证明:由f''(x)≥0→f'(x)单调递增 由f'(x)=∫(上限x,下限0)f''(x)dx,f''(x)≥0,0<x<1→f'(x)>0→f(x)单调递增由f(0)=0,f(x)单调递增→f(x)>0由f(x)-f(0)=f'(ξ)(x-0),0<ξ<x,f(0)=0,f'(ξ)<f'(x)→f(x)>Cx,其中C为常数,且C>0由∫(上限1,下限0)(x - 2/3)f(x)dx>∫(上限1,下限0)(x - 2/3)Cxdx=0故:∫(上限1,下限0)xf(x)dx>2/3∫(上限1,下限0)f(x)dx。