琚宜文 颜志丰 李朝锋 房立志 张文静
作者简介:琚宜文,男,博士,教授,博士生导师。中国科学院研究生院,北京市玉泉路甲19号,100049,,,
(中国科学院研究生院 地球科学学院 北京 100049)
摘要:煤层气和页岩气是重要的非常规资源。目前我国的煤层气产业已实现商业化生产,但页岩气还处于试验阶段。在一些能源盆地中,会同时存在煤层气和页岩气源岩,它们可能相邻或处于较近或较远层位。尽管煤层气和页岩气在气体的来源与赋存层位等方面有所不同,但是在富集特征、运移过程及开发技术方面具有一些共性。煤层气的富集主要是以吸附状态存在于煤层中,页岩气的富集是以吸附或游离状态存在于高碳质泥页岩中。煤层气和页岩气均储存于低孔低渗的储层中,它们的开采技术均包含评价技术、测试技术、钻井技术和储层改造技术等。如果在一个盆地中同时赋存有煤层气和页岩气,就可以考虑利用同一口井同时进行煤层气和页岩气开采,从而提高它们的开采效率,促进非常规天然气产业的快速发展。
关键词:煤层气 页岩气 富集特征 开发技术 储层改造
Commonness and Differences of Enrichment Characteristics and Mining Technology of China's Coalbed Methane and Shale Gas
JU Yiwen YAN Zhifeng LI Chaofeng FANG Lizhi ZHANG Wenjing
(College of Earth Science, Graduate University of Chinese Academy of Sciences, Beijing, 100049, China)
Abstract: Coalbed methane and shale gas are important unconventional present, the coalbed methane industry of China has been produced commercially; however, the shale gas production is still at experi- mental source rocks of coalbed methane and shale gas will occur in some energy basin together,and they may be adjacent or in near or far coalbed methane and shale gas are different in their sources and occurrence layers etc., there are some common situation, such as the enrichment characteristics, the migrating procedure and the developing coalbed methane mainly enrichs in the coalbeds with adsorption state, while shale gas enriches in the high-carbon mudstone or shale with adsorption or free both coalbed methane and shale gas store in reservoirs with low porosity and permeability,and all their mining technolo- gy include evaluating, testing, drilling and reservoir stimulation both coalbed methane and shale gas occur in the same basin, then they can be exploited by the same well, therefore their exploiting efficiency will be im- proved, and the unconventional natural gas industry will be developed rapidly.
Keywords: coalbed methane; shale gas; enrichment characteristics; development technology; reservoir stimulation
1 前言
我国经济持续快速发展,能源需求不断增加,天然气需求迅速增长,预测2015年需求量1560亿m3,缺口约560亿m3,2020年需求量2930亿m3,缺口将达1000亿m3(王一兵等,2010)。在国际上煤层气和页岩气等非常规天然气是油气勘探的重要目标(Ross et al.,2008)。在我国增加常规油气产量非常困难的情况下,开发煤层气和页岩气等非常规资源,就成为我国能源可持续发展的现实选择。
煤层气和页岩气的勘探开发和利用首先由美国获得成功,2006年以来全美煤层气年产量稳定在540亿m3以上(李五忠等,2008),2009年美国的煤层气产量达到542亿m3。2009年美国页岩气生产井近98590口,页岩气年产量接近1000亿m3(崔青,2010),2010年,美国页岩气探明储量已逾60万亿m3,产量达1000亿m3,占其天然气总产量的1/5(新华网,2011)。煤层气和页岩气产业已成为美国举足轻重的能源工业。煤层气方面除美国外,加拿大、澳大利亚和中国等国家也已获得突破。截至2009年底,我国已建煤层气产能25亿m3,全年地面煤层气产量超过10亿m3(新华网,2011)。2010年地面煤层气抽采量为亿m3。页岩气方面除美国外,加拿大也开始了规模化生产,中国和澳大利亚等国也已开始了试验性研究。
在一些能源盆地中,会同时存在煤层气和页岩气源岩,它们可能相邻或处于较近或较远层位。在地质作用过程中,受生物化学作用或物理化学作用所产生的气体,会分别储存在煤层气或页岩气储层,若不同储层通过断层或裂隙相连通,可能会形成混合储层或相距很近的储层。尽管煤层气和页岩气在气体的来源与赋存层位等方面有所不同,但是在富集特征、运移过程及开发技术方面具有一些共性。在开采煤层气或页岩气的过程中,我们怎样才能够把相距较近两种储层的气体都采出来呢?如果两个储层相距较远的话我们能不能同时对煤层气和页岩气进行开采呢?
