小论文格式范文
从小学、初中、高中到大学乃至工作,大家都写过论文吧,借助论文可以达到探讨问题进行学术研究的目的。还是对论文一筹莫展吗?下面是我收集整理的小论文格式范文,希望对大家有所帮助。
一、学生要严格按照论文题目、作者及学号、单位、指导教师、摘要、关键词、正文、主要参考文献。
二、字体、字号规定如下:题目(黑体小2号居中);作者、单位(宋体4号);指导教师及其姓名(楷体4号间隔3空);摘要、关键词(黑体5号);摘要内容、关键词内容(楷体5号);参考文献(黑体5号)、参考文献内容(宋体5号);正文内容(宋体小4号),一级标题(黑体小4号),二级标题(小标宋小4号)。
三、论文的标题层次采用阿拉伯数字分级编号。如:一级标题1,2级标题,三级标题。编号左起顶格书写。
四、中文摘要150字左右,关键词3-7个。
五、参考文献只列文中引用的公开发表的文献(未公开出版的用脚注说明),按文中出现的先后次序列出。其排列格式如下:
专著:作者名(包括前三位)、书名、出版社、出版年。
论文集:作者名(包括前三位)、文题、编著者、书名、出版社、出版年。 刊物:作者名(包括前三位)、文名、刊物名称、期(卷)。
如:
[1] 盛宝怀. Ba空间中Kantorovich算子的饱和性. 数学杂志,1992,12(2):146-154.
[2] Wu Garidi. The Jackson theorem in Ba spaces. Approx. theory & Appl.,1996,12(2):60-69.
[3] 孟伯秦. 内插空间理论及其应用.内蒙古人民出版社, 2001, 183-192.
六、用蒙文撰写的论文的`题目、单位、作者、指导教师、摘要、关键词必须用蒙文汉两种语言表达。
七、毕业设计(创作)要求录入作品名称(题目)、单位、姓名、指导教师、毕业设计报告书。
内蒙古自治区科技人才地域分布差异分析
××× 学号
数学科学学院 数学与应用数学专业 20xx级汉班
指导教师 ×××
摘 要 科技人才是经济发展、社会进步、文化繁荣的先决条件和制约因素,本文根据内蒙古自治区xxxx年科技人才调查统计的数据,对内蒙古地区人才分布现状、差异及形成差异的原因和今后发展对策等方面进行了初步探讨.
关键词 内蒙古自治区、科技人才、地域差异、人才优势
内蒙古自治区位于祖国的北疆,地文人稀,交通不便,自然条件和自然资源复杂多样,在这片土地上设有十二个盟市级行政单位,其中含有四个市八个盟,首府是呼和浩特[1].
1内蒙古科技人才地域分布差异
内蒙古各盟(市)科技人才地域分布差异
人才数量差异
内蒙古自治区自然资源丰富,但缺乏与之相适应的人才资源. 因此人才资源急需解决[2]. 解决的办法就是引进人才的同时,切实加强本地区的人才开发培养工作.
人才地域结构差异
(正文部分略)
2内蒙古科技人才发展战略
一方面要适当增加物质力量对科技事业的支持,加强教育投资,发送办学条件,抓好师资队伍建设,提高教师待遇,减少教育人才外流;另一方面要深化教育体制改革,提高教育质量.
本文在写作过程中得到了XXX老师多次精心指导,在此表示感谢.(本行可以不写)
参考文献:
[1] 盛宝怀. Ba空间中Kantorovich算子的饱和性. 数学杂志, 1992, 12(2): 146-154.
[2] Wu Garidi. The Jackson theorem in Ba spaces. Approx. theory & Appl.,1996,12(2):60-69.
[3] 孟伯秦. 内插空间理论及其应用.呼和浩特:内蒙古人民出版社, 2001, 183-192.
论文格式要求 一篇完整的论文应包括如下四部分: 第一部分:正文之前 (1)题目 (2)作者 (3)数学系 级 专业 班 (4) 指导教师 名字 空一行 (5)摘要(中文)200字以内; (6)关键词3—5个 空一行 第二部分:正文 (1)引言; (2)主要结论和必要的论证.(可分成若干节讨论) 第三部分:参考文献:应依引用次序编号,注意书写的规范性. 例1:[1]陈世明.一类半线性双调和方程的整体解,应用数学[J],1994,7(1):85—92 说明:其中,[1]是文献出现的序号,陈世明是作者名,"一类半线性双调和方程的整体解"是论文的题目,"应用数学"是杂志的名称,[J]表示杂志,"1994,7:85—92"表示发表的年份,卷,期,页(起止)码. 例2:[3]华罗庚.数论导引[M].北京:科学出版社,1985 说明:其中,[3]是文献出现的序号,华罗庚是作者名,"数论导引"书的题目,其后加[M]表示这是一本书,"北京:科学出版社"表示出版地点和出版社,"1985"表示出版的年份. 第四部分:英文部分 (1)英文题目 (2)作者姓名(拼音字母) (3)数学系 级 专业 班 (4)指导教师 名字 (3)英文摘要; (4)英文关键词. 二,文字字体要求: 用A4纸打印,其中 (1)题目用2号宋体(粗); (2)小标题用4号黑体; (3)其他用5号宋体(中文)(英文用5号Times New Roman); (4)其他未说明的问题(如脚码,脚注等)按一般科技论文格式要求 三,其他 论文一律采用Word文档或Latex文档形式打印编排(尤其是符号,字母要用数学形态);要用统一的封面;在左侧装订.
