯定也都会考虑到各种不同的匹配论文,有的数据库也还有一些网络上的文章在这里要告诉大家的,就是很多书籍并没有包含在检测的数据库当中,所以说参考文献一般来说在数据库里面可能查出来的概率并不是特别大。 章节变换 很多人在检测论文抄袭率的时候,也会考虑到通过变换章节的这种方式来进行有效检测,或者是说从不同的文章当中抽取不同的章节来进行拼凑,这样的话对于抄袭率检测的结果并没有太大影响。

只有知道论文查重是怎么查的,才能知道最终检测结果的真正含义。同学们在选择好论文检测系统后,然后按照查重的步骤进行操作就行了,所有查重系统的查重步骤大同小异,以PaperPP为例:上传论文→输入论文题目→输入作者姓名→支付费用→提交检测。提交检测后系统自动对论文进行分段分句与系统中的文献资料进行比对,我们只需要等待5~30分钟就能生成论文检测报告,将报告下载到本地后,认真阅读检测报告,通过检测报告,可以很直观的看到论文中重复的部分。报告中飘红处就是涉嫌抄袭的内容,这部分内容同学们需要认真进行修改。

在首页下方选择合适的论文查重系统。步骤:1、用户进入维普查重首页后,在首页下方选择合适的论文查重系统,注意查看自己的论文是否符合查重系统的标准。2、在查重界面输入论文题目和论文作者,并将待检测论文上传至查重系统中,点击提交检测按钮。3、等待30分钟,60分钟左右的查重时间,查重完成后,用户在查重界面点击下载检测报告按钮,输入查重订单编号,点击查询结果,最后下载论文查重报告单至用户电脑中。

注册一个论文检测系统的会员,例如paperrater论文检系统,然后粘贴复制就行啦

知网论文检测视频直播

1.一般有3种途径找到知网查重的入口:(1)通过学校的图书馆或者校园网进入知网论文查重入口。(2)通过第三方知网查重平台进行知网查重检测。(3)通过电商平台(淘宝等)进行知网查重检测。

2.登录,选择正确的知网查重检测系统。学历不同,选择的知网检测系统不同。如果你是一名研究生,那么最准确的是知网检测系统。如果你是一名本科生或者专科生,那么最准确的是知网pmlc检测系统。

3.根据知网检测系统的提示进行操作。应该输入论文题目和作者的个人信息。尤其是已经发表过小论文的童鞋,将其部分内容放进了毕业论文,写上已发表论文的第一作者,那么其内容重复不计算的。然后,选择Word或者PDF文档上传都是可以的!

4.完成论文检测的费用支付。用手机扫一扫即可完成支付。同时页面会提示文件上传成功,并自动跳转报告等待界面。

5.等待并下载知网检测结果。正常网速下,会在之间出查重报告单。检测完成后,下载报告即可。

其实首先要定好题目,这个是根本了吧,然后研究方法也要定好,其次 打框架 构思提纲 ::::

有些是真的坑啊,乱收费就算了,查出来的准确率也不行。请教了前辈们之后,现在我都是用万方查重,从50%降到11%,最好不要贪便宜,万方性价比其实也挺高的,3元/千字,准确率还好。

中国知网的检测系统确实不对个人开放。但是,你可以上万方数据库和维普网这两家的检测系统进行下检测,这两家可以对个人用户开放。

监控视频中行人目标检测论文

能不能给我发一份呢?

