这是07年数模比赛获奖的:乘公交 看奥运二 符号说明 :第i条公汽线路标号,i=1,2 …10400,当 时, 表示上行公汽路线, 当 时, 表示与上行路线 相对应的下行公汽路线; :经过第i条公汽路线的第g个公汽站点标号; :第j条地铁路线标号, j=1,2; :经过第j条地铁线路的第h个地铁站点标号; :转乘n次的路线; :选择第k种路线的总时间; :选择第k种路线公汽换乘公汽的换乘次数; :选择第k种路线地铁换乘地铁的换乘次数; :选择第k种路线地铁换乘公汽的换乘次数; :选择第k种路线公汽换乘地铁的换乘次数; :第k种路线、乘坐第m辆公汽的计费方式,其中: 表示实行单一票价, 表示实行分段计价; :第k种路线,乘坐第m辆公汽的费用; :选择第k种路线的总费用; :选择第k种路线,乘坐第m辆公汽需要经过的公汽站个点数; :选择第k种路线,乘坐第n路地铁需要经过的地铁站个点数; :表示对于第k种路线的第m路公汽的路线是否选择步行, 为0-1变量, 表示不选择步行, 表示选择步行; :对于第k种路线的第n路地铁的路线是否选择步行, 为0-1变量, 表示不选择步行, 表示选择步行;三 模型假设基本假设1、相邻公汽站平均行驶时间(包括停站时间): 3分钟2、相邻地铁站平均行驶时间(包括停站时间): 分钟3、公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟)4、地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟)5、地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟)6、公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟)7、公汽票价:分为单一票价与分段计价两种;单一票价:1元其中分段计价的票价为:0 ~20站:1元21~40站:2元40站以上:3元8、地铁票价:3元(无论地铁线路间是否换乘)9、假设同一地铁站对应的任意两个公汽站之间可以通过地铁站换乘,且无需支付地铁费 其它假设10、查询者转乘公交的次数不超过两次;11、所有环行公交线路都是双向的;12、地铁线T2也是双向环行的;13、各公交车都运行正常,不会发生堵车现象;14、公交、列车均到站停车四 问题的分析在北京举行奥运会期间,公众如何在众多的交通路线中选择最优乘车路线或转乘路线去看奥运,这是我们要解决的核心问题。针对此问题,我们考虑从公交线路的角度来寻求最优线路。首先找出过任意两站点(公众所在地与奥运场地)的所有路线,将其存储起来,形成数据文件。这些路线可能包含有直达公交线路,也有可能是两条公交线路通过交汇而形成的(此时需要转乘公交一次),甚至更多公交线路交汇而成。然后在这些可行路线中搜寻最优路线。对于路线的评价,我们可以分别以总行程时间,总转乘次数,总费用为指标,也可以将三种指标标准化后赋以不同权值形成一个综合指标。而最优路线则应是总行程时间最短,总费用最少或总转乘次数最少,或者三者皆有之。之所以这样考虑目标,是因为对于不同年龄阶段的查询者,他们追求的目标会有所不同,比如青年人比较热衷于比赛,因而他们会选择最短时间内到达奥运赛场观看比赛。而中年人则可能较倾向于综合指标最小,即较快、较省,转乘次数又不多。老年人总愿意以最省的方式看到奥运比赛。而对于残疾人士则总转乘次数最少为好。不同的路线查询需求用图表示如下: 图 公交线路查询目标图经分析,本问题的解决归结为一个求最短路径的问题,但是传统的Dijkstra最短路径算法并不适用于本问题,因为Dijkstra算法采用的存储结构和计算方法难以应付公交线路网络拓扑的复杂性,而且由于执行效率的问题,其很难满足实时系统对时间的严格要求。为此我们在实际求解的过程中,采用了效率高效得广度优先算法,其基本思路是每次搜索指定点,并将其所有未访问过的近邻点加入搜索队列,循环搜索过程直到队列为空。此方法在后文中有详细说明。五 建模前的准备为了后面建模与程序设计的方便,在建立此模型前,我们有必要做一些准备工作。5.1数据的存储由于所给的数据格式不是很规范,我们需要将其处理成我们需要的数据存储格式。从所给文件中读出线路上的站点信息,存入txt文档中,其存储格式为:两行数据,第一行表示上行线上的站点信息,第二行表示下行线的站点信息,其中下行路线标号需要在原标号的基础上加上520,用以区分上行线和下行线。