数学是人类 文化 的一个重要的组成部分,它在人类文明与社会进步中起着重要的作用。但是我们对于数学的真正认识又有多少呢?下文是我为大家整理的关于对数学的认识论文的 范文 ,欢迎大家阅读参考!
浅谈数学与应用数学
摘要: 新课程改革注重知识的发生、发展过程,培养学生用数学的观点观察社会、思考问题,增强应用数学的意识,重视联系实际和数学应用意识。教师应加强数学应用教学,多让学生自主学习,重视课外实践,促进学生逐步形成和发展数学应用意识,提高实际应用能力。
关键词: 数学应用 生活 经验 学以致用
新课程改革注重知识的发生、发展过程,培养学生用数学的观点观察社会、思考问题,增强应用数学的意识,真正让学生体会到“学以致用”。近年来,我坚持以新课程标准为指导思想,重视实践,加强对学生数学应用能力的培养,做了一些探索,在此谈谈对这一问题的一点思考。
一、理论基础
1.数学的发展就是数学应用的历史。
从数学的早期发展来看,数学起源于人类实际生活的需要,人类在简单的物品交换和重新分配中,产生了数的概念。在古埃及流传下来的最早的数学著作《莱茵德纸 草书 》和《莫斯科纸草书》中,包含有许多几何性质的问题,内容大都与土地面积和谷堆体积的计算有关;中国现存的最早的数学著作《周髀算经》中,主要成就是勾股定理及其在天文测量上的应用。
到了近现代,特别是现代,一方面,数学的核心研究变得越来越抽象;另一方面,数学的应用也变得越来越广泛。数学除了在物理、化学、生物等自然科学大量应用,还在经济学、社会学领域大展身手,在日益发展的信息社会中,即使一般的劳动者,也必须具备基本的数学运算能力以及应用数学思想去观察和分析工作、生活乃至从事经济、政治活动的能力――存款、利息、股票、投资、 保险 、成本、利润、折扣、分期付款,以至文艺创作、心理分析、社会改革、哲学思辨等。可以说,数学是人类活动最基本、最重要的工具之一。
2.新课程改革对加强数学应用的体现。
新课程标准强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。新课程标准强调培养数学的应用意识,要让学生认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试从数学的角度运用所学知识和 方法 寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
新课程标准提出:数学学习内容应当是现实的、有意义的。在实行新课程改革以来,新编教材在加强应用数学的意识方面作了大量的改进,把培养学生应用数学的意识贯穿在教材编写的始终,在各章的章头图或阅读材料中,注意提供有实际背景的问题,教材的正文一般都注意从实际引入概念,从实际提出问题,例题、习题中增加了实际应用的内容。理论联系实际,而联系实际的目的就是为了更好地掌握基础知识,增加应用数学的意识,培养分析问题和解决问题的能力。例如《 教育 储蓄》联系经济生活中的储蓄,二次函数中联系的课题《刹车距离与二次函数》,还有《数据的收集与处理》、《统计与概率》中就大量包含了与实际问题联系非常密切的内容。新教材还增加了课题学习,目的是应用所学数学知识,提高解决实际问题的能力,使学生在参与数学活动过程中受到训练和提高。
所以作为一名数学教师,应注意在教学活动中加强数学应用教学,促进学生逐步形成和发展数学应用意识,提高实践能力,为社会培养合格、适用的人才。
二、教学实践
1.加强直观教学,培养学生应用意识。
一些数学问题的引入应根据教学内容运用直观手段向学生提供丰富而典型的感性材料,如采用实物、模型、挂图,或进行演示,引导学生观察,并让学生自己动手操作,以便让学生丰富自己的感性认识。在教师生动形象地描述的基础上,对今后学习、生活、工作有用的内容,教学中特别要使学生了解所学价值和背景,学生应当看到数学什么时候被应用,以及如何应用,而不是得到它们将在某天被用到的许诺。在提出和研究问题时,教师应强调把数学应用到现实世界中及与中学生有关的其他环境中的问题上去。
