教学 反思 是提高课堂教学有效性的重要手段和途径,是进一步优化、改进教学行为的关键环节。下面是我为大家整理的高中数学教师教学反思 范文 ,希望对大家有所帮助。
高中数学教师教学反思范文篇一
新课程非常强调教师的教学反思,教学反思会促使教师形成自我反思的意识和自我监控的能力,通过反思去进一步理解新课程,提高实施新课程的效果和水平。
在实际教学过程当中,做为教师,哪些是教学反思内容呢?我认为可以从以下三种水平界定教师反思的内容:
水平一:侧重于教师对日常教学行为、过程、事件及学生的反思。
(1)对教学实践过程的反思。教师对教学实践过程的反思体现在教学实施过程的各个方面。如:教学目标的制定是否合理,是否能做到让学生在学到知识的同时,促进能力及情感的全面发展;教学计划是否适合学生需要及实际教学情境,教学策略和课程 实施方案 能否顺利实施;还有教师在教学中的体态、动作、言语、学生的状态等。对教学效果的反思,主要是通过各种 渠道 获取尽可能多的信息,比如查阅学生的作业,找个别学生谈话,依据教案回顾课堂教学,以发现自己在教学中存在的问题。
(2)对学生知识背景、理解水平、 兴趣 爱好 的反思。它主要强调对学生的数学 文化 、思维与理解水平、兴趣爱好及其对完成特定学习任务的准备等方面的反思。教学的最终目的是为了促进学生的发展。因此,对学生现有的发展水平及个性差异就决定了教师教什么和如何教。
教师教学的准备及实施过程中,对学生知识背景及理解水平的反思主要包括对学生生理、心理特点及当前知识背景的研究、认识,在此基础上反思自己的教学活动是否结合了学生的不同兴趣、爱好和学习需要,这是反思性教学应考虑的一个重要内容。
(3)对教材的反思。教材是知识传递的有效载体,对教材的反思主要是教师在深刻理解 教育 目的和教学目标的基础上,结合现有的教学条件及学生学习要求,对教材进行创造性的补充、改编和整合的活动。如立体几何的模型教学、函数的板块教学等。对教材的反思有助于教师更好地设计教学内容、选择教学策略和 方法 ,从而促进学生对教学内容更好的理解,提高学生利用数学知识分析和解决问题的能力。
水平二:侧重于教师对自身教育教学观念及现有教育研究成果的反思。
(1)对教师教育教学信念、态度和价值观的反思。它主要是对教师在教学实践中所应具备的教育理念和教学态度所进行的反思性活动。不断学习先进的教育教学理念,积极吸收优秀教师的教育教学 经验 。通过对自身道德水平和责任感的不断反思,会促使其对教学实践更富有执著性和责任心。
(2)对教育教学研究成果的反思。教育专家、学者的研究成果能够为教师的教学实践提供指导和帮助,对教育教学研究成果反思目的就在于要求教师结合自己的教学实践需要,创造性地理解和应用已有的教育教学研究成果。
水平三:侧重于影响教育教学实践的学校及社会各种因素和条件的反思。
这主要是因为教育教学活动的开展离不开学校及社会环境的影响,这种影响既可能是积极的,也可能是消极的。因此,教师在教学实践中,应留意、审视和分析这些社会现象对教学活动有利或不利的影响,如根据女生怕学数学、普遍存在自卑心理现状,可设计《高中女生数学后进生的形成及转化策略》课题,以达到增强女生信心、训练学习策略、提高学习能力的目的。
高中数学教师教学反思范文篇二
人们往往认为数学教学仅仅是公式公理的解说与运用, 其实不然, 数学课堂也有其自身特 的魅力, 以下是我平时教学中的一点经验体会。
一、明确数学思想, 构建数学思维
随着教育对学生综合能力要求的提升以及各个学科间的知识渗透更加深入和普遍, 学习数学最重要的是 要学 会 数 学 的 思想, 用数学的眼光去看待世界。对于教师来说, 他不仅要能“做”, 而且需要教会学生去“做”, 这就要求教师不仅有扎实的专业知识和能力, 而且更应该有对数学学科的整体理解从而构建学生良好的数学思维。
二、尊重学生的思想, 理解个体差异
以往教育观点老是忽视学生的认知情感,把学生当作承受知识的容器, 不断增加新知识,同时又要巩固旧知识, 导致新旧积压, 新的学不好, 旧的学不扎实。同时学生之间的个体差异也是显而易见的, 同样的一块地里的庄稼也有高低之分, 学生也是如此, 作为教师, 不仅要善于播种施肥, 更重要的是要理解学生, 给每个学生充分的发展空间和发展的动力, 不能顾此失彼,这才是真正的以人为本。
三、应用心理战术, 从教入手
