华罗庚先生曾指出:“数缺形时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。”数形结合是中学数学中四种基本思想方法之一,是数学的本质特征。在解决数学问题时,将抽象的数学语言同直观的图形相结合,实现抽象的概念与具体形象的联系和转化,是高中数学教学中的一条重要的数学原则。如果能注意数形结合思想的应用,能使许多数学问题简单化.下面试从函数图象和几何图形两个方面举例说明“以形助数”的有关妙用.3
在数学的学习过程中,数学思想方法是最为重要的,是学习数学的关键所在,它能够把知识的学习,智力的发展,能力的培养,有机地联系起来.
数形结合方法在初中数学教学中的应用摘要:数形结合不但是初中数学教学的一种方法,更是一种有效的学习方法。在新的教育背景下,教师应该在初中数学教学中运用数形结合方法,使学生的学习效率和学习能力得到提高,引导学生更好的成长与发展。关键词:数形结合;初中数学;教学应用数形结合思想是指在对问题进行研究的整个过程中注意有机结合数与形,在对问题具体的情形斟酌完之后把图形的问题向数量关系的问题方向转变。抑或是将数量关系的问题向图形问题的方向转变,使复杂的问题变得简单,使抽象的问题变得具体。因此在初中数学教学中。教师应进一步探究如何将数形结合的思想加以积极运用。使学生不断体会并最终掌握这种数学思想。一、数形结合方法在初中数学教学中的重要作用数形结合的教学方法之所以被各学校和数学老师接受,是因为通过数形结合的方法,可以使将那些生硬的数学知识形象化、趣味化,能将课堂上学生的注意力集中在老师所讲的知识点上,同时让学生学起来有兴趣,从而提升学生的空间想象力和数学分析能力。在初中数学教学中,数形结合的思想的作用具体体现在如下几点:第一,对于一些与函数有关的代数题或几何题,应用数形结合的方法求解起来比较容易;第二,对于一些应用题,用图形的方式向学生展示,更便于学生的理解;第三,对于数学方程式,运用函数或者几何图形来求解更方便;第四,与几何相关的函数不等式用数形结合的方法来求解更方便。二、初中数学教学中数形结合思想的应用策略1.数形结合思想的展开初中阶段的学生,抽象思维能力尚未完全发育成熟,因此,在初中阶段的学习中,特别是对一些抽象数学的概念,有很多学生看到概念却无法理解这个概念所代表的意思,往往学起来显得很被动,如果老师能在教学的过程中,将数形结合起来讲解,那学生学起来就容易得多。例如,在初中数学中,对于一些方程组,学生解起来比较麻烦,如果老师能结合数轴,通过线的交点来展示,那方程组解起来就方便多了。此外,在初中数学中,还有一些路程问题、浓度问题,老师能结合图形一起讲解,学生学起来就感觉更容易,思路更清晰。2.数形结合思想的升华数形结合的方法不仅可以用来解决一般难度的数学题,更重要的是在一些较难的数学知识点的学习上,老师将数与形结合起来讲解,就可以让解题的方法更简便、直观,从而达到立竿见影的效果。比如,对于初中数学的难点三角函数来说,老师就可以将函数与三角形的解析有机地结合起来,通过在多媒体或黑板上展示三角函数与其有关的图形,同时,利用它们来向学生讲解三角函数的解题思路。通过这种数形结合的方法,学生就可以很快地找到解决此类题目的方法。三、数形结合思想在初中数学教学中的应用1.借助于数轴理解抽象的概念初中数学中数形结合思想是从数轴上的点与实数一一对应开始的。在刚开始接触实数时,学生可能对实数的概念无法理解,此时引入数轴,根据数轴上的点与实数应用对应的关系,帮助学生理解抽象的概念。同时,数轴的介绍还可以帮助学生了解相反数、绝对值等,绝对值是点与原点之间的距离,而相反数则是在原点另一侧的和原点距离相等的点。