摘要:本文通过对高中生的调查研究发现当前高中生的数学观存在不够全面、不够准确、不够科学的现象,为此提出了通过数学史来影响高中生数学观之假设.经过为期一年多的实验和探索,发现数学史对改变学生的数学观能产生积极的影响,对学生的学习兴趣和学习效果也有明显的作用.因此积极倡导应用数学史来为数学教学服务.关键词:数学观;数学史;对数;复数教学中,经常有学生提出这样的问题:“老师,我怎么对数学就是没兴趣?”“老师,学了这些概念、定理和公式到底将来有什么用?”更有甚者问到:“老师,你为什么要逼我学数学,我将来也不搞数学研究。”……的确,当前不少学生因为想不通数学就认为数学是一门枯燥乏味、难以学习的学科;因为不理解数学就认为数学是一门概念和规则从天而降的游戏;因为没有体会到数学的价值就认为数学是没有实际意义的学科,学数学只是为了应付考试;因为没有领悟数学的思想和精神就认为“概念我会背,公式我会用,定理我会证,题目我会做”是学好数学的最高标准……这些现象表明,学生思想深处的问题已经不能等闲视之了,为此笔者开展了相关研究。一、对高中生数学观的现状分析高中生的数学观主要是指学生关于数学本身的信念,关于数学学习的信念和关于自身的信念。[1]由于个体具有不同的知识背景,或接受了不同哲学观念,或受不同教师的影响,再加上自己的实践经验,因此在数学学习过程中便逐渐产生和形成各自不同的认识和体会。(1)对数学本身的信念学生在数学学习过程中,对数学本身的感受和认识不尽相同。通过对614名高中生的调查发现,约的人“从未想过数学是什么”;的人“曾经想过数学是什么,但不清楚是什么”;的人“曾经听老师说过数学是什么”;的人“曾经想过数学是什么,所以知道是什么”。但在他们眼中,数学主要是与数字、图形有关的问题;是由概念、公式、定理、法则、符号组成的一门学科;是技巧性和方法性很强但又不易把握的一门学科;是关于计算、解题的一门学科;是讨论空间形式与其数量关系的学科……(2)对数学学习的信念Davis等人的调查(李士锜2001,217-222)表明:学生在学习过程中,对数学学习持有不同观点和看法。笔者调查发现高中生的数学学习信念主要是:①学数学就是要会做题目;②学数学就是为了在考试中取得好成绩;③学数学主要靠记忆、模仿、套公式;④学数学就是要培养一个人的计算能力、思维能力;立体几何主要培养一个人的逻辑推理能力和空间想象能力;⑤学数学就是学会用所学的数学知识解决实际生活中的问题。(3)对自身学习数学的信念学生对自身学习数学的信念差异明显,在调查中发现:①信心十足──有人对数学充满浓厚的兴趣,认为自己在数学方面有一定的天赋和优势,有信心、有能力学好数学。②信心平淡──有人对数学的兴趣一般,认为自己在数学方面没有多少天赋和优势,但是只要自己勤奋努力,刻苦钻研,还是能够达到基本要求的。③信心缺乏──有人对数学不感兴趣,认为自己根本没有学习数学的天赋,没有学好数学的能力。他们经常说自己从小学到现在数学都一直很差,由此来表明自己是学不好数学的。(4)数学观的类型根据调查分析,高中生的数学观不妨可归纳为以下几种:①动态的数学观。在学生眼中,数学是不断变化、发展过程中的知识,从而可能会出现不足和错误,只有通过不断地尝试、改正和改进才会逐渐完善。所以学习数学也是一个循序渐进,不断完善的过程。对自己的困惑和错误能够宽容,同时也知道只有采取积极的态度才会学好数学。②静态绝对主义数学观。他们把数学知识看成自古有之、千年不变的、不容置疑的真理的集合,是一个高度严密、极端抽象的知识体系。因此,他们多强调接受和记忆,模仿和训练,提倡熟能生巧;或认为自己的记忆能力不行,抽象能力又较差,所以数学学习必然困难等想法。③工具主义的数学观。他们认为学数学就是学会处理和解决各类(数学)问题的方法和技巧。所以他们比较重视做应用题,提倡将数学与生活紧密结合,也比较注意积累与数学有关的素材。④文化主义数学观。他们认为数学是与社会性质、阶级意识、民族精神等有一定关系的人类文化,是一种反应人们思维方法、审美意识与文化价值观念的特定的知识体系。当然这种观念在学生中间被发现、被接受的较少。上述各种观念从不同的角度反映了学生对数学本身的理解和领会,对数学价值的认识和判断。当然有些观念对学生的学习起到积极促进作用,而有些则明显会导致消极的负面影响。二、数学观对数学学习的影响分析数学观对学生数学学习究竟有多大的影响,目前尚缺乏确切的数据分析。但从历史材料和当前的研究表明,学生的数学观对其学习方式和学习成果是有相当影响的。Schoenfeld研究表明学生思想观念的发展已经成为数学学习过程中的重要因素,数学信念与数学成绩之间存在明显的相关性。[2]Carlson研究发现一些普遍存在的和持续的数学观念在他们的后继学习中起着决定性作用。