所谓从教入手, 最重要的就是课堂导入, 因为导入新课不仅是新的教学活动的开始, 也是对旧的教学活动的 总结 和概括, 好的导入往往能激发学生的学习兴趣, 使学生兴趣盎然, 对新知识的渴望也更高, 教学活动当然就进行的更加顺畅。
瑞士心理学家皮亚杰( J. Piaget) 认为“:一切有成效的工作必须以某种兴趣为先决条件”。浓厚的兴趣能调动学生的学习积极性, 启迪智力潜能并使之处于最活跃的状态。教学中, 由于教学内容的差异以及课的类型、教学目标各不相同, 导入的方法也没有固定的章法可循。下面本人结合自己的教学实践对几种常用的课堂导入方法谈谈自己的粗浅认识。
1.矛盾激趣
矛盾即问题, 思维始于疑问, 在教学中设计一个学生不易回答的悬念或者有趣的 故事 , 可以激发学生强烈的求知欲, 起到启示诱导的作用。在教授等差数列求和公式时, 一位教师讲了一个小故事: 德国的“数学王子”高斯, 读小学时, 老师出了一道算术题 1+2+3+…+100=? , 老师刚读完题目, 高斯就在他的小黑板上写出了答案 5050, 而其他同学还在一个数一个数挨个相加呢。那么, 高斯怎么会算的这么快呢?正在学生百思不得其解时, 老师引出了要讲的等差数列求和方法的内容。
2.重点、难点设疑
教材中有些内容既枯燥乏味, 又艰涩难懂。如数列的极限概念及无穷等比数列各项和的概念既抽象, 又是难点。为了更好地讲解本课内容, 一位教师在教学时插入了一段“关于分牛 传说 析疑”的故事。传说古代印度有一位老人, 临终前留下遗嘱, 要把 19 头牛分给三个儿子。老大分总数的 1/2, 老二分总数的 1/4, 老三分总数的 1/5。按印度的教规, 牛被视为神灵, 不能宰杀, 只能整头分, 先人的遗嘱更必须无条件遵从。老人死后, 三兄弟为分牛一事而绞尽脑汁,却计无所出, 最后决定诉诸官府。官府一筹莫展, 便以“清官难断家务事”为由, 一推了之。邻村智叟知道了, 说“:这好办!我有一头牛借给你们。这样, 总共就有 20 头牛。老大分 1/2 可得 10头; 老二分 1/4 可得 5 头; 老三分 1/5 可得 4 头你等三人共分去 19 头牛, 剩下的一头牛再还我!”真是妙极了!不过, 后来人们在钦佩之余总带有一丝疑问。老大似乎只该分 头, 最后他怎么竟得了 10 头呢?这样, 不仅提高了学生的探究热情, 也给教师的导入新课创造了良好的时机, 无形之中将学生带入自己设计的教学情境之中。另外教学中也要重视教学的延续性, 一堂课的好坏不仅仅体现再前奏合过程, 结尾也同样重要, 也就是我们所谓的升华阶段。
曲尽而意存, 课完而回味无穷。在一堂课结束时, 根据知识的系统性, 承上启下地提出新的问题, 一方面可以将新旧知识有机地联系起来,同时又可以激发起学生新的求知欲望, 为下一节课的教学作好充分的心理准备。我国章回体小说就常用这种妙趣夺人的心理设计, 每当故事发展到高潮, 事物的矛盾冲突激化到顶点的时候, 读者急切地盼望故事的结局, 而作者却以“欲知后事如何, 且听下回分解”结尾, 迫使读者不得不继续读下去!课堂教学如此, 则二者必有异曲同工之妙。
课堂教学作为一门无形的艺术, 有其自身的发挥空间, 如何把握住学生的心理与知识内容的特点, 才是万变不离其“宗”, 只要教师用心, 科学地将教育教学规律应用于现实的教学之中, 让学生积极地投入到课堂学习里, 感受知识与人文的魅力, 课堂教学必将焕发迷人的色彩。
四、理性与感性叠加, 完善学生的情知模式
言传身教不只是传递知识和技能, 其实更重要的是一种人文的关怀, 情感的共鸣, 传递者站在经验的基础上使学习者感受以往失败的挫折感, 同时也有成功的成就感, 这样的教育才更加有真实性, 在不知不觉中让学生进入到理想的情景中, 品尝人生的酸甜苦辣, 再失败与成功中崛起, 再理性与感性中升华。
不管是数学教学还是其他学科, 我们的教学都不能仅仅停留在已有的基础之上, 认识教育的新规律并适时地将其应用于实际的教学中, 这样我们的教学才更有成效, 教育的投入才能真正变为学生的成就, 古人云, 学而时习之,做为新时期的教育工作者理当为了教学而学习新的理论知识, 当然也要时“思”之。
高中数学教师教学反思范文篇三