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

参考资料: 行人检测算法 行人检测是使用计算机视觉技术来判断图像或视频中是否存在行人。可以通过跟行人跟踪,行人重识别技术,来应用于人工智能系统,车辆辅助驾驶系统、智能交通等领域① 处理数据 ② 训练模型 ③ 输出目标位置① 外观差异大。包括视觉、姿态、服饰和附着物、光照、成像距离等。行人不同的运动姿态、角度,都会显示出不同的外观,而且成像距离远近不一,也会造成外观大小不同 ② 遮挡问题,在行人密集的地方,会发生行人被遮挡的问题,或者是被周围的建筑物遮挡住 ③ 背景复杂,有些物体的外观、造型、颜色、纹理等都比较接近人体,例如雕塑或人像广告牌、假人等。之前就有个新闻说红绿灯行人越线检测时,把公共汽车上的代言人广告中的代言人也检测了出来 ④ 检测速度,行人检测一般使用了比较复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化Faster R-CNN 文献[16]分析了Faster R-CNN在行人检测问题上的表现,结果表明,直接使用这种算法进行行人检测效果并不满意。作者发现,Faster R-CNN中的RPN网络对提取行人候选区域是相当有效的,而下游的检测网络表现的不好。作者指出了其中的两个原因:对于小目标,卷积层给出的特征图像太小了,无法有效的描述目标;另外,也缺乏难分的负样本挖掘机制。作者在这里采用了一种混合的策略,用RPN提取出候选区域,然后用随机森林对候选区域进行分类。这一结构如下图所示: DeepParts 文献[21]提出了一种基于部件的检测方案,称为DeepParts,致力于解决遮挡问题。这种方案将人体划分成多个部位,分别进行检测,然后将结果组合起来。部位划分方案如下图所示: 整个系统的结构如下图所示: RepLoss RepLoss[14]由face++提出,主要目标是解决遮挡问题。行人检测中,密集人群的人体检测一直是一个难题。物体遮挡问题可以分为类内遮挡和类间遮挡两类。类内遮挡指同类物体间相互遮挡,在行人检测中,这种遮挡在所占比例更大,严重影响着行人检测器的性能。 针对这个问题,作者设计也一种称为RepLoss的损失函数,这是一种具有排斥力的损失函数,下图为RepLoss示意图: RepLoss 的组成包括 3 部分,表示为: 其中L_Attr 是吸引项,需要预测框靠近其指定目标;L_RepGT 和 L_RepBox 是排斥项,分别需要当前预测框远离周围其它的真实物体和该目标其它的预测框。系数充当权重以平衡辅助损失。 HyperLearner 文献[25]提出了一种称为HyperLearner的行人检测算法,改进自Faster R-CNN。在文中,作者分析了行人检测的困难之处:行人与背景的区分度低,在拥挤的场景中,准确的定义一个行人非常困难。 作者使用了一些额外的特征来解决这些问题。这些特征包括: apparent-to-semantic channels temporal channels depth channels 为了将这些额外的特征也送入卷积网络进行处理,作者在VGG网络的基础上增加了一个分支网络,与主体网络的特征一起送入RPN进行处理: 其他的基本上遵循了Faster R-CNN框架的处理流程,只是将anchor参数做了改动。在实验中,这种算法相比Faster R-CNN有了精度上的提升。 从上面的回顾也可以看出,与人脸检测相比,行人检测难度要大很多,目前还远称不上已经解决,遮挡、复杂背景下的检测问题还没有解决,要因此还需要学术界和工业界的持续努力。

检验论文答辩视频教程

不用那么紧张,好象给教师送点$就比较容易了!