如果上行线与下行线的站点名不完全相同,那么存储的两行数据相应的不完全相同,以公交线L009为例:L009: L529: L529为L009所对应的下行线路。如果下行线是上行线原路返回,那么存储的两行数据中的站点信息刚好顺序颠倒,以公交线路L001为例:L001: 3914 0128 0710L521: 如果是环线的情况(如图所示),则可以等效为两条线路:顺时针方向:S1→S2→S3→S4→S1→S2→S3→S4;逆时针方向:S1→S4→S3→S2→S1→S4→S3→S2。 经过分析,此两条”单行路线”线路的作用等同于原环形路线 图 环行线路示意图以环形公交线L158为例,此环形路线存储数据如下:L153: 1212 812 171 172 1585 1215 2606 1212 812 171 172 1585 1215 2606L673: 3513 172 2600 811 170 2355 649 534 2606 1215 3513 172 2600 811 170 2355 649在这里,L153被看作成上行路线,L673被当成下行路线。这样对于每条公交线路都可以得到两行线路存储信息。5.2搜寻经过每个站点的公交路线处理所得信息,找出通过每个站点的所有公交路线,并将它们存入数据文件中。例如,通过搜寻得出经过站点S0001的线路和经过站点S0002的线路如下:经过S0001的线路有:L421经过S0002的线路有:L027 L152 L365 L395 L4855.3统计任意两条公交线路的相交(相近)站点依次统计出任意两条公交线路之间相交(相近)的站点,将其存入1040×1040的矩阵A中,但是这个矩阵的元素是维数不确定的向量,具体实现的时候可以将用队列表示。例如:公交线路L001与公交线路L025相交的站点为A[1][25]={S0619,S1914,S0388,S0348}。六 模型的建立与求解6.1模型一的建立 该模型针对问题一,仅考虑公汽线路,先找出经过任意两个公汽站点 与 最多转乘两次公汽的路线,然后再根据不同查询者的需求搜寻出最优路线。6.1.1 公汽路线的数学表示任意两个站点间的路线有多种情况,如果最多允许换乘两次,则换乘路线分别对应图的四种情况。该图中的A、B为出发站和终点站,C、D、E、F为转乘站点。 图 公汽路线图对于任意两个公汽站点 与 ,经过 的公汽线路表示为 ,有 ;经过 的公汽线路表示为 ,有 ;1)直达的路线 (如图(a)所示)表示为: 2)转乘一次的路线 (如图(b)所示)表示为: 其中:SC为 , 的一个交点;3)转乘两次的路线 (如图(c)所示)表示为: 通过以上转乘路线的建模过程,可以看出不同转乘次数间可作成迭代关系,进而对更多转乘次数的路线进行求寻。不过考虑到实际情况,转乘次数以不超过2次为佳,所以本文未对转乘三次及三次以上的情形做讨论。6.1.2最优路线模型的建立 找出了任意两个公汽站点间的可行路线,就可以对这些路线按不同需求进行选择,找出最优路线了:1)以时间最短作为最优路线的模型:行程时间 等于乘车时间与转车时间之和。 (式)其中,第k路线是以上转乘路线中的一种或几种。2)以转乘次数最少作为最优路线的模型: (式)此模型等效为以上转乘路线按直达、转乘一次、两次的优先次序来考虑。3)以费用最少作为最优路线的模型: (式)其中, (式)6.1.3模型的算法描述针对该问题的优化模型,我们采用广度优先算法找出任意两个站点间的可行路线,然后搜索出最优路线。现将此算法运用到该问题中,结合图叙述如下:(该图中的 、 、 、 、 表示公汽站点, 、 、 、 、 、 表示公汽线路。其中(a)、(b)、(c)图分别表示了从点 到点 直达、转乘一次、转乘两次的情况) 图 公交直达、转乘图(1)首先输入需要查询的两个站点 与 (假设 为起始站, 为终点站);(2)搜索出经过 的公汽线路 (i=1,2,…,m)和经过 的公汽线路 ( =1,2, …,n),存入数据文件;判断是 与 是否存在相同路线,若有则站点 与 之间有直达路线(如图中的 ),则该路线是换乘次数最少(换乘次数等于0)的路线,若有多条直达路线,则可以在此基础上找出时间最省的路线;这样可以找出所有直达路线,存入数据文件;(3)找出经过 的公汽线路 (如图中的 )中的另一站点 和经过 的公汽线路 中的另一站点 。