高中数学新课程对于学生认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、应用价值、文化价值,提高提出问题、分析问题和解决问题的能力,形成 理性思维 ,发展智力和创新意识具有基础性的作用。如何处理好新课改下数学的教与学,让学生成为课堂的主人,充分发挥学生的自主学习、合作学习、探究性学习等学习方式,也成为当今数学教师的重要责任。如何适应新课程改革下的数学教学,通过近几年的教学,反思如下:
一、充分认识新课改下教材发生的变化
1.新教材结构体系发生了变化
变化不仅在知识性、趣味性甚至在印刷版面上都做了有益的探索,如增加了名人科学家的知识背景简介、阅读材料、插图等新内容,使学生开阔视野,贴近生活,理论联系实际,还增加了不少与现代生
活密切相关的内容。
2.新教材对原有的数学知识体系进行调整
对原有的繁难问题进行了删减,对学生难以理解的重点内容进行了分散处理。新教材最重要的编写体现以学生为主体,强调学生能动地学习和掌握知识,本质是使学生学会学习,学会思考,学会解决问题的能力,学会创新。
3.新教材重视教学方式的多元化
教材就知识讲解分为“问题提出、抽象概括、分析理解、思考交流”。因此,首先,教师要更新观念,教学设计时刻突出一个“变”字,这也是教学中最为关键之处, 教学方法 要不断创新,突出问题的提出和解决的方法上,教师提出问题允许学生质疑,不唯书本,不唯教师,充分调动学生的参与意识。其次,要重视运用多媒体辅助教学。
多媒体教学不仅以其生动、直观、形象、新颖的特征优化数学课堂教学,给学生提供更多的直观形象、生动活泼的数学背景,如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用多媒体来演示,同时能减轻教师板书的工作量,提高讲解效率。在教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题、复习课中章节内容的总结、选择题的训练等等都可以借助于多媒体课件来完成,教学时省时省力。通过教学方法的“变”,使学生在动态的教学过程中,个性得到发展,思维品质得到优化,达到会学习的目的。
二、充分突出课堂知识重点、化解难点是教学的重要内容
每一堂课都要有一个重点,而整堂的教学都是围绕这个重点来逐步展开的。为了让学生明确本堂课难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中留下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。
如讲解《椭圆》第一课时,其教学的重点是掌握椭圆的定义和标准方程,难点是椭圆方程的化简。教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆的直观图、圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生对椭圆有一个直观的了解。
为了强调椭圆的定义,教师事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。
在进一步求标准方程时,学生容易遇到这样一个问题:化简出现了麻烦。这时教师可以适当提示:化简含有根号的式子时,我们通常有什么方法?学生回答:可以两边平方。教师问:是直接平方好还是恰当整理后再平方?学生通过实践,发现对于这个方程,直接平方不利于化简,而整理后再平方,最后能得到圆满的结果。这样,椭圆方程的化简这一难点也就迎刃而解了。同时也解决了以后将要遇到的求双曲线的标准方程时的化简问题。所以在一堂课上,教师要同时使用多种教学方法。“教无定法,贵在得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,有利于重点突出、难点化解都是好的教学方法。
三、充分关注学生课堂表现,调动学生的学习积极性,体现学生的主体地位
在教学过程中,教师要随时了解学生对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会。同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