例如,在讲“解直角三角形”时,可利用这样一个实际问题:修建某扬水站时,要沿斜坡辅设水管,从剖面图看到,斜坡与水平面所成的∠A可用测角器测出,水管AB的长度也可直接量得,当水管铺到B处时,设B离水平面的距离为BC,如果你是施工人员,如何测得B处离水平面的高度?有的学生提出从B处向C处钻个洞,测洞深;有的学生反对,因为根据实际情况,这样做费力;有的学生又说,这不是费力问题,C点无法确定。教学时应该注意从实际问题抽象出数学模型,运用解直角三角形知识去解决:BC=(AB、∠A均已知)。又比如用不等式的知识求水池的最低造价,用三角函数计算台风影响的持续时间,用概率知识分析免费摸奖的秘密,等等。通过数学在其他科学以及社会生活中的应用,让学生知道它既和人类的几乎所有活动有关,又对每个真心感兴趣的人有益。这样才能充分调动学生的积极性。
2.留出时间,增强学生自主应用意识。
对于大部分学生而言,他们学习数学的方法仍习惯于上课听老师讲解,认为听老师讲得越多,则自己会的就越多。学生在学习中虽然有所感知,基础知识却不扎实,硬性地接受大量知识信息,但理解却不深不透,灵活运用更不到位,导致学生一旦脱离了教师,遇上一些富有拓展性或是研究性的问题就显得力不从心、无从下手,于是放弃者居多。作为教师,应多给学生留出时间,加强引导,让学生在“自主”学习、在“合作”探索中加强对知识的应用,让数学应用落到实处。
例如,我在复习轴对称的知识时,提出了这样一个问题:一条河l的同侧有一个村庄A和一处仓库B,某天仓库突然失火了,村民们从家里出发提着水桶到河边拎水去救火,那么应选择怎样的路线比较合适?因为前面做过类似的习题,所以学生们很快给出答案:作出点A关于小河l的对称点A′,再连结A′B交l于点P,则折线APB即为村民行走的路线。我问学生们:“你们都是这样想的吗?”学生们异口同声地回答:“是!”我也没说什么,只是说:“你们还可以再交流交流。”刚开始,教室里嚷声一片,都说:“这有什么好讨论的,不就是APB吗?”慢慢的,教室里的声音小了一些,学生们开始投入思考交流当中,再后来,教室里的声音又渐渐大了起来,这时我问:“同学们有没有新的看法?”有十几个学生举起了手,我请其中一个学生发言,她说:“经过我们的讨论,我们发现还有更合适的路线,考虑到装满水的水桶比较重,提着桶行走不便,应该缩短提水的路程,我们的做法是作BQ⊥l,垂足为Q,连结AQ,折线AQB为更合适的路线。”我说:“同学们赞同她的看法吗?”绝大多数学生都表示了同意。经过这样的问题的讨论,学生们加强了实际应用的意识。
3.加强课外应用实践。
实践对于知识的理解、掌握和熟练运用起着重要作用。听到的终会忘掉、看到的才能记住,亲身体验过的才会理解和运用,因此,要加强课外实践活动。比如,“垂线段最短”性质学完了,利用体育活动时间让学生 跳远 ,并测出自己的跳远成绩;统计初步知识学完了,让学生自己估算学习成绩波动情况,等等。这样做,学生既理解了知识,又学会了解决实际问题的方法。经常让学生去实践,运用所学知识解决实际问题,学生应用数学的意识就会逐渐形成,这也是课堂教学转变教育观念,实施素质教育的有效途径。
例如,在上完《数据的收集与处理》后,布置学生选择适当的主题,自主设计调查方案、开展调查活动、进行数据的处理并写出调查结果。教师在这期间起组织作用,并不做具体工作,但在学生需要的时候给予适当的帮助和指导,激发学生积极主动地进行调查活动,在学生亲身经历调查活动的全过程的基础上,再一次提高认识,强化学生的统计意识、统计观念,会运用统计的方法解决有关的问题,在活动中培养学生的应用意识和实践能力。
总之,数学知识来源于生活,教师在数学教学中应关注学生的学习活动,充分挖掘生活中的数学素材,培养学生从数学的角度观察和分析周围事物的习惯,用数学的方法解决问题。
参考文献:
[1]李文林.数学发展史.
[2]等著.张原粲等译.思维教学.中国轻工业出版社,.