这样,原本抽象的概念可以变得简单化。2.借助于平面直角坐标系在解决函数问题时,通常借助于直角坐标系可以帮助我们理解题意。比如,要确定一个一元二次函数的最大值和最小值,就可以在直角坐标系中画出函数的简图,然后就可以知道函数的最值分别是多少。或者要考查一个一元二次方程有几个根,可以转化为相应的一元二次方程与x轴有几个交点的问题,通过在直角坐标系中画出函数的图形,结果便一目了然,相对于一元二次方程根的判别式而言,这样会减少很多复杂的计算过程,使问题简单化。还有就是若考虑一个带有参数的一元二次方程,要使方程有两个不相等的实数根,满足条件的参数是什么,这样的问题也可以根据画出函数的草图来解决。3.借助于平面几何图形在学习三角形的角的相关定理知识的时候,往往有很多关于角相等或是线垂直平行的证明题或是计算题。例如,给出一个三角形,要证明其中两个角相等,那么,教师就应该先根据已知条件画出所给三角形,然后给学生分析如何做出相关的辅助线。画出辅助线之后,往往就能够看出根据哪个定理可以证明题意。对于三角函数的问题也是如此,关于一个角的正弦、余弦、正切和余切等的计算,是根据图形来进行的,这也是数形结合思想在教学中的很好的应用。例如:如图所示,在三角形EMN中,EM=EN,以EN为直径的圆O与EM相较于点A,点B是是MA的中点。(1)求证:DB是圆O的切线。(2)若若EA=12,MN=14,求MB的长。教师在教学当中巧妙的利用数形结合的方法,让学生能清晰的理解数学中的内容,从形到数,揭示数形结合在初中数学教学蕴含的思想,同时也培养了学生的逻辑思维能力与空间想象力,让学生养成一种思维习惯来学习,从而提高学生的学习效率,让几何在数形结合中展现充分的价值,让教师更好的教育教学.4.数形结合在概率和统计中的应用数形结合在概率和统计的学习中是非常典型的应用。例如,要考虑一个月之内,某市的慈善资助所支出的财政金额的变化,可以画一个折线图,这样,金额的变化在折线图上可以一目了然。对于概率而言,通常情况下,要指导学生依题意画出树形图,这样概率的问题就可以迎刃而解了。5.不等式在数形结合中蕴含的思想教材中解一元一次不等式的时候,意图是想让学生解二元一次方程组一样,加深学生对不等式的理解,又巩固了二元一次方程组的内容,老师在讲解不等式的时候,会把数值在数轴上直观的表现出来,可以清楚的让学生看到不等式有多个解,同时也体现出不等式在数形结合中蕴含的思想,更加让学生知道一元一次不等式的解集利用数轴更加有效。例如:解不等式4x-1<2(x+1),得x<4的。为了加深学生对不等式的深刻理解,老师适当的把不等式的解集用数轴表现,让学生体会不等式解集利用数形结合解决的奥秘。结语在初中数学教学中数形结合属于较重要的解题思维。该解题思维与方法具有广泛的应用范围,对初中生思维的开阔及提高学生的数学学习兴趣具有重大意义。而教师要想有效提高学生对数形结合思想的应用能力,就应在数学教学中应用该思想,渗透该思想,使其更好地服务于初中数学的教与学。
190 浏览 3 回答
241 浏览 3 回答
258 浏览 6 回答
293 浏览 4 回答
216 浏览 9 回答
129 浏览 4 回答
345 浏览 3 回答
276 浏览 1 回答
204 浏览 5 回答
182 浏览 4 回答
161 浏览 3 回答
85 浏览 5 回答
328 浏览 2 回答
111 浏览 3 回答
348 浏览 5 回答
198 浏览 3 回答
176 浏览 4 回答
359 浏览 3 回答
308 浏览 4 回答
238 浏览 7 回答
121 浏览 6 回答
237 浏览 3 回答
319 浏览 2 回答
303 浏览 6 回答