学生是学习的主体,教师要围绕学生展开教学,在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。根据课堂教学内容的要求,教师要精选例题,关键是讲解例题的时候,要能让学生也参与进来。教师应腾出十来分钟时间或更多的时间,让学生做做练习或思考教师提出的问题,或解答学生的提问,以进一步强化本堂课的教学内容。若课堂内容相对轻松,也可以指导学生进行预习,提出适当的要求,为下一次课做准备。
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中直接把公式、定理、推论拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实,定理、公式推理的过程蕴含着重要的解题方法和规律,教师没有充分展示思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解肤浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套,照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。
由此可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。
以上是我在教学中的一些反思,要提高课堂教学效果,新课程理念就是要让学生充分“动”起来,培养学生学会分析问题、解决问题的能力,教师在课堂教学中扮演引领角色,学生才是主角。只有学生充分“动”起来,我们的课堂才能“活”起来,数学课堂教学才会有声有色,新课程教学才得以体现。
高中数学教师教学反思范文3篇相关 文章 :
★ 高中数学教师教学反思范文3篇
★ 高中数学教师工作总结
★ 怎么写高中数学老师教学反思范文
★ 2020高中数学教师工作总结
★ 高中数学教育教学反思
★ 高中数学课堂教学反思
★ 高二数学老师个人教学反思
★ 高中数学的教学反思
★ 中学老师数学课堂教学反思
★ 高中数学教学反思论文
圆锥曲线问题是高中数学教学的重、难点。你知道怎么写有关圆锥曲线的小论文吗?下面我给你分享高中数学圆锥曲线论文,欢迎阅读。
高中数学圆锥曲线论文篇一:高中数学圆锥曲线的教学研究
圆锥曲线问题是高中数学教学的重、难点.每年的高考中,都会涉及圆锥曲线问题,出题形式多样,既有分值较低的选择题和填空题,也有分值很高的大题.但是学生的得分率普遍不高.圆锥曲线教学的综合性和系统性强.这不仅要求学生理解最基本的知识点,提高运算的速度和准确性,还要求学生能够灵活运用数形结合的方法,找到解题的突破口,化简变形,准确解题.本文主要分析研究高中数学圆锥曲线的教学现状及其相应的对策.
一、高中数学圆锥曲线教学现状
1.从教师角度分析
高中数学教学大纲中对圆锥曲线的教学目标、重难点知识的说明非常清楚.大多数教师都明白圆锥曲线的重要性,而且在课堂上讲解圆锥曲线知识点和解题思路的时候很清晰.不过,学生数学基础是有差异的.对于圆锥曲线的内容,有的学生接受起来容易,有的学生接受起来比较困难.这就要求教师在教学过程中要注重培养学生的学习兴趣,不能单凭过去的教学经验.圆锥曲线经常会用到数形结合思想,有的教师在教学时会告诉学生要运用数形结合的方法,但没有清楚地告诉学生是如何想到用这种解题思想的.教师应当让学生知其然,也要让学生知其所以然.很多学生做不到举一反三,就是因为在学习圆锥曲线知识的时候教师看重结果的正确而忽视了解题思路的理解.
考虑到圆锥曲线知识在高考中所占的比重较大,几乎每一年的高考题中都会有所涉及.因而,在教学过程中教师应当有意识地渗透,让学生清楚圆锥曲线知识学习的重要意义;圆锥曲线与向量、概率等其他模块的数学知识有密切的关系.在教学过程中,教师也要重视学生其他模块数学知识的掌握,从宏观角度提高圆锥曲线教学的效率.
2.从学生角度分析
圆锥曲线的学习对学生的数学运算能力、推理能力、逻辑思维能力等各种数学能力的要求都非常高,对于很多学生来说,圆锥曲线学习起来的难度较大.有的学生对这部分知识有畏惧心理,思想上的负担导致学习的困难加大;有的学生学习方法落后,在学习过程中,只是记忆圆锥曲线的相关概念、结论,或者模仿教材和教师的解题思路,但并没有真正理解概念、结论的意义,没有掌握知识之间内在的关联,尤其是综合运用知识的能力不够,不会举一反三.圆锥曲线的题型有很多种,教师在课堂上一般会对每一种题型都进行详细的讲解,但是有的学生没有及时总结或者总结的时候流于形式,导致在考试中遇到圆锥曲线方面的题目失分.