经过多年的探索、试验和研究,我国煤层气地质研究在煤层气赋存的地质过程与动力学机制研究、煤层气储集系统与聚散机制研究以及煤层气藏经济高效开发的场效应研究等方面均取得显著进展(秦勇,2003;汤达祯等,2003);同时,在选区评价技术、钻井技术、压裂技术、排采技术等开发技术上也取得重要突破(李嘉川等,2011)。近些年来,在页岩气勘探理论与技术方面也取得一定的成果(程克明等,2009;聂海宽等,2010;张金川等,2008)。
我国煤层气存在的问题是地质条件复杂——低渗透、低压力、低饱和度,开发理论与技术有诸多难题没有解决,储存运输困难,利用率低等问题;我国页岩气还处于研究阶段,没有开始试生产,对于页岩气的研究中渗流机理方面研究较少(刘德华等,2011)。对此应加强煤层气的基础理论研究,进一步提高对煤层气的认识程度,提高开采效率和资源利用率;对页岩气应加强富集特征与渗流机理的研究,形成系统的开发技术体系,以促进页岩气产业的发展。
本文在前人研究的基础上探讨煤层气和页岩气富集特征与开采技术的共性与差异性,研究的目的在于探索煤层气与页岩气富集的内在关系,煤层气与页岩气生成、演化与富集的机理,以及它们共同开发的可能性。因此,通过煤层气与页岩气富集特征与开采技术的比较研究,对于发展适合于我国地质条件的非常规天然气地质理论、推动我国非常规天然气产业的尽快形成均有所裨益。
2 煤层气与页岩气概念及其评价方法
煤层气俗称瓦斯,又名煤层甲烷,是与煤伴生、共生的气体资源,其主要成分为甲烷,含量组成为80%~99%,其次含有少量的CO2、N2、H2、SO2、C2H6等气体。煤层气主要以吸附态赋存于煤层孔隙表面或填隙于煤层结构内部,另外煤层裂隙与煤层水中存在少许游离气与溶解气。煤层孔隙及裂隙中的煤层气与煤层水形成特殊的水动力系统,只有当储层压力低于解吸压力时,煤层气才能解吸出来。
页岩气是从富有机质页岩地层系统中开采出来的天然气,是位于暗色泥页岩或高碳泥页岩中,主体上以吸附和游离状态同时赋存于具有生烃能力的泥岩、页岩等地层中的天然气聚集。页岩气开发虽然产能低,但具有开采寿命长和生产周期长的优点。由于含气页岩分布范围广、厚度大,使得页岩气资源量巨大。因而,页岩气井能够长期地以稳定的速率产气,一般开采寿命为30~50年,长者甚至能达80年(Xia et al.,2009;李世臻等,2010)。
煤层气和页岩气都是自生自储、吸附成藏、连续聚集的非常规天然气,它们在概念特征上既有联系,又有区别,表1为煤层气和页岩气在概念特征上的比较。
表1 煤层气与页岩气概念的比较
煤层气和页岩气的富集有许多特征,如气体来源、储集介质等。评价这些特征需要许多方法(冯利娟等,2010),有些方法仅适合煤层气储层,有些方法仅适合页岩气储层,有些方法二者均适用。表2中列出了一些重要的评价方法。
表2 用于评价煤层气和页岩气储层的重要方法
(据冯利娟等,2010修改)
3 煤层气和页岩气的富集特征
煤层气和页岩气均为自生自储,吸附成藏的非常规天然气。页岩气富集区页岩厚度往往较大,裂隙发育,热演化程度合适,如美国的Barnett页岩(Bowker,2007;Zhao et al.,2007;Polastro,2007)。它们在富集特征上有许多相似之处,也存在着明显的不同。下面主要从源岩、生成与演化特征,储集与分布特征,渗流与运移特征等方面来对比研究煤层气藏以及页岩气藏的富集特征。表3列出了二者在富集特征上的一些异同。
表3 煤层气和页岩气在富集特征上的异同
4 煤层气与页岩气的富集机理
煤层气是煤在煤化作用过程中形成的天然气在源岩中的残留部分,煤层既是生气源岩又是储气层段,煤化作用过程中形成的天然气原地聚集或短距离运移,主要通过煤层的吸附作用(Scholl,1980;Tadashi et al.,1995)将天然气聚集起来,为典型的吸附富集机理。煤的储气能力与煤的煤岩组分、变质程度、温度和压力有关。因此,煤层气在聚集方式、动力类型以及成藏特征等方面与常规天然气藏有较大差别(张金川等,2008)。由于煤层气主要以吸附作用为主,吸附气含量通常大于80%,游离气和溶解气比例很小,因此,可以不需要通常的圈闭存在。只要有较好的盖层条件,能够维持相当的地层压力,无论在储层的构造高部位还是低部位,都可以形成气藏(褚会丽等,2010)。