判断 与 中是否存在相同的点,若存在(如图中的 )则站点 与 间有一次换乘的路线(如图中的 与 ),该相同点即为换乘站点;这样又找出了一次换乘路线,存入数据文件;(4)再搜索出经过 (如图中的 )线路上除了站点 的另一站点 (如图中的 )的公汽线路 (如图中的 ),找出公汽线路 上的其他站点 ;判断,如果 与经过 的公汽线路 中的其他站点 存在相同的点(如图中的 ),则 与 间有二次换乘的路线(如图中的 、 、 ),该相同点和点 是换乘站点;将此二次换乘的路线存入数据文件中;(5)对上述存储的经过两个站点 与 的不同路线,根据不同模型进行最优路线进行搜索,得出查询者满意的最优路线。6. 1. 4模型一的求解根据以上算法和前面建立的模型一,用VC++进行编程(程序见附录)就可以得出不同目标下的最优路线。1) 以耗时最少为目标的最优路线起始站S3359到终到站S1828耗时最少为64 min,耗时最少的最优路线(转乘次数较少,费用较省的路线)有28条(注:表选择了其中的10条表示);起始站S1557到终到站S0481耗时最少为106 min,耗时最少的最优路线有2条;起始站S0971到终到站S0485耗时最少为106 min,耗时最少的最优路线有2条;起始站S0008到终到站S0073耗时最少为67 min,耗时最少的最优路线有2条;起始站S0148到终到站S0485耗时最少为106 min,耗时最少的最优路线有3条;起始站S0087到终到站S3676耗时最少为46 min,耗时最少的最优路线有12条;其耗时最少的最优路线如表所示。表 耗时最少的最优路线表起始站 公汽线路 中转站 公汽线路 中转站 公汽线路 终到站 转乘次数 所需费用S3359 L0535 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0535 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0123 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0123 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0652 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0652 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0844 S2027 L1005 S1784 L0687 S1828 2 3S3359 L0844 S2027 L1005 S1784 L0737 S1828 2 3S3359 L0844 S1746 L1005 S1784 L0687 S1828 2 3S3359 L0844 S1746 L1005 S1784 L0737 S1828 2 3S1557 L0604 S1919 L0709 S3186 L0980 S0481 2 3S1557 L0883 S1919 L0709 S3186 L0980 S0481 2 3S0971 L0533 S2517 L0810 S2480 L0937 S0485 2 3S0971 L0533 S2517 L0296 S2480 L0937 S0485 2 3S0008 L0198 S3766 L0296 S2184 L0345 S0073 2 3S0008 L0198 S3766 L0296 S2184 L0345 S0073 2 3S0148 L0308 S0036 L0156 S2210 L0937 S0485 2 3S0148 L0308 S0036 L0156 S3332 L0937 S0485 2 3S0148 L0308 S0036 L0156 S3351 L0937 S0485 2 3S0087 L0541 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0541 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0541 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0541 S0088 L0901 S0427 L0982 S3676 2 3S0087 L0206 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0206 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0206 