二、提升高中数学圆锥曲线教学效率的措施
1.培养学生学习圆锥曲线的兴趣
众所周知,兴趣是最好的老师.学生只有真正热爱圆锥曲线的学习,才能事半功倍.所以,教师在圆锥曲线的教学中应当运用有效的方法激发学生的学习兴趣.比如在课堂教学中,教师可以创设问题情境作为课堂导入.学生都在新闻上了解过人造地球卫星运转轨道,教师可以以此为切入点引入圆锥曲线的知识.学生发现了圆锥曲线知识在生活中的运用,学习兴趣就会大大提升.
2.教师要重视演示数学知识的形成过程
考试中的选择题和填空题不必要求学生将解题过程详细呈现出来,不管用何种解题方法,只要结果正确就可以.但是对于试卷中的大题,解题过程相当重要,清晰明了的解题过程是得分的关键,尤其是圆锥曲线的大题解题过程更是如此.因而,教师在进行圆锥曲线的教学时,不能只重视结果,而是应当重视从多方面来讲解解题步骤,通过清晰的演示让学生掌握圆锥曲线的知识.比如圆锥曲线中“多动点”的问题,很多学生不知如何理解,这时教师应当进行演示,让学生知道怎样运用参数求解法、怎样画图等.
3.坚持学生的主体地位
教学活动中,教师是引领者,学生是主体,任何情况下学生的主体地位都不能被削弱.当学生学习圆锥曲线的知识遇到问题的时候,教师要认真解答;教学过程中,教师要了解学生的认知规律,鼓励学生探索,让学生带着浓厚的兴趣融入课堂;教师应当多肯定、赞扬学生,提高学生学习的主动性和积极性.有的圆锥曲线的题目,不只有一种解题方法,对于这些题目,教师应当培养学生自主探究的能力,比较不同的解题方法,在考试中运用准确性和解题速度都高的方法.
三、结语
高中圆锥曲线的难度较大,教师在教学的时候要把握好重难点,循序渐进,切忌急于求成,保证学生夯实基础的前提下,提高难度.圆锥曲线教学过程中要因材施教,结合学生的接受能力来规划教学的进度和难易程度,对于学生提出的问题,教师要耐心认真的解答.教师还应注重培养学生的数形结合思想,从而提高圆锥曲线教学的效率.
高中数学圆锥曲线论文篇二:圆锥曲线学习中的思考
【摘 要】 根据教学中遇到的问题,尝试运用数学教育心理学的有关知识分析学生在学习椭圆时的问题和特点,分析产生的可能原因,根据这些特点将其迁移到双曲线的学习过程中。
【关键词】 椭圆;双曲线;相似性质
学生在学习椭圆和双曲线时,教师可能会更多的关注学生在学习中普遍存在的问题,虽然这些问题是导致学生学习困难的因素之一,但我觉得,因为这些问题在学生中比较普遍,也可以认为是他们学习这部分知识时所表现出的一种共性。归纳起来主要有以下几点:
1、对椭圆的第一定义记忆太深刻,甚至有些机械化,以至于对后面将要讲的双曲线第一定义记忆不清,容易忘记“绝对值”的作用,或者说对“双曲线的一支”还是“两支”深感困惑。
2、在推导椭圆的标准方程时,因为用到二次平方,虽然没有任何技巧性,但因为运算量大,学生就感觉难度很大,我曾经统计过将近有一半的学生自己当堂无法推导出结果。
3、对教材中最后要求的标准形式有些困惑,因为二次平方后出现的是整式形式,这应该说是比较好的形式了,为什么还要画蛇添足,写成分式的形式呢?