论文答辩那些事 答辩基本流程一、学生在答辩会举行前,将进过指导老师审定并签署过意见的毕业论文一式三份连同提纲、草稿等交给答辩委员会;二、答辩现场,由答辩老师介绍答辩规则;三、学生概述论文的题目,研究方法、研究内容、发现与结论等;四、答辩老师针对论文提问;五、学生回答完所有问题退场(如分组进行答辩,则待组里所有人答辩完成后清场休会),答辩委员会根据论文质量和答辩情况,商定是否通过,并统计成绩。(具体情况以学院安排为准)拿上必备材料论文纸质版、纸和笔听取答辩小组成员的提问,精神要高度集中,同时,可将提问的问题――记在本上,以免问题过多,回答时有遗漏部分。调整心态自信:坦然镇定,声音要大而准确,使在场的所有人都能听到。镇定:对提出的问题,要在短时间内迅速做出反应,以自信而流畅的语言,肯定的语气,不慌不忙地―一回答每个问题。谦虚:对提出的疑问,要审慎地回答,对有把握的疑问要回答或辩解、申明理由;对拿不准的问题,可不进行辩解,而实事求是地回答,态度要谦虚。熟悉论文要做到自信,需要对自己的论文从内容、范围、材料有充分的理解和多方面的准备,做到烂熟于心。从整体到局部都有了然于胸的感受,这样就能对提出的种种质疑,应付自如,即使不能对答如流,至少也能迎刃而解,问有所答。真正做到“艺高胆大”,有了真才实学,就不怕别人提出质询。针对论文答辩的目的和内容,学生在论文答辩前至少要做到以下几点:一、对自己所写论文的观点、关键问题、解决思路和创新点等要了然于胸。尽量用言简意赅的语言陈述出以上问题,这是你陈述论文时的必备技巧。这里也是答辩老师检验真伪最容易出题的范围。二、对论文中出现的基本概念、专业词汇、引用的文献要明白其涵义。这里往往是答辩老师检验真伪和探测你水平的一些地方。三、对自己论文中的相关的观点和理论要进行一定的涉猎,这是论文答辩得高分的技巧。大多数论文仅仅知道自己文章的单方面观点,对于其它观点要么知之甚少,要么一无所知,如果能对相关的理论进行了解,那么在答辩中基本上不会遇到答不上来的尴尬场面。做好PPT内容:每页不超过10行字或一幅图,只列要点,切忌放大段文字配色:文字清晰,简洁易看,字体颜色和背景要协调,切忌花哨繁复,用色过多。图表:不要忘记将与论文有关的一些图表类资料整理好。如经济类论文答辩时,可能会涉及许多统计表、统计图、测算表、明细表、演示图等。准备许多相关的图表,在答辩现场,供作讲解之辅助工具。想好“台词”做好发言提纲的准备。“工欲善其事,必先利其器”,不打无准备之仗,答辩者在答辩前可从以下角度去考虑准备答辩:一、自己为什么选择这个课题?二、研究这个课题的意义和目的是什么?三、全文的基本框架、基本结构是如何安排的?四、全文的各部分之间逻辑关系如何?五、在研究本课题的过程中,发现了那些不同见解?对这些不同的意见,自己是怎样逐步认识的?又是如何处理的?六、论文虽未论及,但与其较密切相关的问题还有哪些?七、还有哪些问题自己还没有搞清楚,在论文中论述得不够透彻?八、写作论文时立论的主要依据是什么?对以上问题应仔细想一想,必要时要用笔记整理出来,写成发言提纲,在答辩时用。这样才能做到有备无患,临阵不慌。假如在准备的时候已经准备了一个较完整的提纲,那么沿着回答问题的主线,再穿上一些玉珠(举例子)就可以做到中心明确,条理清楚,有理有例了。学生首先要介绍一下论文的概要,这就是所谓“自述报告”,须强调一点的是“自述”而不是“自读”。这里重要的技巧是必须注意不能照本宣读,把报告变成了“读书”。“照本宣读”是第一大忌。这一部分的内容可包括写作动机、缘由、研究方向、选题比较、研究范围、围绕这一论题的最新研究成果、自己在论文中的新见解、新的理解或新的突破。做到概括简要,言简意赅。不能占用过多时间,一般以十分钟为限。所谓“削繁去冗留清被,画到无时是熟时”,就是说,尽量做到词约旨丰,一语中的。要突出重点,把自己的最大收获、最深体会、最精华与最富特色的部分表述出来。这里要注意:一忌主题不明;二忌内容空泛,东拉西扯;三忌平平淡淡,没有重点。开头要简洁,单刀直入,是最好的开头,开门见山地表述观点,在答辩中是最好的办法。主体部份的表述可条分缕析,即把所要回答的内容逐条归纳分析,实际上是对自己掌握的材料由此及彼,由表及里地做整理。这样的表述就不会流于表面,而能深入本质。条分缕析可以把自己掌握的一些实际例子合并,整理成若干条目,列成几个小标题,分成几点,一点一点、一条一条地说出。满碗的饭必须一口一口吃,满肚子的道理也必须一条一条讲出来,环环相扣,条条相连,令人听完后有清楚的印象。常见问题让学生进行论文答辩的目的绝对不是故意刁难学生,以显示老师水平多高。论文答辩的目的只有一个,检查学生对所写论文题目的掌握程度和理解程度。参加论文答辩的老师提出的问题一般不会少于三个,但所提出的问题全部是论文所涉及的学术范围之内的问题,一般不会、也不能提出与论文内容毫无关系的问题,这是答辩老师拟题的大范围。在这个大范围内,主答辩老师一般是从检验真伪、探测能力和弥补不足这三个方面提出问题。一、检验真伪题,就是围绕毕业论文的真实性拟题提问。二、探测水平题,这是指与毕业论文主要内容相关的,探测学生水平高低、基础知识是否扎实,以及掌握知识的广度深度如何等方面来提出问题的题目,主要是论文中涉及到的基本概念,基本理论以及运用基本原理等方面的问题。三、弥补不足题,这是指围绕毕业论文中存在的薄弱环节,如对论文中论述不清楚、不详细、不周全、不确切以及相互矛盾之处拟题提问,请作者在答辩中补充阐述或提出解释。练习控制时间一般答辩现场都对学生陈述时间有限制,正式答辩前多做几次计时演练,学会控制时间,不然讲到一半就时间到了,太太太太太尴尬了!注意演讲技巧注意语速:心情尽量放松,语速不要太快。放松的心情可以使得思维活跃,不会出现语言重复、答非所问等现象。适当的语速,有利于你的表达被听众清晰得接受;目光移动:无论是否脱稿,都应注意目光互动,这样可以避免观众分神;体态辅助:答辩过程中切忌“木头人”或者弯腰驼背,适当运用手势语言,会显得更自信有力。