页岩气富集机理具有典型的“混合型”特征。根据不同富集条件,页岩气富集可表现为典型吸附机理、活塞富集机理或置换富集机理。第一阶段是天然气的生成与吸附,具有与煤层气相同的富集成藏机理(张金川等,2003);第二阶段发生在生气高峰;随着页岩生气过程的继续,页岩有机质颗粒所提供的最大吸附气量不足以满足所生成的天然气聚集需求时,游离态天然气开始出现。随着生气过程的继续,天然气在地层中逐渐形成高压,从而导致沿页岩的薄弱面小规模裂缝的形成,天然气开始在裂缝中以游离态运移聚集。由于页岩孔隙及微裂缝具有孔喉细小的特征,游离态天然气对地层水的排驱为活塞式整体排驱富集机理。如果天然气生成量继续增加,则天然气选择大孔隙通道进行置换式运移,气上水下,表现为裂缝系统中的置换富集机理(徐波,2009)。
煤层气和页岩气均产自于能源盆地,煤层气源岩的煤岩形成于适宜植物生长的沼泽环境中,页岩气源岩的页/泥岩形成于深湖相或湖泊中心相(Law,2002)。经沉降埋藏成岩后,受构造变动的影响岩石产生断层和裂隙,因此造成不同层位间孔隙和裂隙的连通。有机质经埋藏和变质作用,有机碳开始产生气体。随着变质作用的进行,油气成熟度越来越高,气体生成量也越来越大,生成的气体大部分被吸附在煤层和页岩等不同储层中,部分会沿着断裂和裂隙运移。如果煤层气储层和页岩气储层相邻或相距很近,煤层气和页岩气就可能会形成两个相邻或相近的气体储层,由于气体的运移在两个储层相邻或相近的情况下甚至可能出现煤层气和页岩气的混合储层。
5 煤层气与页岩气的开发技术
煤层气和页岩气开发的关键技术首先是评价技术,采用地质、测井等方法评价源岩(储层)的性能、含气量、分布范围和丰度等参数,确定储层性能和开采的有利区域;测试技术,对含气量、吸附性能、微观裂隙、渗透率等储层参数进行测试;储层改造技术,如压裂技术和水平钻井技术,水平钻井技术指从水平井筒钻出多水平井段,非常有利于低渗储层的技术改造。
煤层气的开发技术有:(1)钻井技术,包括钻井和完井技术。如水平井钻井技术、空气欠平衡钻井技术、保护储层的钻井技术等,是煤层气孔经济、高效、快速成孔的关键;(2)储层改造技术,煤层气储层属于低孔低渗的储层,进行商业性生产需对储层进行改造,储层改造措施是提高煤层气产量的重要措施,压裂技术是储层改造的重要技术,如清洁压裂液压裂技术、水力加砂压裂技术、氮气泡沫压裂技术等增产改造技术的试验与应用、井下微地震压裂裂缝监测试验;(3)排采技术,把煤层气从地下抽到地面所采取的技术;(4)煤层气田的低压集输工艺技术,包括集中式压缩机站与分散式撬装液化装置等技术。
页岩气的开发离不开储层的改造技术,美国的Barnett页岩就是经水力压裂后才开始产气的(Zhao et al.,2007)。技术的进步推动了页岩气水平井的发展,在Barnett页岩气藏中,90%的新井都是水平井(冯利娟等,2010);储层压裂及重复压裂技术(邹才能等,2011)大幅度提高了页岩气产量,对页岩气商业性开采起着决定作用。
煤层气和页岩气均为非常规天然气,它们的开发技术有许多相同的地方。假如在一个盆地中同时赋存有煤层气和页岩气,那么如果能够利用同一口井同时进行煤层气开采和页岩气开采,则和单一气体开采相比,单井在产气量和开采寿命上均应该会有所提高。因此可以提高天然气生产企业的经济效益。
6 结论与认识
煤层气和页岩气同为非常规天然气,它们在储层特征、富集机理和开采技术等方面存在许多相同的地方,但二者之间也有明显的差异。
(1)煤层气和页岩气都是自生自储、吸附成藏、连续聚集的非常规天然气。通过气体来源、气体组成、气体成因、赋存状态、赋存方式等比较了它们在概念特征上的联系和区别。评价煤层气和页岩气储层特征有不同的方法,有些方法仅适合煤层气储层,有些方法仅适合页岩气储层,有些方法二者均适用。
(2)煤层气和页岩气在富集特征、运移过程及开发技术方面具有一些共性,但在气体的来源、赋存层位及保存条件等方面有所不同。煤层气的富集主要是以吸附状态存在于煤层中,页岩气的富集是以吸附或游离状态存在于高碳质泥页岩中;煤层气富集需要有合适的盖层条件和水文地质条件,而页岩气的富集不需要附加的盖层条件和水文地质条件。
(3)煤层气的富集主要是通过吸附作用将天然气聚集起来,为典型的吸附富集机理;页岩气富集机理具有典型的“混合型”特征。根据不同富集条件,页岩气富集可表现为典型吸附机理、活塞富集机理或置换富集机理。