4、研究椭圆的几何性质时,学生会感觉发现容易,结论漂亮,但记忆困难,变化多端,运用时想不起来,就是想起来了,也不知道该用哪一条性质,不能灵活应用,甚至有的学生感觉太神奇,摸不着。
5、在学了双曲线之后,学生能发现椭圆与双曲线之间的关系比较密切,有关椭圆和双曲线的计算问题在解决过程中也有类似之处,但普遍感觉双曲线比椭圆难度大很多。
我在接受本科教育时虽然学习过一些有关公共教育学和心理学的基本知识,但对教育心理学领域几乎没有接触。2010年在北京师范大学学习,院方给我们新疆班的教师们开了“数学教育心理学”这门课,时间很短,课时紧张,我也学的比较肤浅。但我还是想借助数学教育心理学的有关知识来尝试分析一下以上的问题。
首先,有关椭圆的第一定义与双曲线的第一定义。
“定义”属于概念的教学,“数学教育心理学”中有关“概念”的理解是:概念是指哲学、逻辑学、心理学等许多学科的研究对象。概念通常包括四个方面:概念的名称、定义、例子和属性。由于数学的研究对象是事物的数量关系和空间形式,而这种关系和形式脱离了事物的具体属性,因此,数学概念有与此相对应的特点。学生的认知结构处于发展过程之中,他们的数学认知结构比较具体而简单、数学知识比较贫乏,在学习新的数学知识时,作为“固着点”的已有知识往往很少或者不具备。
比如:学生在初中学习过圆的定义是“平面内到顶点的距离等于定长的点的轨迹”,此时涉及到的定点只有一个,定长就是所谓的“半径”。而椭圆和双曲线的第一定义中涉及到的定点有两个,并且还有“距离之和”与“距离之差的绝对值”的问题。由圆的图形容易联想到椭圆,但双曲线就比较困难。虽然初中学习过反比例函数,但这个内容也是难点,不太容易和双曲线联系起来。其实,这就是所谓的“经验”,它是概念学习的影响因素之一。
其次,有关用二次平方法化简方程。
在推导椭圆和双曲线的标准方程时,“化简”是必须要过的一关,在这一过程中,用到“二次平方法”以达到去除根号的目的。这种方法应该是学生必备的一种数学技能。
数学技能是从数学知识掌握到数学能力形成和发展的中心环节,它分为“智慧技能”和“动作技能”,而“运算技能”是指能正确运用各种概念、公式、法则进行数学运算,做代数变换等。在此过程中正确运用“数学符号语言”也是必不可少的。在数学学习过程中,数学技能的形成非常重要,数学技能以数学知识的学习为载体,通过实际操作获得动作经验而逐渐形成。
根据学生的学习经历,以往接触比较多的是一次方程,比较复杂的二次函数也只是在一个字母中出现了二次方。但椭圆的方程中,x、y的次数都是二次,从形式上看就比较难,学生在心理接受程度上难。加之,学生虽然会用平方法去根式,但局限在一次平方,像这样的二次平方法不太适应,甚至怀疑自己做错了。另外,由于我们学校是自治区重点中学,生源相对来说比较好,教师在授课时对学生的基础和能力估计过高也是一个不容忽视的因素。
最后,椭圆与双曲线的相关性质。
在教学中我发现,因为椭圆和双曲线的第一定义、第二定义都有类似的部分,学生已经能够感觉到二者的几何性质应该也有相似的地方。我也试图用椭圆的几何性质引导学生类比得出双曲线的相关性质,引导学生的思维自发的“迁移”,但对于那些比较简单的、一般的性质学生可以自行推出。比如:椭圆中的特殊三角形、椭圆的焦半径、椭圆的通径等。而对于稍微复杂一些的性质,学生就有些束手无策了。
通过数学教育心理学的学习,我发现数学学习的迁移不是自动发生的,它受制于许多因素,其中最主要的有数学学习材料的因素、数学活动经验的概括水平以及数学学习定势。
1、迁移需要对新旧学习中的经验进行分析、抽象,概括其中共同的经验成分才能实现,因此,数学学习材料在客观上要有相似性。心理学的研究表明,相似程度的大小决定着迁移效果和范围的大小。
例如:椭圆和双曲线的定义中都有两个定点和一个定长,由这些条件推导出的有关椭圆特殊三角形和焦半径公式的相关性质,学生就比较容易类推到双曲线的,还有可能在焦半径的公式中发现:椭圆的焦半径公式只有一个,而双曲线要根据具体情况(左、右支;上、下支)区别对待。