概念不问,如果不评优的话,老师不会为难你的如果是本科,混一下就过了,研究生及以上就要相对认真的写论文了问的问题你不一定都能答上,这样才能显得出他们是专家组切记:态度一定要好,无论问题你会不会答,都要答,不要沉默

毕业论文答辩过程一、毕业论文答辩的一般程序1.学员必须在论文答辩会举行之前半个月,将经过指导老师审定并签署过意见的毕业论文一式三份连同提纲、草稿等交给答辩委员会,答辩委员会的主答辩老师在仔细研读毕业论文的基础上,拟出要提问的问题,然后举行答辩会。2.在答辩会上,先让学员用15分钟左右的时间概述论文的标题以及选择该论题的原因,较详细地介绍论文的主要论点、论据和写作体会。3.主答辩老师提问。主答辩老师一般提三个问题。老师提问完后,有的学校规定,可以让学生独立准备15—20分钟后,再来当场回答,而中央党校函授学院则规定,主答辩老师提出问题后,要求学员当场立即作出回答(没有准备时间),随问随答。可以是对话式的,也可以是主答辩老师一次性提出三个问题,学员在听清楚记下来后,按顺序逐一作出回答。根据学员回答的具体情况,主答辩老师和其他答辩老师随时可以有适当的插问。4.学员逐一回答完所有问题后退场,答辩委员会集体根据论文质量和答辩情况,商定通过还是不通过,并拟定成绩和评语。4.召回学员,由主答辩老师当面向学员就论文和答辩过程中的情况加以小结,肯定其优点和长处,指出其错误或不足之处,并加以必要的补充和指点,同时当面向学员宣布通过或不通过。至于论文的成绩,一般不当场宣布。中共中央党校函授学院规定,对答辩不能通过的学员,提出修改意见,允许学员待半年后另行答辩。二、主答辩老师的提问方式在毕业论文答辩会上,主答辩老师的提问方式会影响到组织答辩会目的的实现以及学员答辩水平的发挥。主答辩老师有必要讲究自己的提问方式。1.提问要贯彻先易后难原则。主答辩老师给每位答辩者一般要提三个或三个以上的问题,这些要提的问题以按先易后难的次序提问为好。所提的第一个问题一般应该考虑到是学员答得出并且答得好的问题。学员第一个问题答好,就会放松紧张心理,增强“我”能答好的信心,从而有利于在以后几个问题的答辩中发挥出正常水平。反之,如果提问的第一个问题就答不上来,学员就会背上心理包袱,加剧紧张,产生慌乱,这势必会影响到对后面几个问题的答辩,因而也难以正确检查出学员的答辩能力和学术水平。2.提问要实行逐步深入的方法。为了正确地检测学员的专业基础知识掌握的情况,有时需要把一个大问题分成若干个小问题,并采取逐步深入的提问方法。如有一篇《浅论科学技术是第一生产力》的论文,主答辩老师出的探测水平题,是由以下四个小问题组成的。(1)什么是科学技术?(2)科学技术是不是生产力的一个独立要素?在学员作出正确回答以后,紧接着提出第三个小问题:即(3)科学技术不是生产力的一个独立要素,为什么说它也是生产力呢?(4)你是怎样理解科学技术是第一生产力的?通过这样的提问,根据学员的答辩情况,就能比较正确地测量出学员掌握基础知识的扎实程度。如果这四个小问题,一个也答不上,说明该学员专业基础知识没有掌握好;如果四个问题都能正确地回答出来,说明该学员基础知识掌握得很扎实;如果能回答出其中的2—3个,或每个小问题都能答一点,但答得不全面,或不很正确,说明该学员基础知识掌握得一般。倘若不是采取这种逐步深入的提问法,就很难把一个学员掌握专业基础知识的情况准确测量出来。假如上述问题采用这样提问法:请你谈谈为什么科学技术是第一生产力?学员很可能把论文中的主要内容重述一遍。这样就很难确切知道该学员掌握基础知识的情况是好、是差、还是一般。3.当答辩者的观点与自己的观点相左时,应以温和的态度,商讨的语气与之开展讨论,即要有“长者”风度,施行善术,切忌居高临下,出言不逊。