(4)煤层气储层和页岩气储层均为低孔低渗的储层,开采时均需要采取储层改造增渗技术,如水平井技术和储层压裂技术等。如果在一个盆地中同时赋存有煤层气和页岩气,就可以考虑利用同一口井同时进行煤层气和页岩气开采,从而提高它们的开采效率。
参考文献
程克明,王世谦,董大忠等.2009.上扬子区下寒武统筇竹寺组页岩气成藏条件,天然气工业,29(5),40~44
褚会丽,檀朝东,宋健.2010.天然气、煤层气、页岩气成藏特征及成藏机理对比,中国石油和化工,(9),44~45
崔青.2010.美国页岩气压裂增产技术,石油化工应用,29(10),1~3
冯利娟,朱卫平,刘川庆.2010.煤层气藏与页岩气藏.国外油田工程,26(5),24~27
李嘉川,王小峰,石兆彬等.2011.中国煤层气开发现状与建议.科技创新导报,(8),43~45
李世臻,曲英杰.2010.美国煤层气和页岩气勘探开发现状及对我国的启示.中国矿业,19(12),17~21
李五忠,赵庆波,吴国干等.2008.中国煤层气开发与利用,北京:石油工业出版社
刘德华,肖佳林,关富佳.2011.页岩气开发技术现状及研究方向,石油天然气学报(江汉石油学院学报),33(1),119~123
聂海宽,张金川.2010.页岩气藏分布地质规律与特征,中南大学学报(自然科学版),41(2),700~708
秦勇.2003.中国煤层气地质研究进展与述评,高校地质学报,9(3),339~358
汤达祯,秦勇,胡爱梅.2003.煤层气地质研究进展与趋势,石油实验地质,25(6),644~647
王一兵,王金友,赵娜等.2010.中国煤层气产业现状及政策分析,2010年煤层气年会论文
新华网.2011.中国非常规天然气开发“升温”,2011年04月14日09:16
()
徐波.2009.页岩气和根缘气成藏特征及成藏机理对比研究,石油天然气学报,31(1),26~30
张金川,聂海宽,徐波等.2008.四川盆地页岩气成藏地质条件,天然气工业,28(2),511~156
张金川,唐玄,姜生玲等.2008.碎屑岩盆地天然气成藏及分布序列,天然气工业,28(12),11~17
张金川,薛会,张德明等.2003.页岩气及其成藏机理,现代地质,466
邹才能,陶士振、侯连华等.2011.非常规油气地质,北京:地质出版社
Bowker K Shale gas production, Fort Worth Basin: Issues and discussion AAPG Bulletin, 91 (4),523 ~533
Law B gas Bulletin,86 (11), 1891 ~1919
Pollastro petroleum system assessment of undiscovered resources in the giant Barnett Shale continuous (un- conventional) gas accumulation Fort Worth Basin, Texas, AAPG Bulletin,91 (4), 551 578
Ross D, Bustin M the shale gas resource potential of Devonian - Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation Bulletin,92 (1), 87 125
Scholl hydrogen and carbon isotopic composition of methane from natural gases of various et Cosmochimica Acta, 44 (5),649~661
Tadashi for unconventional natural gas of the Japanese Associationfor Petroleum Technolo- gy,60 (2), 128~135
Xia W W,Burnaman M D,Shelton and Geologic Analysis in Shale Gas petroleum explora- tion, (3), 34~40
Zhao H, Givens N B, Curtis maturity of the Barnett Shale determined from well-log Bul- letin, 91 (4), 535~549