[3]郑毓信指出,对于学生来说,观念的重要性在于数学学习不仅是指知识的学习和能力的提高,而且也是一个观点、信念、态度等形成的过程,而后者则将对他们今后的数学学习、乃至整个人生产生重要的影响。[4]事实上,对个体而言,正确的数学观可以统摄个体自身的各种因素,使之积极参与到学习活动之中。如果学生没有一定的数学观念,那么他将是主动精神缺乏、主体意识单薄、只会按指令被动行事的人;如果学生对数学的看法和课程蕴藏的数学观不一致,那么这种观念便可能成为其学习的障碍;如果学生面对数学处境而未能意识到它与数学有关,那么他就不会着手以数学方法来处理;如果学生把数学看作是与社会生产实践活动无关的概念、定理、符号的集合,那么他们在学习过程中就必然会采取一种静止的、被动的态度来接受“数学真理”;如果学生把数学看作是数学家凭空想象、自由创造的产物,那么一种远离社会、脱离客观、极其严密、高度抽象的刻板印象就会占领他们心灵的上空,使他们在学习过程中必然产生一种兴趣不大、意义不大,或难度太大、敬而远之的心理;如果学生把数学看作思维的体操,认为学数学就要反复用脑,那么数学仿佛就变成了度量一个人聪明与否的标尺,当他们解决不了数学问题而产生挫折感时,便会觉得自己智力不如别人而悲观失望;如果学生认为数学学习就是计算、就是解题,那么在他们眼中,数学与算式、公式﹑列式有着不可分割的关系,或者认为数学就是给出一堆数字、然后通过算式找出答案的活动,那么他们对冗长繁杂的计算、无边无际的题海必然会丧失兴趣;如果学生认为数学学习就是模仿智力超群的数学家或数学教师的思维,那么他们常丧失信心,自叹不如。实践证明,学生的数学观的确影响着他们的学习态度、学习兴趣,影响着他们对认知材料的选取,对认知方式的选择,对学习结果的评价。(李士锜2001,211)对群体而言,数学观可以统摄个体之间的各种力量,使之积极参与到社会建构活动之中。学习是一种社会建构活动,存在着师师、生生、师生以及学生与家庭、学生与社会交往的多种形态。在这些活动中,数学观一方面提供活动的基本准则,以此来调节主体的行为方式,决定交往的程度和范围。另一方面,通过个体数学观的沟通、交流和碰撞,主体间逐渐达成共识、形成合力。尽管同一群体中的数学观存在着个体差异,但总有一种主导的数学观在起作用,也正是这样主导观念使得整个班级对数学的学习目标、学习方式、评价标准趋向一致,从而保证学习活动顺利进行。相反,如果学生之间,师生之间,学生与教材之间的数学观经常抵触、矛盾和冲突,缺乏维系的纽带,就会出现“形聚神散”的状态,学习活动就难以真正有效开展。三、数学史影响高中生数学观的实验探索1、实验目的数学史与数学教育的关系早在1876年丹麦著名数学家和数学史家H. G. Zeuthen就强调,“通过数学史的学习,学生不仅获得了一种历史感,而且,通过从新的角度看数学学科,他们将对数学产生更敏锐的理解力和鉴赏力。” [5] 1977年,美国学者McBride和Rollins发现数学史在提高学生数学学习积极性方面是十分有效的[6].Wilson和Chauvot指出,让学生和教师思考“谁做数学”、“数学怎么做”、“数学是什么”等问题,让学生了解数学与其他学科、数学与社会的广泛联系,能拓宽对数学本质的看法[7].英国数学史家J. Fauvel曾总结了20条将数学史运用于数学教学的理由,其中之一是数学史可以改变学生的数学观[8].Breugel指出有关数学概念是怎样发展的历史知识有助于学生理解概念,并向学生指明了数学是人类在特定历史时期所创造的,而不是历来就有、永恒不变的[9].自从1972年“数学史与数学教育之关系国际研究小组”(International Study Group on the Relations between History and Pedagogy of Mathematics,简称HPM)成立以来,欧美更多的学者对数学史与数学教育的关系进行了大量研究。国内也有一些学者再关注数学史与数学教育的关系。但数学史能否改变学生的数学观,从而影响他们的数学学习,国内外有关实证研究仍不多见。本文既受历史的启发,又拟在前人研究成果的基础上,进一步探索数学史对高中生数学观究竟是否产生影响。2、被试的确定实验班:苏高工校区03预科4班;控制班:苏高工校区03预科3班.实验班和控制班是随机选定的.两个班的数学教学由笔者一人承担.3、实验过程⑴前测.对两个班学生数学成绩进行测试,结果见表3 .对两个班学生数学观进行问卷调查(见附录一),结果见表4.⑵实验方法①结合教学内容,介绍相关历史为期一年的教学过程中,在实验班每周至少介绍一项有关的数学史知识,在控制班以解题和练习代之.②选择部分内容,测试对比研究实验一:对数概念学习对数概念时,在两个班采用了不同的教学方式.