不要以 “真理”掌握者自居,轻易使用“不对”、“错了”、“谬论”等否定的断语。要记住“是者可能非,非者可能有是”的格言,要有从善如流的掂量。如果作者的观点言之有理,持之有据,即使与自己的观点截然对立,也应认可并乐意接受。倘若作者的观点并不成熟、完善,也要善意地、平和地进行探讨,并给学员有辩护或反驳的平等权利。当自己的观点不能为作者接受时,也不能以势欺人,以权压理,更不要出言不逊。虽然在答辩过程中,答辩老师与学员的地位是不平等的(一方是审查考核者,一方是被考核者),但在人格上是完全平等的。在答辩中要体现互相尊重,做到豁达大度,观点一时难以统一,也属正常。不必将自己的观点强加于人,只要把自己的观点亮出来,供对方参考就行。事实上,只要答辩老师讲得客气、平和,学员倒愈容易接受、考虑你的观点,愈容易重新审视自己的观点,达到共同探索真理的目的。4.当学员的回答答不到点子上或者一时答不上来的问题,应采用启发式、引导式的提问方法。参加过论文答辩委员会的老师可能都遇到过这样的情况:学员对你所提的问题答不上来,有的就无可奈何地“呆”着;有的是东拉西扯,与你绕圈子,其实他也是不知道答案。碰到这种情况,答辩老师既不能让学员尴尬地“呆”在那里,也不能听凭其神聊,而应当及时加以启发或引导。学员答不上来有多种原因,其中有的是原本掌握这方面的知识只是由于问题完全出乎他的意料而显得心慌意乱,或者是出现一时的“知觉盲点”而答不上来。这时只要稍加引导和启发,就能使学员“召回”知识,把问题答好。只有通过启发和引导仍然答不出或答不到点子上的,才可判定他确实不具备这方面的知识。三、学员答辩要注意的问题学员要顺利通过答辩,并在答辩时真正发挥出自己的水平,除了在答辩前充分作好准备外,还需要了解和掌握答辩的要领和答辩的艺术。(一)携带必要的资料和用品首先,学员参加答辩会,要携带论文的底稿和主要参考资料。如前所述,有的高等学校规定:在答辩会上,主答辩老师提出问题后,学员可以准备一定时间后再当面回答,在这种情况下,携带论文底稿和主要参考资料的必要性是不言自明的。即使像中央党校函授学院那样,老师提出问题后,不给学员准备时间,要求当场作答。但在回答过程中,也是允许翻看自己的论文和有关参考资料的,答辩时虽然不能依赖这些资料,但带上这些资料,当遇到一时记不起来时,稍微翻阅一下有关资料,就可以避免出现答不上来的尴尬和慌乱。其次,还应带上笔和笔记本,以便把主答辩老师所提出的问题和有价值的意见、见解记录下来。通过记录,不仅可以减缓紧张心理,而且还可以更好地吃透老师所提问的要害和实质是什么,同时还可以边记边思考,使思考的过程变得很自然。(二)要有自信心,不要紧张在作了充分准备的基础上,大可不必紧张,要有自信心。树立信心,消除紧张慌乱心理很重要,因为过度的紧张会使本来可以回答出来的问题也答不上来。只有充满自信,沉着冷静,才会在答辩时有良好的表现。而自信心主要来自事先的充分准备。(三)听清问题后经过思考再作回答主答辩老师在提问题时,学员要集中注意力认真聆听,并将问题回答略记在本子上,仔细推敲主答辩老师所提问题的要害和本质是什么?切忌未弄清题意就匆忙作答。如果对所提问题没有断清楚,可以请提问老师再说一遍。如果对问题中有些概念不太理解,可以请提问老师做些解释,或者把自己对问题的理解说出来,并问清是不是这个意思,等得到肯定的答复后再作回答。只有这样,才有可能避免答所非问。答到点子上。(四)回答问题要简明扼要,层次分明在弄清了主答辩老师所提问题的确切涵义后,要在较短的时间内作出反应,要充满自信地以流畅的语言和肯定的语气把自己的想法讲述出来,不要犹犹豫豫。回答问题,一要抓住要害,简明扼要,不要东拉西扯,使人听后不得要领;二要力求客观、全面、辩证,留有余地,切忌把话说“死”;三要条分缕析,层次分明。