浅谈数学文化的教育价值
[摘 要] 数学是人类文化的一个重要的组成部分,它在人类文明与社会进步中起着重要的作用。数学文化的教育价值,在于它对人类 理性思维 、创造性思维所作出的独特贡献。每一个现代人都需要接受数学教育,通过对数学的认识与理解,提高文化素质,从而创造出更有内涵、更有意义的人类文化。
[关键词] 数学文化 教育 理性 创造性
数学具有一般文化的三条准则,即:相关性、相容性和大众性。相关性主要是与现实相关,而不是悬浮在半空中的虚无缥缈的东西;相容性则不仅强调它作为逻辑封闭系统的一面,还体现了作为多元文化的一种活动模式;而大众性则反映了对于学习和实践的每个人来说都是开放的。除此之外,更主要的方面是数学与一般大众文化比较所表现出来的特殊性,它构成了数学文化的个性,即独特的语言系统、价值判定准则和发展模式,使数学自身构成一种独立的文化体系,从而使得数学对象的人为性、数学活动的整体性,以及数学发展的历史性充满了人文价值,也更加凸现数学的文化意义。
数学与古代文化
中西方的数学,在漫长的古代,实质上可归结为希腊与中国的数学,我们的比较也就因此限定为希腊和中国的数学与文化。
古希腊文化的一大特点是:崇尚理性――在数学方面就是崇尚演绎推理,将数学与哲学紧密地联系在一起。古希腊数学家强调严密的推理以及由此得出的结论,他们所关心的并不是这些成果的实用性,而是教育人们去进行抽象的推理,激发人们对理想与美的追求。毕达哥拉斯提出的“图形与信仰”,表明由几何学习而上升到更高层次的人生信仰,即数学教育与数学学习不可以采取急功近利的态度。因此,古希腊优美的文学,极端理性化的哲学,理想化的建筑与雕塑,所有这些成就在人类历史上有着重要的地位,而这些成就处处体现着数学的影响。
古希腊数学中的点、线、面、数,都是对现实的理想化和抽象,这种对现实理想化和抽象的偏爱在其文化中也留下了深深的烙印。他们的雕塑并不注意个别的男人和女人,而是注重理想模式的人,这种理想化和抽象的追求,导致了对身体各个部位比例的标准化的追求,希腊人不仅给出了标准的黄金分割,而且任何一个手指和脚趾的比例都没有忽视。希腊文化被公认为是人类历史上辉煌的一页,它深刻地影响着之后人类文化的发展。
中国古代的数学更看重实用性,要求把问题算出来,用现代的话说,就是更重视“构造性”的数学,而不是追求结构的完美与理论的完整。这种表述方式与中国古代哲学的表述方式有相似之处。冯友兰在他的《中国简史》中指出:“中国哲学家惯于用 名言 隽语、比喻例证的形式表述自己的思想。《老子》全书都是名言隽语,《庄子》名篇大都充满比喻例证。”这些足以表明中国数学与中国文化之间的密切联系。
数,在中国古代被赋予了伦理的意义。礼仪,常常被人称之为“礼数”。由于有具体数字规定的“礼数”被视为伦理戒律,如《礼记・礼器》中有“天子之堂九尺,诸侯七尺,大夫五尺,士三尺”的规定,进而“礼教”被视为一种社会规律。由此出发,在中国文化中出现“天数”一词,“天数”代表不可抗拒的命运。
“礼数”在中国文化中被视为“规矩”,有所谓“不依规矩,不成方圆”。中国人已用数学规律(用“规”来画圆,用“矩”来画直线。)来形容和描述政治、社会的运行,中国传统数学的某些特征已融入文化之中。数学在中国 传统文化 中的影响,最大的莫过于一套有关数字的崇拜体系。时至今日,这种体系仍深深扎根于人们的日常生活之中。
无疑,数学是人类文化的一个重要的组成部分。正如美国《科学》杂志特约主编斯蒂恩说:“数学……在人类特性和人类的历史中,它的地位绝不亚于语言、艺术或宗教。”数学的发展与所取得的成果,对于它所属的文化产生着重要的影响。反之,在不同的文化中,数学也具有不同的文化价值及特征。
数学教育与文化素质的培养
中国传统数学本质上是功利主义的,只是作为“六艺”之一,因而也就不可能积淀为中华文化的理性结构,在相应的文化体系中也没有太高的地位。探根寻源,这对我们研究“考试文化”背景下的我国数学教育也许有着借鉴作用。
目前,我国的数学教育往往以使学生能够高分通过考试为目的,并由此去评价教师的教学水平。这种短期的、功利性的教育理念能够造就思维吗?一旦学生不需要考试时,数学的功能在他们身上即寿终正寝。这样的数学教育对人的素质的培养又有多大意义呢?在我看来,一个人的潜能如何,关键是看他能否处理明天的问题。数学教育应作为受教育者个人文化底蕴不可缺少的一块基石伴随他的一生,就如同学了语言更善表达,学了艺术更会欣赏,学了数学应使他更会理性地思考、辨析。
1.理性思维的培养
数学作为人类理性思维的特殊形式,基本特征是:逻辑性;抽象性;对事物主要的、基本的属性的准确把握。
数学的逻辑形式是指数学中非常严密的思维,从条件(原因)到结论(结果),环环紧扣,因果关系十分清楚,这种思想方法对任何人来说都是十分重要的。比如,实现某个重要的目标(为什么要实现这个目标),具体的 实施方案 (如何实现这个目标),需要具备(创造)什么条件,存在(潜在)哪些问题,最主要的风险来自何处,防范或化解风险的手段是什么,等等,这些与几何逻辑十分相似。数学思维的这一特征,对于训练人的素质十分重要,而善于推理的能力不是天生就有的,只有通过教育,才能使人在这方面的潜能得到发展。