一是按课本体系组织教学;另外是结合阅读材料《对数与指数发展简史》,解答学生的各种问题,同时也引发了一堂意想不到的对数课[10].课后测试(见附录二)结果统计如下:表1 两个班对数概念学习前、后测试统计表结果表明:学习“对数发展简史”之后,控制班对“对数”学习的难度明显降低,对学习对数的兴趣明显提高,对学习对数的目的更加明确,对对数产生的过程更加清楚.实验二:复数概念在两个班按不同方式组织教学.在控制班按课本内容和体系组织教学.在实验班从复数发展的历程组织教学.调查(见附录三)结果如下:表2 两个班对复数概念学习测试统计表结果表明:实验班对虚数的接受程度高于控制班,把虚数看成是有意义的、真实存在的数的比例大于控制班;将数系看成是动态发展的比例高于控制班.从课后交流中也了解到:历史过程的引入使学生对数的概念的认识更加充分、更加准确、更加深刻.① 复数是按一定方式构造的.复数的产生是从“运算可以无限制地进行的原理”出发,数学内容的组织化、系统化的过程[11].这是人类构造数系的一种方式,也是学生建构数系认知结构的方式之一.② 复数的产生是一个历史发展过程.通过对复数发展过程的剖析,学生认识到复数是几代人共同努力的产物;是一个从无到有、从疑惑到接受、从模糊到清晰、从片面到完善的过程;是随着社会的发展、数学本身的发展而发展的.复数是对实数理论补充和推广后产生的.这是数学本身内部成果积累,引导新的抽象阶段,向新的概括性概念上升的必然结果 [12].③ 虚数不是神秘莫测、绝对权威的.从虚数概念“生长”过程来看,即使是数学家的认识也是逐步深入的.最初人们对虚数持怀疑和不接受的态度.莱布尼兹称虚数是“理想世界的奇异创造”,是“神灵的美妙的庇护者,几乎介于存在和不存在之间的两栖物”[13].欧拉尽管用它,但也认为虚数只存在于想象之中.直到哈密尔顿把复数建立在实数理论基础之上,以及复数在物理学等领域中的应用加强时,人们才开始真正接受虚数.这与学生学习时,缺乏了解它们的实际应用而造成对概念理解和接受上有一定的心理障碍是一致的.但历史的呈现有助于学生打消神秘的心态和权威的心理,减少排斥的情绪.④ 复数产生和发展是人们思想观念的突破.象这样的方程没有实数解在学生心目中已成定论,既然没有实数解,为什么还要讨论它?既然负数不能开平方,又为什么要承认是有意义的?这是一种心理上的矛盾、认知上的冲突,更是观念上的封闭.辩证法告诉我们:世界上没有任何东西是完全不变和无论如何也不发展的.任何数学概念,不管它是怎样被精确定义,也还是要随着科学的发展而发展的.人们对事物的认识总是螺旋式上升的.通过对历史的考察,大家体会到虚数的引入是一种创造,一种发明,一种思维上突破,一种观念上的更新.⑤辨析古人的数学观,促进学生数学观的形成学习立体几何时,让学生讨论欧几里得的数学观.学习解析几何时,让学生讨论笛卡儿的数学观与解析几何的诞生.⑶后测:一学年结束后,再对两个班统一测试和问卷调查(见附录一),结果如下:表3 两个班期初、期末考试成绩统计表注:⑴实验班与控制班期初成绩,所以两个班学生成绩无显著差异.⑵实验班与控制班期末成绩,故不能认为数学史对学生成绩没有影响.表4 两个班期初、期末问卷调查统计表结果表明:数学史的介绍明显提高了实验班学生数学学习兴趣;加强了学生数学学习动机,转变了数学观念;让学生更加了解了数学的本质,也促进了数学成绩的提高.4 结论通过一年的调研发现,数学史一定程度上能改变学生的数学观,从而影响数学学习.① 通过对历史的了解,学生可以缩短心理上接受某一观念的时间.② 通过对历史的分析,学生可以接受数学是人类社会活动的结果.③ 数学史有助于培养学生动态的数学观.④ 数学史有助于培养学生的创造发明观.⑤ 数学史有助于培养学生的数学文化价值观.⑥ 数学史有助于学生了解数学形式化、抽象化、精确化的过程.⑦ 数学史有助于改变教师的数学观从而影响学生的数学观.5几点建议基于本文的研究,我建议:高度重视学生数学观的培养;认真处理数学史与数学教材的关系;组织编写合适的历史材料;认真组织在职教师的数学史培训;大力开展HPM研究.
微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。
摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.
关键词:微积分;背景;作用;函数
一、微积分进入高中课本的背景及必要性
在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。
柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。
从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!
二、微积分在中学数学中的作用