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0206 S0088 L0901 S0427 L0982 S3676 2 3S0087 L0974 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0974 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0974 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0974 S0088 L0901 S0427 L0982 S3676 2 32) 以转乘次数最少为目标的最优路线起始站S3359到终到站S1828的最少转乘次数为1次,转乘次数最少的最优路线(所需时间较短,费用较省的路线)有2条;起始站S1557到终到站S0481的最少转乘次数为2次,转乘次数最少的最优路线有2条与耗时最少的最优路线相同(表示在表中,下同);起始站S0971到终到站S0485的最少转乘次数为1次,转乘次数最少的最优路线有1条;起始站S0008到终到站S0073的最少转乘次数为1次,转乘次数最少的最优路线有9条;起始站S0148到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有3条与耗时最少的最优路线相同;起始站S0087到终到站S3676的最少转乘次数为2次,转乘次数最少的最优路线有6条与耗时最少的最优路线相同;其余转乘次数最少的最优路线路线如表所示。表 转乘次数最少的最优路线表起始站 公汽线路 中转站 公汽线路 终到站 耗时 所需费用S3359 L0956 S1784 L0687 S1828 101 3S3359 L0956 S1784 L0737 S1828 101 3S0971 L0533 S2184 L0937 S0485 128 3S0008 L0679 S0291 L0578 S0073 83 2S0008 L0679 S0491 L0578 S0073 83 2S0008 L0679 S2559 L0578 S0073 83 2S0008 L0679 S2683 L0578 S0073 83 2S0008 L0679 S3614 L0578 S0073 83 2S0008 L0875 S2263 L0345 S0073 83 2S0008 L0875 S2303 L0345 S0073 83 2S0008 L0875 S3917 L0345 S0073 83 2S0008 L0983 S2083 L0057 S0073 83 23)以费用最少为目标的最优路线起始站S3359到终到站S1828的最少费用为3元,最少费用的最优路线(所需时间较短,转乘次数较少的路线)有30条,其中28条路线所需时间为64 min,转乘次数为2次,另外两条路线所需时间为101 min,转乘次数为1次;起始站S1557到终到站S0481的最少费用为3元,最少费用的最优路线有2条,所需时间为106 min,转乘次数为2次;起始站S0971到终到站S0485的最少费用为3元,最少费用的最优路线有3条,其中两条所需时间为106 min,转乘次数为2次,另外一条所需时间为128 min,转乘次数为1次;起始站S0008到终到站S0073的最少费用为2元,最少费用的最优路线有9条,所需时间为83 min,转乘次数为1次;起始站S0148到终到站S0485的最少费用为3元,最少费用的最优路线有3条,所需时间为106min,转乘次数为2次;起始站S0087到终到站S3676的最少费用为3元,最少费用的最优路线有12条,所需时间为46 min,转乘次数为2次;最少费用的最优路线表示在表和表中。 6.2.1模型二的建立 该模型针对问题二,将公汽与地铁同时考虑,找出可行路线,然后寻找最优路线。对于地铁线路,也可以将其作为公交线路,本质上没有什么区别,只不过乘车费用、时间,换乘时间不一样罢了。因此地铁站可等效为公交站,地铁和公交的转乘站即可作为两者的交汇点。因此该模型的公交换乘路线模型与模型一中的基本相同。现建立模型二下的最优路线模型。1)以时间最短的路线作为最优路线的模型:可行路线的总时间为乘公交(公汽和地铁)时间与公汽与地铁换乘、公汽间、地铁间换乘时间之和。 (式)其中,第k路线为同时考虑公汽与地铁的转乘路线中的一种或几种。