抽象并非数学独有的特性,但数学的抽象却是最为典型的。数学的抽象舍弃了事物的其他一切方面而仅保留某种关系或结构。当我们从物理现象、化学现象、生物现象以及社会现象中,采取某种定量的方法进行分析,去揭示事物之间的联系,进而会发现有些看来毫不相关的物质、毫不相关的事、毫不相关的人,其实是相互关联的。比如,概率论与数理统计中的正态分布, 这种分布表明,各种随机事件的误差并不是随意出现的,而总是遵循一定的统计规律。
例如,一场普通的考试,如果考试的成绩没有呈正态分布,那么可以认为,在某个环节(比如,教学质量、试卷难度、评分标准、考场纪律……)出现了异常现象。而“普通的考试”可泛指为线性代数、英语、 企业管理 ,等等。再如,人们发现,人的各种精神或生理特征,是遵循正态分布的。这一点给人类文化学者研究人类不同民族的素质、气质提供了一定的理论基础,也为医药、药理学提供了重要的参数。
数学中找出所考虑问题的主要属性,是指善于抓住问题最本质的内容,它反映在人们处理问题时,要抓根本问题。霍尼韦尔国际总裁兼CEO拉里・博西迪说:“世界上根本不存在所谓的复杂的战略,存在的只是对一项战略的复杂的认识。一份业务部门的战略 报告 ,如果不能够在20分钟内用一种简单而平实的语言描述自己的战略的话,你实际上等于没有制定出任何战略计划。”如果说,善于抓住问题的根本,将复杂问题简单化,是一种智慧的体现。那么,一篇 工作报告 ,在受过数学训练的人手中,他至少会剔除一些与结论毫无关系的废话、套话。
数学对于人类理性思维的发展作出了特殊的贡献。古希腊的数学教育,推崇的是数学作为理智、思维能力的训练。认为算数是为了认识数的本质,为了追求真理并非做买卖;几何学是为了对思维进行训练,为了培养哲学家。他们把实用目的仅仅作为数学教育的一个微不足道的方面,而理性的培养才是数学教育的根本目的。正是依靠这种教育,理性才为人类文明开辟了道路。
近代西方文明的复兴,本质上是数学精神的复新。文艺复兴时代及其以后的欧洲人不仅学习、掌握了古希腊人的成就,更重要的是,向他们学习了人类推理能力。欧洲人继承了自然界具有数学设计的思想,相信理性可以应用于人类的各种活动。正是西欧的贤哲们掌握了理性精神、把握了数学精神之后,近代西方文明诞生了。
现代社会中“抛弃理性思维的倾向是群众不安定和政治不稳定的标志”。在构建人与人和谐、人与自然界和谐的社会过程中,一刻也不能没有理性思维,而培养理性思维的最有效途径是数学教育。“在高等教育中加强数学教育,使人们理解数学、重视数学和正确运用数学,这对于开发智力、提高我们民族的科学技术水平和思维能力,是有战略意义的事情。”
综上所述可以认为,理性思维是一种历史的、科学的、富有哲理的思考,是批判的思维,是求同存异的思维,是一种在更高层次上的道德推理。经过数学理性思维的培养,将有助于学生在今后的人生道路上,不盲从、有条理、善思辩,树立起既不强人从己,也不屈己从人的意志。
2.创造性思维的培养
由于数学严密性的特点,很少有人怀疑数学结论的正确性,数学的结论往往成为真理的典范。事实上,数学结论的真理性是相对的,即使像1+1=2这样简单的公式,也有它不成立的地方。例如,在布尔代数中,1+1=0。而布尔代数在电子线路中有着广泛的应用。
常言道:学贵有疑。疑就是一种批判精神,也是创新的前提。
在线性代数的教学过程中,我在讲解矩阵概念时强调它是数表而不是数,但是在分块矩阵运算中又突破了这种思维框框。
上述计算过程的思想是复杂的,然而从计算的角度看,它极大地提高了高阶矩阵乘积的运算效率,有着实际运用价值。在一般情况下,人们总是惯用常规的思考方式,因为它可以使我们在思考同类或相似问题的时候,能省去许多摸索和试探的步骤,能不走或少走弯路,从而可以缩短思考的时间,减少精力的消耗,似乎可以提高思考的质量和成功率。正如一位心理学家说过:“只会使用锤子的人,总是把一切问题都看成是钉子。”
然而,这样的思维定势往往会起到一种妨碍和束缚作用,它会使人陷入在旧的思考模式的无形框框中,难以进行新的探索和尝试。常规是人们解决问题的一般性思维,它能凭经验轻车熟路地完成一些工作,解决一些平常的一些问题,但是总用思维定势来看待事物,那就是傻瓜一个。当然,变化、革新需要很大的勇气,有的人即使意识到了变革的必要性,也没有变革的勇气。因为变革一旦失败,他将受到很大的伤害。但他却没有看到问题的另外一面:如果不进行变革,他同样会在未来遭受巨大的损失,而变革就有成功的可能,成功的变革将为他的事业开创出一片崭新的领域。
在高等数学的教学过程中,我向学生提出问题:我向教室的大门走,每次走所在距离的二分之一,问我能否走到大门?回答一:不要说走到大门,就是走出大门也不成问题。回答二:由于条件“每次走所在距离的二分之一”,因此人与大门之间的距离始终存在,那么,永远走不到大门。回答三:可以走到。因为人与大门之间的距离可以缩短到要多小有多小,并且可以无限变小的程度。回答三正确。此问题体现了高等数学中的核心思想――极限。它向人脑提出了挑战,激发了人的 想象力 。极限显得既生疏又熟悉,似乎超出了我们的领悟能力,又自然而易于理解。在征服它的过程中,需要调动人的推理能力,诗一般的想象力、创造力,以及求知的欲望。
类似以上的问题,若干年之后,对大部分学生来说,最终问题本身可能并不重要了,但是数学创造过程中想象以及超长思维的应用,可以使他们打破常规,学会变通,事情做得别开生面,并在潜意识中积蓄了创造和发明的冲动,能够从容地面对困难,欣然地面对未来.