1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.
2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。
3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。
三、国际上一些教材对微积分知识的处理
以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。
当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!
摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。
关键词:微积分;起源;内容;方法
微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:
一、微积分起源的介绍
微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。
介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。
二、介绍微积分内容及方法
微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。
三、为什么要学习高等数学
微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:
微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。
前言
21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。
一、我国微积分教学改革的现状
目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。
首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。
其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。
再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。
二、微积分课改的必要性
随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。
(1)社会高度发展提出的要求
微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。
(2)科技的发展提出的需要
当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。
(3)人类思维发展的需要
微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。
三、微积分课改的内容
根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。
1、课程基本理念的改革
微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。
2、课程内容的改革
根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。
3、课程设计的改革
原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。
4、教学方法的革新
(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。
(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。
5、教学工具的革新。
现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。
四、小结
数学与文化系别:中文系 专业:08新闻 学号:200830161010 姓名:李西淳 数学与经济学的关系内容摘要:经济学需要很好的逻辑能力,数学培养了这种能力,经济学还要有计算等方面的能力,这也是数学需要并培养的。高等数学主要是侧重于掌握数学知识,及培养应用数学的能力,而数学分析却对培养学生的逻辑分析能力和创造性思维能力大有作用,数学可以是研究经济学的一种方法但不是唯一的方法。关键词:数学 经济学 关系 意义 局限性 一、 数学与经济学关系概述数学与经济的关系在今天可以说是息息相关,任何一项经济学的研究、决策,几乎都不能离开数学的应用。比如,在宏观经济中的综合指标控制、价格控制,都有数学问题,在微观经济中数理统计的“实验设计”、“质量控制(QC)”、“多元分析”等,对提高产品的质量往往能起到重要的作用。当代西方经济认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论,进行决策和预测。 当今在经济学中使用数学方法的趋势越来越明显,领域越来越广泛。自从1969年诺贝尔经济学奖创设以来,利用数学工具分析经济问题的理论成果获奖不断。事实上,从1969年到1998年的30年中,有l9位诺贝尔经济学奖的获得者以数学作为主要研究方法,占总人数的%;而几乎所有的获奖者都运用数学方法来研究经济理论。在中国,最近几年对在经济学中使用数学方法的问题讨论比较热烈,数学的介入究竟是祸还是福,对此,可谓仁者见仁,智者见智。有的人认为,数学使经济学由乌托邦上升为科学;而另一些人则认为,数学就像魔鬼一样,会使经济学误入歧途。这说明我国经济学界在经历大力引进西方经济学的热潮后开始了独立自主的思考和探索。二、数学对现代经济学研究和发展的影响随着经济学发展以及研究的深化,经济学家们逐渐认识到,在考虑和研究问题时,要求具有逻辑严谨的理论分析模型和通过计量分析方法进行实证检验,需要完全弄清楚一个结论成立需要哪些具体条件。单纯依靠文字描述进行推理分、析,不能保证对所研究问题前提的规范性及推理逻辑的一致性和严密性,也不能保证其研究结论的准确性、易证实性和理论体系的严密。这样以数学和数理统计作为基本的分析工具就成为现代经济学研究中最重要的分析工具之一。每个学习现代经济学和从事现代经济学研究的人必须掌握必要的数学和数理统计知识。现代经济学中几乎每个领域或多或少都要用到数学、数理统计及计量经济学方面的知识,而且不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论,更谈不上自己做研究,给出结论时所需要的边界条件或约束条件。理解概念是学习一门学科,分析某一问题的前提。如果想要学好现代经济学,从事现代经济学的研究,就需要掌握必要的数学。二、 数学在经济学应用中的意义 如果经济学没有采用数学,经济学就不可能成为现代经济学。许多经济学概念是需要用数学来定义,经济行为和经济现象也主要是通过运用数学语言来分析和研究的。用数学语言来表达关于经济环境和个人行为方式的假设,用数学表达式来表示每个经济变量和经济规则间的逻辑关系,通过建立数学模型来研究经济问题,并且按照数学的语言逻辑地推导结论。因此,不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论。数学在理论分析中的作用是:(1)使得所用语言更加精确和精炼,假设前提条件的陈述更加清楚,这样可以减少许多由于定义不清所造成的争议;(2)分析的逻辑更加严谨,并且清楚地阐明了一个经济结论成立的边界和适应范围,给出了一个理论结论成立的确切条件;(3)利用数学有利于得到不是那么直观就得到的结果;(4)它可改进或推广已有的经济理论。四、数学在经济学中应用的局限性首先,经济学不是数学,数学在经济学中只是作为一种工具被用来考虑或研究经济行为和经济现象。数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用而不能将之替代经济学。其次,经济理论的发展要从自身独有的研究视角出发去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件它不是无条件地适用于任何场所,而是有条件适用于特定的领域。再次,数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化从而不利于经济的发展。 数学在现代经济学中的作用数学现在已经成为现代经济学研究中最重要的工具。现代经济学中几乎每个领域或多或少都用到数学、统计及计量经济学方面的知识,因此数学与经济学的关系是相当密切的。参考文献:田国强 <<现代经济学的基本分析框架与研究方法>> 张真.投入产出经济学中运用数学方法的机理分析[J]. 林毅夫.关于经济学方法论的对话[J].东岳论丛 赵凌云.经济学数学化的是与非[J].经济学家
166 浏览 4 回答
262 浏览 5 回答
137 浏览 5 回答
283 浏览 5 回答
163 浏览 4 回答
165 浏览 4 回答
89 浏览 2 回答
346 浏览 4 回答
177 浏览 6 回答
268 浏览 3 回答
258 浏览 3 回答
272 浏览 6 回答
290 浏览 2 回答
316 浏览 3 回答
130 浏览 3 回答