此外还要注意吐词清晰,声音适中等等。(五)对回答不出的问题,不可强辩有时答辩委员会的老师对答辩人所作的回答不太满意,还会进一步提出问题,以求了解论文作者是否切实搞清和掌握了这个问题。遇到这种情况,答辩人如果有把握讲清,就可以申明理由进行答辩;如果不太有把握,可以审慎地试着回答,能回答多少就回答多少,即使讲得不很确切也不要紧,只要是同问题有所关联,老师会引导和启发你切入正题;如果确是自己没有搞清的问题,就应该实事求是地讲明自己对这个问题还没有搞清楚,表示今后一定认真研究这个问题,切不可强词夺理,进行狡辩。因为,答辩委员会的老师对这个问题有可能有过专门研究,再高明的也不可能蒙他。这里我们应该明白:学员在答辩会上,某个问题被问住是不奇怪的,因为答辩委员会成员一般是本学科的专家。他们提出来的某个问题答不上来是很自然的。当然,所有问题都答不上来,一问三不知就不正常了。(六)当论文中的主要观点与主答辩老师的观点相左时,可以与之展开辩论答辩中,有时主答辩老师会提出与你的论文中基本观点不同的观点,然后请你谈谈看法,此时就应全力为自己观点辩护,反驳与自己观点相对立的思想。主答辩老师在提问的问题中,有的是基础知识性的问题,有的是学术探讨性的问题,对于前一类问题,是要你作出正确、全面地回答,不具有商讨性。而后一类问题,是非正误并未定论,持有不同观点的人可以互相切磋商讨。如果你所写的论文的基本观点是经过自己深思熟虑,又是言之有理、持之有据,能自圆其说的,就不要因为答辩委员会成员提出不同的见解,就随声附和,放弃自己的观点。否则,就等于是你自己否定了自己辛辛苦苦写成的论文。要知道,有的答辩老师提出的与你论文相左的观点,并不是他本人的观点,他提出来无非是想听听你对这种观点的评价和看法,或者是考考你的答辩能力或你对自己观点的坚定程度。退一步说,即使是提问老师自己的观点,你也应该抱着“吾爱吾师,吾更爱真理”的态度,据理力争,与之展开辩论。不过,与答辩老师展开辩论要注意分寸,运用适当的辩术。一般说,应以维护自己的观点为主,反驳对方的论点要尽可能采用委婉的语言,请教的口气,用旁说、暗说、绕着说的办法,不露痕迹地把自己的观点输入对方,让他们明理而诚服或暗服。让提问老师感受到虽接受你的意见,但自己的自尊并没受到伤害。譬如,在一次答辩会上,一位老师在说明垄断高额利润时,把垄断高额利润说成是高出平均利润以上的那部分利润。答辩的学员听出老师的解释错了。就用平和不解的语气说:“那么,垄断高额利润是垄断价格高于成本价格的话怎么理解呢?”提问的老师听后一怔,隔了一会儿,高声说:“问得好!”从提问老师的喝彩声中,我们知道,他已心悦诚服地同意了你的观点。这样的辩论,答辩老师不仅不会为难你,相反会认为你有水平,基础扎实。(七)要讲文明礼貌论文答辩的过程也是学术思想交流的过程。答辩人应把它看成是向答辩老师和专家学习,请求指导,讨教问题的好机会。因此,在整个答辩过程中,答辩人应该尊重答辩委员会的老师,言行举止要讲文明、有礼貌,尤其是在主答辩老师提出的问题难以回答,或答辩老师的观点与自己的观点相左时,更应该注意如此。答辩结束,无论答辩情况如何,都要从容、有礼貌地退场。此外,毕业论文答辩之后,作者应该认真听取答辩委员会的评判,进一步分析、思考答辩老师提出的意见,总结论文写作的经验教训。一方面,要搞清楚通过这次毕业论文写作,自己学习和掌握了哪些科学研究的方法,在提出问题、分析问题、解决问题以及科研能力上得到了提高。还存在哪些不足,作为今后研究其他课题时的借鉴。另一方面,要认真思索论文答辩会上,答辩老师提出的问题和意见,修改自己的论文,加深研究,精心修改自己的论文,求得纵深发展,取得更大的战果。使自己在知识上、能力上有所提高