数学教育作为训练人们思维的一种最有效的工具,在培养组织才能、敏感性、直观性和洞察力方面是再恰当也没有了。不论学生将来的职业选择如何,促进智力的一般发展是数学教育的基本目标。而数学教育的终极目标,并不是单纯地给学生提供求解某些具体问题的工具,也不仅仅是为现有的专业课教学铺路,而是培养学生对理性(真理)的追求,造就一种精神,一种脚踏实地、不畏艰险的探索精神。
数学直接或间接地影响着每一个有文化的人的思维,它促进了人的思想解放,提高了人类物质文明和精神文明水平。可以这样说:一种没有相当发达的数学的文化是注定要衰落的,一个不掌握数学作为一种文化的民族是注定要衰落的(齐民友语)。
参考文献:
[1]孙小礼.数学・科学・哲学[M].北京:光明日报出版社,1988.
[2][美]拉里・博西迪.执行[M].北京:机械工业出版社,2005.
猜你喜欢:
1. 数学文化论文3000字
2. 数学小论文3000字
3. 数学课题研究心得体会
4. 数学学习心得体会
数学论文一般都有专门的课题,不知你要哪方面的,网上有很多这方面的资料,你在百度搜索出输入:数学论文或者某课题的数学论文,注意下面的相关搜索及更多相关搜索,你就会看到的。
楼上说的似乎都太小儿科了,楼主想必是要发表的那种,当然要正式一点.这里的一篇是偏向交作业的下面一个是正式发表的双语版本张彧典人工证明四色猜想 山西盂县党校数学高级讲师用25年业余时间研究四色猜想的人工证明。在借鉴肯普链法和郝伍德范例正反两方面做法的基础上,独创了郝——张染色程序和色链的数量组合、位置(相交)组合理论,确立了仅包含九大构形的不可免集合,从而弥补了肯普证明中的漏洞。现贴出全文(中——英文对照)及参考文献的英译汉全文。欢迎各位同仁批评指正。最后特别感谢英国兰开斯特大学、兰州交大张忠辅、清华大学林翠琴、上海师大吴望名四位教授的无私帮助。附:论文用“H·Z—CP“求解赫伍德构形张彧典 (山西省盂县县委党校 045100)摘要:本文根据色链的数量和位置组合理论,用赫伍德染色程序(简称H—CP)和张彧典染色程序(简称Z—CP)找到一个赫伍德构形的不可避免集。关键词:H—CP Z—CP H·Z—CP《已知的赫伍德范例》〔1〕对求解赫伍德构形有两大贡献。其一,提供了H—CP,使我们用它找到了赫伍德染色非周期转化的赫伍德构形组合;其二,范例2提供了赫伍德染色周期转化的赫伍德构形,使我们发现了Z—CP,解决了这种构形的正确染色。为下面讨论方便,先给出〔1〕文中赫伍德构形的最简单模型。如图1所示:四色用A、B、C、D表示,待染色区V用小圆表示,其五个邻点染色用A1、B1、B2、C1、D1表示,形成的五边形区域叫双B夹A型中心区。中心区外有A1—C1链、A1—D1链(因它们的首尾分别被V连成环,故叫环,以便与开放链区分),其中还有B1—D2链、B2—C2链,A1、A2被C2—D2链隔开。其余赫伍德构形类同。在我们所设的模型中,再添加一些不同的色链后就构成许多不同的标准三角剖分图(记为G′)。当借助H—CP对它们求解时发现,其中色链的不同数量组合和相交组合直接影响解法上的差异。现在具体确立赫伍德构形的不可避免集。在后面图解中,画小横线者表示环,画粗线者表示两点以上染色互换的链,B(D)等表示一个点的染色互换。如图2: 设图1中有B1-A2链、D1-C2链(也可以是B2-A2链)存在时。其解法是:在A1—C1环内作B、D互换,生成新的A—D环(生不成情形归于下一种构形),再作A—D环外的C、B互换,可给V染C色。如图3:设图1中有C1-D2链、D1-C2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图4:设图1中有C1-D2链、B2-A2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。如图5:设图4中B1-D2链与A1-D1环相交,这时有B1-A3、C1-A3生成。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成新的B—D环(生不成情形归于下一种构形);再作B—D环外的A、C互换,可给V染A色。如图6:设图5中C1-D2链与A1-C1环相交,为简单起见,将C1-D2链在A1-C1环外的D色点均改染B色,见图中B(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成新的A—D环(生不成情形归于下一种构形);再作A—D环内的C、B互换,可给V染C色。如图7:设图6中B1-D2链再与B1-A3链相交,为简单起见,将B1-A3链在B1-D2链内侧的A色点均改染C色,见图中C(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图8:设图7中有B1-D2链与C1-D2链在A1-C1环内相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。图9:设图8中有B2-A2链与A1-D1环相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成A—D环;作A—D环内的C、B互换,生成新的B—D环;(生不成情形归于下一种构形)再作B—D环内的A、C互换,可给V染A色。如图10:这是一个十折对称的赫伍德构形。即在图3中,按图6的相交组合方式设C1—D2链与A1—C1环相交,D1—C2链与A1—D1环相交,C1—D2链在A1—C1环外的D色点与D1—C2链在A1—D1环外的C色点均改染B色,见图中B(带圈子的)。;再设改染成的C—B链、D—B链对称相交。这个赫伍德构形就是〔1〕文中范例2的拓扑变换形式。对于图10如果沿用图2—9的求解方法,就会产生四个周期转化的赫伍德构形,无法得解。但是,四个连续转化的赫伍德构形有一个共同的染色特征,即都包含A—B环,于是产生了如下特殊的Z—CP:若已知的是第一(或三)图时,先作A—B环外的C,D互换,生成新的A—C,A—D(或B—C、B—D)环,再作B(D)、B(C)[或A(D)、A(C)]互换,使五边形五个顶点染色数减少到3。解如图10(1)和图10(3)。若已知的是第二(或四)图时,先作A—B环外的C,D互换,生成了新的B—C(或A—D)链,再作B—C(或A—D)链一侧的A(D)[或A(C)〕互换,使五边形五个顶点染色数减少到3。解如图10(2)和10(4)。下面从理论上证明图2—10组成的不可避免集的完备性。在已四染色的G’中,由A、B、C、D四色中任意二色组成的不同色链共C42(=6) 种。反映在赫伍德构形中,有始点终点均在中心区且相交的A1-C1环、A1-D1环,还有始点在中心区,终点在A1-C1、A1-D1二环交集区域边缘上的B1-D2、B1-A2(B2-A2)、B2-C2、C1-D2(D1-C2)四种链。这四种链在赫伍德构形中的不同数量组合共四组:B1-A2、B1-D2、B2-C2、B2-A2B1-A2、B1-D2、B2-C2、D1-C2C1-D2、B1-D2、B2-C2、B2-A2C1-D2、B1-D2、B2-C2、D1-C2而六种色链中任意两种色链的不同位置组合共C62(=15)组。其中有三组不可相交组合:A-B与C-D、A-C与B-D、A-D与B-C;还有12组可相交组合:A-B与A-C、A-D、B-C、B-D;A-C与A-D、B-C、C-D ;A-D与B-D、C-D;B-C与B-D、C-D;B-D与C-D。我们把上述六种色链的不同数量组合(4组)及不同位置组合(12组可相交的)作为两大变量,一共可得到16种不同组合的赫伍德构形;然后在“结构最简”和“解法相同”的约束条件下逐一检验,具体归纳为:图2——4体现四种不同数量组合,其中图2体现前两种组合;图5——9体现依次增多的相交组合,其中图9已包含了12种相交组合;图10体现特殊的数量组合和相交组合。到此,我们用“H·Z—CP”成功地解决了赫伍德构形的正确染色,从而弥补了肯普证明中的漏洞。