2)以转乘次数最少的路线作为最优路线的模型: (式)此模型等效为以上转乘路线按直达、转乘一次、两次(包括公交与地铁间的转乘)的优先次序来考虑。3)以费用最少的路线作为最优路线的模型:可行路线的费用为乘公交和地铁费用的总和。 (式)其中, 仍满足(式)。6.2.2模型二的求解 不难发现,问题一是问题二解的一部分。在问题二中,新产生的最优解主要源于在通过换乘地铁、换乘附近相近站点的路线上,如下图所示: 从点A到B,图(a)表示的是通过两公交线路上相邻公汽站S1,S2进行一次转乘;图(b)表示利用地铁站进行二次转乘;图(c)表示利用另一条公汽路线为中介进行二次转乘。铁路线路引入给题目的求解增加了难度,为了形象了解为数不多的两条铁路间的交叉关系,我们通过matlab编程(程序见附录)作出了两条铁路的位置关系图,如图所示。 图 T1与T2铁路位置关系图注:图四中的直线表示T1铁路线,圆表示T2铁路线,数值表示站点,例如1表示T1铁路线上的D1铁路站,26表示T2铁路线上的D26铁路站。此图与网上查询到的北京地铁示意图(如图所示)相吻合。 图 北京地铁示意图同样将地铁线路等效为公交线路得出任意两个站点间的可行线路,再将目标函数分别用模型二建立的模型表达式表达,用VC++进行编程(程序见附录)求得出考虑地铁情况的最优路线。1)以转乘次数最少为目标的最优路线起始站S0008到终到站S0073的最少转乘次数为1次,转乘次数最少的最优路线有1条;起始站S0087到终到站S3676的最少转乘次数为0次,即有直达路线,直达下的最优路线有1条;起始站S0148到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有10条;起始站S0971到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有20条(注表中罗列其中10条);起始站S1557到终到站S0481的最少转乘次数为2次,转乘次数最少的最优路线有17条(注表中罗列其中10条);起始站S3359到终到站S1828的最少转乘次数为2次,转乘次数最少的最优路线有2条。2)以耗时最少为目标的最优路线起始站S3359到终到站S1828耗时最少为64 min,耗时最少的最优路线(转乘次数较少,费用较省的路线)有28条(注:表选择了其中的10条表示);起始站S1557到终到站S0481耗时最少为109 min,耗时最少的最优路线有17条与转乘次数最少的最优路线相同;起始站S0971到终到站S0485耗时最少为96 min,耗时最少的最优路线有20条与转乘次数最少的最优路线相同;起始站S0008到终到站S0073耗时最少为55 min,耗时最少的最优路线有3条;起始站S0148到终到站S0485耗时最少为 min,耗时最少的最优路线有10条与转乘次数最少的最优路线相同;起始站S0087到终到站S3676耗时最少为33 min,耗时最少的最优路线有1条与转乘次数最少的最优路线相同;3) 最少费用的最优路线起始站S3359到终到站S1828的最少费用为3元,最少费用的最优路线(所需时间较短,转乘次数较少的路线)有2条;起始站S1557到终到站S0481的最少费用为3元,最少费用的最优路线有17条;起始站S0971到终到站S0485的最少费用为5元,最少费用的最优路线有20条;起始站S0008到终到站S0073的最少费用为2元,最少费用的最优路线有1条;起始站S0148到终到站S0485的最少费用为5元,最少费用的最优路线有10条;起始站S0087到终到站S3676的最少费用为2元,最少费用的最优路线有1条;在此种情况下,我们就只考虑可以通过地铁站换乘的情况,不通过地铁站的情况即为模型1的求解结果。模型2的求解结果见附件1。6.3.1模型三的建立 该模型针对问题三,将步行方式考虑在了出行方式当中,更符合实际。因为当出发点与换乘点、终点站或转乘站与转乘站之间只相隔几个站时,当然该段选择步行方式更优。因此作出如下假设:一、如果存在某段路线,其两端点站之间相隔站点数小等于2(即至多经过4个站点),则该段线路选择步行方式到达目的地。其他的情况用模型二来处理。其中路线的两端点站之间相隔站点数是根据公交直达换乘路线来确定的。二、相邻公交站点(包括地铁站)间平均步行时间为5分钟。三、如果在公汽线路上选择步行,则公汽间换乘次数减少1;如果在地铁线路上选择步行,则地铁间换乘次数减少1,直达线路除外。直达和转乘一次、两次的路线需要步行的路段示意图如图所示。