视觉检测的论文

(1)李国平, 路长厚, 李健美等. 阴影莫尔法中光栅传感器的研究. 传感技术学报. 2007,20(3):550-553(2) 李国平, 路长厚, 卢存伟. 基于灰度变调投影光技术的视觉检测方法研究. 济南大学学报. 2005, 19(3):252-254(3) 李国平, 路长厚, 李健美. 基于最小二乘支持向量机的压印字符识别方法. 上海大学学报. 2007,13(2):125-129(4) 李国平, 路长厚, 李健美. 基于Canny算子字符边缘检测与分割方法研究. 机床与液压,2007,(12):42-44

视觉关系识别/检测 任务不仅需要识别出图像中的物体以及他们的位置(detection),还要识别物体之间的关系(relationship)。例子如下图所示,输入为一张图片,输出为objects和bounding boxes,以及objects之间的关系,如

视觉关系识别是图像理解的基础,可以 应用 在

挑战:

这篇文章将整理与视觉关系相关的论文,并作简要的介绍。论文列表:

第一篇是比较经典的论文,提出了一个数据集VRD和一个结合语言先验的关系预测模型。

Visual Phrases只有13个类型,Scene Graph 有两万多关系,但是它平均每个对象只有大约2个谓词关系。除了这三个数据集,还有有名的 VIsual Genome 大数据集,包含99658张图片,19237个关系,标注了物体类型,位置,属性和物体间的关系(场景图),还有caption,qa。虽然数据量大了,但是数据集的标注还是会有一些没有被标注的,毕竟组合多。

思考:论文利用了语言先验word embedding,对预测起到了很大的帮助,但是先验知识可能会使得关系预测倾向于频繁的关系,而忽略了视觉方面的信息。一个解决方案是先预训练视觉模型。然而,真正合理的融合先验的方式我觉得不是简单的乘法(先验可能会误导),是一个思考的点。

**Motivation: **这篇论文的启发是来源于知识图谱中,使用转移向量(translation vector)来表示实体之间的关系(见 Trans系列的知识表示 )。在视觉关系中,通过将对象的视觉特征映射到低维的关系空间中,然后用对象间的转移向量来表示对象之间的关系,比如person+ride=bike。如下图所示:

所以为了让 能够接近 ,即相似,loss函数为

在实验中,单从在VRD数据集上的predicate预测,与上一篇论文Lu对比是没有提升的(44<47),这是这篇论文中没有说明的,是我从两篇论文的实验数据中发现的。这篇论文在另外两个任务上效果比Lu的好些,我觉得有可能是用了Faster RCNN的缘故。 除了这三个任务的实验对比,还加了图像检索,zero-shot关系检测(没有Lu的好),特征重要性分析的实验。实验也表明了关系检测任务对目标检测任务的准确率的提升,不过其实很少。

更多相关的可参考原论文。

思考:论文用TransE来表示关系空间中对象与predicate的关系,如何映射到关系空间,更好的表达对象的联系,甚至predicate间的关系,是值得研究的一个点。(比如结合语言先验等,因为我觉的它的效果其实应该比不上加了语言先验的)