又如:椭圆的几何性质中有一条是:设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF;这条性质从叙述上比较长,学生可能直觉上认为推不出双曲线的类似性质。实际上,只要教师给学生一些勇气,鼓励他们大胆猜想,容易得出:设过双曲线焦点F作直线与双曲线相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF。再作出图形证明即可。可以说,椭圆和双去想的这条性质相似程度极高。 2、数学学习的迁移是一种学习中习得的数学活动经验对另一种学习的影响,也就是已有经验的具体化与新课题的类化过程或新、旧经验的协调过程。因此,概括水平越低,迁移范围越小,效果越差;反之,迁移的可能性就越大,效果也越好。
例如:在探究椭圆的几何性质中有一条是:以焦点弦PQ为直径的圆必与对应准线相离;学生类比这条性质,可以得到双曲线以焦点弦PQ为直径的圆可能必与对应准线存在着某种关系。而圆与直线的位置关系不外乎有三种:相交、相离、相切。判断圆与直线的位置关系有两种常用的方法:一是用点到直线的距离判断;一种是用方程的根的情况判断。这些知识和技能学生是具备的,因此不难得出双曲线的相关性质,即:以焦点弦PQ为直径的圆必与对应准线相交。
3、定势现象是一种预备性反应或反应的准备,它是在连续活动中发生的。在活动过程中,先前活动经验为后面的活动形成一种准备状态。它使学生倾向于在学习时以一种特定的方式进行反应。由于定势是关于选择活动方向的一种倾向性,因此对迁移来说,定势的影响既可以起促进作用也可以起阻碍作用。
例如:在椭圆的概念中说的是到两定点的距离之和为定长的点的轨迹,而双曲线则是到两定点的距离之差的绝对值为定长的点的轨迹。由于思维定势,容易把“绝对值”忘掉,从而丢失一支双曲线。
鉴于本人所学有限,分析的可能不是很准确,我会在今后的教学中反复思考,逐步改进。
通过以上的分析,我认为:椭圆和双曲线的相关知识有许多共同的切入点,根据学生的学习特点,要抓准这些相似点,教师除了丰富的教学经验外,如果还能运用一定的心理学知识,找到学生学习时的心理活动,可能会带来更好的教学效果。
在全国推进素质教育的今天,在新一轮国家基础教育课程改革实施之际,只关注教师“如何教”的问题显然已经远远不够,于是,对新的教材与学生新的学习方式的研究与探讨就显得十分迫切与必要。只有充分发挥数学教育的功能,全面提高年轻一代的数学素养,每一位数学教师才能为提高全民族素质,造就一代高质量的新型人才贡献自己的一份力量。
参考文献
[1]曹才翰,章建跃.数学教育心理学[M].北京:北京师范大学出版社,2007.
[2]朱文芳.中学生数学学习心理学[M].浙江教育出版社,2005.
[3] ISBN978-7-107-18662-2,数学[S].人民教育出版社,2008.
高中数学圆锥曲线论文篇三:浅谈高考圆锥曲线中的存在性问题
摘 要:在新课标、新考纲和新考试说明的精神指导下,高考数学科解析几何试题与以往大纲课程背景下考查形式和内容,有了显著的变化,这些试题不论在考试评价、命题研究还是高考复习,都成为专家、教师探讨的重点、热点,也是高考命题改革的一块试验田.本文通过对近几年高考数学解析几何试题存在性问题的探究来揭示这些试题是如何贯彻课程标准,反应考试说明的意图,进而思考教师在解析几何的教学与高三复习策略。
关键词:课程标准 数学高考 解析几何 存在性问题 思考
前言
最近几年的高考试题中,存在性问题出现的频率非常高,存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,要求学生结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识及综合运用数学方法的能力有较高的要求,特别是在解析几何第二问中经常考到“是否存在这样的点”的问题,也就是是否存在定值定点定直线定圆的问题。希望能够为老师的教学、高考复习提供有益的思考.[1]
一、是否存在这样的常数
例1:(2009福建理)已知AB分别为曲线 与轴的左、右两个交点,直线I过点B,且与X轴垂直,S为I上异于点B的一点,连结AS交曲线C于点T.
(Ⅰ)若曲线C为半圆,点T为圆弧AB的三等分点,试求出点S的坐标;
(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由.