参考文献:〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71附英文版Using H·Z-CP Solves Heawood ConfigurationZhang Yu-dianYu Xian Party School, Yu Xian 045100, Shanxi, ChinaAbstract: In this text, One Heawood configuration’s inevitable sets is found by using Heawoods-clouring procedure (abbreviated as H-CP) and Zhang Yu-dian clouring procedure (abbreviated as Z-CP), based on quantity and poison combination theory of coloring chain. And, one new procedure is found, which is named as H· words: H-CP Z-CP H·Z-CPIntroduceThesis [1] made two main contributions to solving Heawood configuration. One is H-CP, by using it Heawood-coloring aperiodic transform’s Heawood configuration sets was found. The other one, in example II[1], provided Heawood-coloring periodic transform’s Heawood configuration. With it, Z-CP was found, and solved correct coloring for this the convenience of discuss, the simplest Heawood configuration model is given in [1] as shown in Fig. 1, A, B,C ,D denote four colors, one roundlet denotes section V to be dyed, A1, B1, B2,C1 ,D1, denote five adjacent points border upon V, the pentagon area that forms is defined as pairs of B & A embedded area. Outside of V is A1-C1 chain and A1-D1 chain (because the head and trail is looped by V separately, so called loop, in order to distinguish with others). And there are B1-D2 chain and B 2-C2 chain also. A1, A2 is separated by C2-D2 chain. The other Heawood configuration is this model, if add another coloring chain, many distinct normal triangle section map is formed(is G′). When to find the solution of map, it is found that distinct quantity combination and intersectant combination have effect on solution’s follows, the detailed Heawood configuration’s inevitable sets is is defined in latter figure as: a small transverse thread denotes a loop, a thick thread denotes a chain in which two or more coloring changed. B(D) etc. denotes that one point’s coloring is shown in Fig. 2, if there are B1-A2 chain and D1-C2 chain in Fig. 1(can also be B2-A2 chain):Its solution is: in A1-C1 loop, B and D is interchanged, a new A-D loop is formed (if it can’t be formed, belongs to another configuration). Then, C and B outside A-D loop is interchanged, and then V can be dyed with C shown in Fig. 3, if there are C1-D2 chain and D1-C2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new A-C loop is formed (if it can’t be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B shown in , if there are C1-D2 chain and B2-A2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed , in B-D loop, A and C is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D shown in , if B1-D2 chain and A1-D1 loop is intersectant in Fig. 4, new B1-A 3 loop and C1-A 3 loop are solution is:in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, A and C outside B-D loop is interchanged, and then V can be dyed with A shown in , if C1-D2 chain and A1-C1 loop is intersectant in Fig. 5, for simplicity, D can be dyed with B color in C1-D2 chain outside A1-C1 loop. See ○B in solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new A-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-D loop, C and B is interchanged, and then V can be dyed with C shown in , if B1-D2 chain and B1-A3 loop is intersectant in Fig. 6, for simplicity, A can be dyed with C color in B1-A3 chain inside B1-D2 chain. See ○C in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new A-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B shown in , if B1-D2 chain and C1-D2 chain is intersectant inside A1-C1 loop in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D shown in , if B2-A2 chain and A1-D2 loop is intersectant in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new A-D loop is formed, in A-D loop, C and B is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-D