是用于预测今后的因变量的变化的分析方法。
回归分析预测法的步骤:
1、根据预测目标,确定自变量和因变量,明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。
2、建立回归预测模型,依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。
3、进行相关分析、回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。
4、检验回归预测模型,计算预测误差,回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。
5、计算并确定预测值,利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。
回归分析法的运用:
1、回归分析预测法是一类比较经典,也比较实用的预测方法。正是由于它经典,因此也就成熟,再加上比较容易理解,运用也就比较广泛。
2、相比之下,其中的线性回归预测法和非线性回归预测法的运用更广些。在实际使用过程中,如果在选择具体的方法和模型时能对数据做较为详细的分析,对散点图的观察分析也能仔细一点的话,预测结果也就会比较令人满意的。
3、回归分析最大的特点就是在偶然中发现必然,而实际情况却常常是千变万化的,有时偶然因素的影响也会超过必然,这时预测结果也就不能很如意,这就要求在预测工作中不能机械,要会灵活运用,要注意了解会影响预测结果的偶然情况,以便对预测结果进行适当修正。