这篇论文跟上一篇论文类似,都是将中的subject和object映射到一个空间中,他们间的关系表示为 .上一篇是基于知识图谱embedding的TransE(NIPS2013,Translating embeddings for modeling multi-relational data),而这一篇是基于TransD(ACL2015,Knowledge graph embedding via dynamic mapping matrix)。这是一个研究的方向,怎么将object,relationship很好的在embedding空间中表示。 论文的整个框架如图:

思考:这也是篇关于投射对象和关系到另一空间的论文,不过任务稍有不同,效果也比上一篇好些。同上,embedding也是可研究的一个方向。

这篇论文使用场景图scene graph来建模图片中对象以及它们的关系,任务是生成场景图:

这篇论文的亮点就是利用上下文信息以及消息传递,迭代更新以更好地预测关系。这是一个在场景图层级上的新的预测关系的方式,其消息传递方法等都是可以改进的地方,甚至结合embedding。

这篇论文的主要贡献是使用因式分解的方法来得到信息先验(a factorization scheme that yields highly informative priors),也就是关系的先验分布,即两个object间的predicate分布。 这个分布是通过张量分解的方法得到,具体是: (1) 张量构建Tensorize :关系张量 , i, j是对象,k是关系,表示为关系k的矩阵 的堆叠,每一个值对象i, j在数据集中有关系k的次数。张量表示可以反映objects间的内在联系,关系分布等。

最后BP训练SG网络,θ设为. 在实验中,论文对比了Lu的Visual Relationship Detection with Language Priors,和Xu的Scene Graph Generation by Iterative Message Passing,都有较好的提升。

思考:这篇论文通过张量分解的方式来得到关系的先验分布,与论文Visual Relationship Detection with Language Priors用到的语言先验有着异曲同工之处,都是用predicate的先验分布来调整网络预测的关系,提升zero shot能力。 不过我认为这种直接相乘的调整方式是比较粗糙的,需要更好的方式来融合先验分布与视觉上预测的分布。

这是一篇用场景上下文信息和实体间的关系来改进目标检测的论文,举个被错误检测的例子说明上下文的作用:

这篇论文做的任务不是关系预测,而是利用关系来消歧关系中的相同类的对象,其实是根据关系元组,来定位对象的位置。比如下图中需要确定人踢球是图中的哪个人,在什么位置。

论文首先用attention到对象object/subject,然后用predicate的卷积核来进行注意力的shift,同时object和subject需要结合。

这又是李飞飞团队做的工作(他们团队做了很多relationship相关的工作,语言先验那篇,迭代消息传递那篇等),做的是语句生成图像,利用了场景图表示语句中对象间的关系/联系,一个很有趣的研究,应该是第一个使用场景图的图像生成尝试了。

Sentence一般包含多个对象,以及对象间关系的描述,是比较复杂的,从上图也可以看出,直接从语句到图像效果是很差的。但是当我们把语句解析为场景图,然后再生成图像,可以更好的生成图像表示对象间的关系。 具体做法大致是根据场景图做布局预测 (layout prediction) 预测对象的位置,最后结合噪声,用生成网络生成图像。具体细节这里就不啰嗦了,列一下最终效果吧。

可以看出,对象的位置基本位于正确的位置,不过生成的图像质量不是很高,所以还是有很大的改进空间的。

这篇论文是Arxiv上今年7月份的论文,利用图像中的对象间的关系和对象属性,做QA任务。关系挖掘根据图像和问题得到一系列相关的fact——关系,对象属性,然后再attention到需要的fact上,联合视觉特征最后得到最终answer。

思考:这种提取fact的方法为QA提供了高层的语义信息,也符合人的思维方式。相比于我之前调研过的方法( 一文带你了解VQA ),可以认为这是知识的补充,之前的方法有的是只有类,属性信息,或者是额外的文本形式的知识,本论文的方法多了关系的检测,且用一个网络来提取高层语义用于QA,相比直接做数据增强更具解释性。不过论文没有用到那个bottom-up attention,这是我觉得可以改进的地方。

至此,有关VIsual Ralationship的相关问题,方法大家应该有个大致的了解和收获。有什么问题和想法欢迎一起交流学习。

原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为  最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。  需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。

相关百科

热门百科

首页
发表服务