loop, A and C is interchanged, and then V can be dyed with A Fig. 10, it is a ten-fold symmetrical Heawood configuration. Namely in Fig. 3, according intersectant combination method in Fig. 6,if C1-D2 chain and A1-C1 loop intersects, D1-C2 chain and A1-D1 loop intersects, D color point at C1-D2 chain outside A1-C1 loop and C color point at D1-C2 chain outside A1-D1 loop are both exchanged with B coloring, see ○B in Fig. 10. And then presume the exchanged C-B chain and D-B chain are symmetrically intersectant. This Heawood configuration is the topology transform form in example II [1].For Fig. 10, if using the solution way in Fig. 9, 4 periodic transform’s Heawood configurations will come into being, and will be no result. But there is a common coloring character for the 4 sequence transform Heawood configurations, namely, they all contain A-B loop. And then, as follows Z-CP comes into Fig. 10(1) or 10(3) is known, firstly, C and D outside A-B loop interchanged, the new A-C loop and A-D loop(or B-C loop and B-D loop) come into B(D) & B(C) (or A(D) & A(C)) interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(1) and Fig. 10(3).If Fig. 10(2) or 10(4) is known, firstly, C and D outside A-B loop is interchanged, the new B-C (or A-D) chain come into being, then A(D) (or A(C)) at the side of B-C (or A-D) is interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(2) and Fig. 10(4).The self-contained inevitable sets composed of Fig 2 to 10 will be proved as the 4 color dyed G’, the quantity of distinct coloring chain formed by two colors in A, B,C ,D four colors have C42(=6) kinds totally. It is reflected in Heawood configuration, there are intersectant A1-C1 loop and A1-D1 loop whose start-point and end-point are all in center area. And there are B1-D2, B1-A2(B2-A2), B2-C2, C1-D2(D1-C2) 4 chains , whose start-point is in center area, and end-point is on the verge of the intersection area of A1-C1 loop and A1-D1 loop. There are 4 groups in total for the 4 kinds of chain’s distinct quantity combination in Heawood configuration:B 1-A2、B 1-A2、B2-C2、B2-A2B 1-A2、B 1-D2、B2-C2、D1-C2C 1-D2、B 1-D2、B2-C2、B2-A2C 1-D2、B 1-D2、B2-C2、D1-C2There are C62(=15) kinds of two different situation’s combination in 6 kinds of chains, among them ,there are 3 kinds of not intersectant combinations:A-B and C-D、A-C and B-D、A-D and B-C;Otherwise there are 12 kinds of intersectant combinations:A-B and A-C、A-D、B-C、B-D;A-C and A-D、B-C、C-D ;A-D and B-D、C-D;B-C and B-D、C-D;B-D and C-D。Above 6 kinds of chain’s different quantity combinations(4 groups) and different situation combinations (intersectant 12 groups ) are two major variables, 16 kinds of Heawood configurations in different combination can be found totally. Then, on the “simplest structure” and “same solution” restrictive condition, verifiyed one by one, detailed conclusion is: Fig. 2 to Fig. 4 indicate 4 kinds of different quantity combinations. Among them, Fig. 2 indicates the former 2 groups. Fig. 5 to Fig. 9 indicate intersectant combination increased in turn. Among them, Fig. 9 contains12 kinds of intersectant combinations. Fig. 10 indicates specific quantity combinations sand intersectant this time, correct coloring for Heawood configuration is solved. The procedure which solve the problem, we name it H·Z-CP. The conclusion renovate the leak of kengpu :〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71
82 浏览 5 回答
258 浏览 3 回答
123 浏览 3 回答
349 浏览 2 回答
88 浏览 4 回答
227 浏览 4 回答
137 浏览 5 回答
249 浏览 4 回答
320 浏览 5 回答
213 浏览 3 回答
346 浏览 2 回答
157 浏览 5 回答
103 浏览 5 回答
184 浏览 2 回答
274 浏览 2 回答