图中(a)表示出发点A与终点站B间能直达,相隔的站点数等于2所以选择步行;图中(b)表示出发点A与终点站B间通过一次换乘能到达,其中路段AC的站点数等于2所以选择步行,同样如果CB路段的站点数小等于2,则也采取步行的方式;图中(c)选择步行方式的依据类似。 图 步行示意图是否选择步行方式的函数: (式)其中 表示第m路公交路线是否步行, 表示第n路地铁线路是否步行; 对于直达路线,如果出发点与终点站之间相隔站点数小等于2则步行,否则乘车。对于需要转乘的路线的最优路线模型讨论如下:1)以时间最短的路线作为最优路线的模型:路线总时间等于乘车时间加上步行时间,再加上转乘时间。 (式)其中,第k路线为同时考虑公汽与地铁的转乘路线中的一种或几种。2)以转乘次数最少的路线作为最优路线的模型:每步行一次就少换乘一次车。 (式)此模型等效为以上转乘路线按直达、转乘一次、两次、三次(包括公交与地铁间的转乘)的优先次序来考虑。3)以费用最少的路线作为最优路线的模型: (式)其中, 仍满足(式)。七 模型的优缺点及改进模型的评价 模型优点1、模型是由简单到复杂一步步建立的,使得更贴近实际。2、本文的模型简单,其算法直观,容易编程实现。3、本文模型比较注重数据的处理和存储方式,大大提高了查询效率。4、本文模型注重效率的提高,通过大量的特征信息的提取,并结合有效的算法,使其完全可以满足实时系统的要求。 模型缺点在建模与编程过程中,使用的数据只是现实数据的一种近似,因而得出的结果可能与现实情况有一定的差距。 模型的改进以上模型主要是从公交线路出发,寻找公交线路的交叉站作为换乘站点,进而找出经过任意两个站点的可能乘车路线。我们也可以从公交站点的角度出发,用图论的方法建立有向赋权图(如图所示),此向赋权图是针对问题三建立的图论模型,问题一、问题二只是此模型的简化。图中 表示公汽线路标号,该线路是公汽线路 的上行线或下行线, 、 、 、 、 、 是公汽线路 上的站点标号; 表示地铁线路标号,该地铁线路是双向行驶的, 、 、 、 、 是地铁线路 上的站点标号;公汽 与地铁 可以在公汽站 和地铁站 间换乘。如果图中的地铁线路替换成公汽线路,为了表示公汽间换乘所需的时间或者费用,应将同一个换乘站点用两个站点来表示。 图 公交线路的有向赋权图根据不同的目标,给不同的站点间的边赋上不同的权值。然后利用图论的相关算法,找出相应的最短路径。1)当以时间最短为目标时,给每条边赋上时间的权值。给同一线路上任意两个站点间的边赋值时,其权值等于站点间的公交线路段数与平均时间的乘积。当某段线路的两段点间间隔站点数小等于3时,选择步行,该线路的权值等于步行时间。不同公汽和地铁间进行换乘时需要赋给不同的权值,以表示换乘时间。例如(如图):当j>4时, 到 的边权值 ;, 从 到 不需要的转车,但根据假设应选择步行,其边权值 ;,从 到 要么乘公交,然后转车,要么步行,根据步行的假设条件, 到 的站点间隔数小于2,因此选择步行,其边权值 ;,当g>4时, 与 之间的边权值 ;, 到 的边权值 ; 到 的边权值 ;当j>4、g>4时, 到 的路径长度为: ;当 、g>4时,则从 到 选择步行,再乘地铁到 ,其路径长度为; ;找出任意两点间可行路线的路径长度后,再搜索出其中的最短路径的的可行路线作为时间的最优路线。2)当以费用最省为目标时,则给每条边赋上费用的权值。公汽站点间的边权按(式)赋值。当公汽线路 按单一票价计费,对于 上任意两个公汽站点 和 间,若 ,则选择步行 ;若 ,则 ;当公汽线路 按分段计价,若 ,则 ;若 ,则 ;若 ,则 ;若 ,则 ;地铁线路 上任意两个站点 和 间,若 ,则选择步行 ;若 ,则 ;换乘站点 与 间的边权值均为0,即 ;则从 通过站点 换乘 到 的一条可行路线的路径长度为:若 , ,则从 到 选择步行, ;若 , ,则 ;同样可以找出任意两点间可行路线的路径长度,然后再搜索出最短路径作为费用的最优路线。
你可以去赛才网上去看看,那里有1992-2008的优秀论文,很不错
你可以去数学中国网看看
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文
103 浏览 6 回答
148 浏览 3 回答
171 浏览 2 回答
199 浏览 3 回答
245 浏览 3 回答
120 浏览 3 回答
146 浏览 5 回答
124 浏览 5 回答
190 浏览 3 回答
303 浏览 3 回答
166 浏览 4 回答
159 浏览 3 回答
311 浏览 5 回答
329 浏览 5 回答
218 浏览 3 回答