二、是否存在这样的点
【命题立意】:第二问难度较大,是一个探究性的开放试题,判断是否存在满足题设的定点.解决此题要突破两个关键:一是由图形的几何特征,判断出若定点存在,则必在 轴上,二是,题设要求“以PQ为直径的圆恒过点M”应转化为“ 对满足一定关系的m,k恒成立”,这里一定关系是指l与椭圆相切 . 本题主要考查运算求解能力、推理论证力,考查化归与转化思想、数形结合思想、特殊与一般的思想.本题的亮点是体现代数方法对解决几何问题的作用,同时体现图形的几何性质对代数运算的方向和运算量的减小的作用,在推理论证上,体现不同思维方式引发不同的解题方法,对区分不同数学思维层次的学生有很好的作用.
三、是否存在这样的直线
【命题立意】:第二问是开放性问题,判断满足题设的直线是否存在从逻辑思维的角度考虑,假设直线l存在,则l应满足三个条件① (可求k);②l与椭圆有公共点(可建立k与b的不等关系);③l与OA的距离等于4(可建立k与b的相等关系),而确定一条直线只需两个条
件即可.因此,可利用l满足其中两个条件求出,再检验是否满足第三个条件,从而得出l是否存在.这样,本题有多种不同的解法.本题主要考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.本题的亮点是,背景学生熟悉,试题入口宽,可以用不同的想法和解法解决,使不同思维方式的学生都能做题,提供给学生充分展示自己的平台.[3]
四、是否存在这样的圆
【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系
结束语:1.从教学的角度思考:在教学中要扎扎实实地讲好直线、圆、圆锥曲线及其几何性质等基础知识.教学中要学生先通过画图,直观地理解要解决的几何问题的几何意义,再转化为代数问题求解,通过这个过程学生很容易体会数形结合的思想,体会解析几何的方法;在研究圆锥曲线时,弄清楚曲线方程和参变量的几何意义是第一位的,在此基础上,运用代数方程的方法解决几何问题,在解决几何问题之后,要回到几何意义的理解上.几何是解决问题的出发点也是问题解决之后的落脚点,要避免让学生陷入代数的恒等变形而不理解其几何含义.在分析问题、解决问题中要突出几何要素,注重几何要素的代数化,要在几何要素的引导下进行代数的恒等变形,要让几何图形帮助我们思考问题、确定恒等变形的方向、简化计算,体会几何直观给我们带来的好处.
2.从高三复习备考的角度思考:①认真研读《考试大纲》、《考试说明》明确高考对解析几何基础知识、基本技能、基本思想、基本方法的要求,使复习工作有的放矢;②重视解决解析几何问题通法的训练.从试题分析中可以看出,直线方程、圆的方程,圆锥曲线的方程和基本性质(基本量)是重点考查的知识点,一定要熟悉基本方法,而直线与圆锥曲线的位置关系及其引发的各类问题是主观题的考查热点,要通过典型例题的操作、讲解,帮助学生总结解题思路,思考策略和通行通法,此外,要注意解析几何与其他数学内容的交汇,加强知识整体性的认知,锻炼学生在对参数的运算处理和面对繁杂的数学式子变形时应有的沉着心理和坚强毅力;
参考文献:
[1]中华人民共和国教育部制订.普通高中数学课程标准(实验)[M].北京:人民教育出版社2003
[2福建省教育考试院编.2012年普通高等学校招生全国统一考试福建省数学考试说明[M].福建:福建教育出版社2012
[3]王尚志.数学教学研究与案例[M].北京:高等教育出版社2006
摘要:一、教材分析
(一)教材地位与作用
从知识上说,《椭圆及其标准方程》是对前面所学的运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为我们研究双曲线、抛物线这两种圆锥曲线提供了基本模式和理论基础。因此,本节课有承前启后的作用,是本章的重点。另外,对椭圆定义与方程的研究,将曲线与方程对应起来,体现了函数与方程、数与形结合的重要思想。而这两种思想,都将贯穿于整个高中阶段的数学学习。百度文库上很多 采纳谢谢
250 浏览 3 回答
328 浏览 2 回答
159 浏览 3 回答
293 浏览 3 回答
276 浏览 3 回答
125 浏览 3 回答
288 浏览 3 回答
228 浏览 3 回答
307 浏览 3 回答
347 浏览 3 回答
154 浏览 3 回答
114 浏览 4 回答
152 浏览 3 回答
156 浏览 3 回答
132 浏览 6 回答