我的生活与数学长江路小学 张宇宸今天晚上,我、爸爸、妈妈,一起到季家面馆吃面。 数学与我的生活来 到季家面馆,我们看了看菜谱。爸爸吃“熏鱼面”需要4分钟,妈妈吃“皮肚猪肝面” 需要6分钟,我吃“六鲜皮肚腰花面” 需要8分钟,今天晚上6:30上课,所以我们开始盘算先后下面用最短的时间。我利用奥数课上所学的最短时间:第一下爸爸的熏鱼面、第二下妈妈的皮肚猪肝面、第三下我的六鲜皮肚腰花面,所用时间是:4×3+6×2+8=32分钟。第一下爸爸的熏鱼面、第二下我的六鲜皮肚腰花面、第三下妈妈的皮肚猪肝面,所用时间是:4×3+8×2+6=34分钟。第一下妈妈的皮肚猪肝面、第二下爸爸的熏鱼面、第三下我的六鲜皮肚腰花面,所用时间是: 6×3+4×2+8=34分钟。第一下妈妈的皮肚猪肝、第二下我的六鲜皮肚腰花面、第三下爸爸的熏鱼面,所用时间是: 6×3+8×2+4=38分钟。第一下我的六鲜皮肚腰花面、第二下爸爸的熏鱼面、第三下妈妈的皮肚猪肝面,所用时间是:8×3+4×2+6=38分钟。第一下我的六鲜皮肚腰花面、第二下妈妈的皮肚猪肝面、第三下爸爸的熏鱼面,所用时间是: 8×3+6×2+4=40分钟。最后商量第一下爸爸的熏鱼面、第二下妈妈的皮肚猪肝面、第三下我的六鲜皮肚腰花面。时间是宝贵的,通过这件事让我知道“一寸光阴,一寸金。寸金难买寸光阴。”这句名言。也让我知道数学与生活的联系,只要善于思考,善于观察,世界将更美好。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.希望我的帮助能帮到你,