一元线性回归分析的基本步骤如下:
一元回归分析的基本步骤有:理论模型的设定,样本数据的收集与处理,模型参数的估计,模型的检验。
建立回归模型的一般步骤:1、具体(社会经济)问题;2、设置指标变量(量化具体问题);3、收集、整理数据;4、回归模型的确定;5、模型参数估计;6、模型检验与修改。
什么是一元线性回归分析:
回归分析只涉及到两个变量的,称一元回归分析。一元回归的主要任务是从两个相关变量中的一个变量去估计另一个变量,被估计的变量,称因变量,可设为Y;估计出的变量,称自变量,设为X。回归分析就是要找出一个数学模型Y=f(X),使得从X估计Y可以用一个函数式去计算。
当Y=f(X)的形式是一个直线方程时,称为一元线性回归。这个方程一般可表示为Y=A+BX。根据最小平方法或其他方法,可以从样本数据确定常数项A与回归系数B的值。A、B确定后,有一个X的观测值,就可得到一个Y的估计值。
回归方程是否可靠,估计的误差有多大,都还应经过显著性检验和误差计算。有无显著的相关关系以及样本的大小等等,是影响回归方程可靠性的因素。