在统计学中,统计模型是指当有些过程无法用理论分析 方法 导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计法求得各变量之间的函数关系。下文是我为大家整理的关于统计模型论文的 范文 ,欢迎大家阅读参考!
统计套利模型的理论综述与应用分析
【摘要】统计套利模型是基于数量经济学和统计学建立起来的,在对历史数据分析的基础之上,估计相关变量的概率分布,并结合基本面数据对未来收益进行预测,发现套利机会进行交易。统计套利这种分析时间序列的统计学特性,使其具有很大的理论意义和实践意义。在实践方面广泛应用于个对冲基金获取收益,理论方面主要表现在资本有效性检验以及开放式基金评级,本文就统计套利的基本原理、交易策略、应用方向进行介绍。
【关键词】统计套利 成对交易 应用分析
一、统计套利模型的原理简介
统计套利模型是基于两个或两个以上具有较高相关性的股票或者其他证券,通过一定的方法验证股价波动在一段时间内保持这种良好的相关性,那么一旦两者之间出现了背离的走势,而且这种价格的背离在未来预计会得到纠正,从而可以产生套利机会。在统计套利实践中,当两者之间出现背离,那么可以买进表现价格被低估的、卖出价格高估的股票,在未来两者之间的价格背离得到纠正时,进行相反的平仓操作。统计套利原理得以实现的前提是均值回复,即存在均值区间(在实践中一般表现为资产价格的时间序列是平稳的,且其序列图波动在一定的范围之内),价格的背离是短期的,随着实践的推移,资产价格将会回复到它的均值区间。如果时间序列是平稳的,则可以构造统计套利交易的信号发现机制,该信号机制将会显示是否资产价格已经偏离了长期均值从而存在套利的机会 在某种意义上存在着共同点的两个证券(比如同行业的股票), 其市场价格之间存在着良好的相关性,价格往往表现为同向变化,从而价格的差值或价格的比值往往围绕着某一固定值进行波动。
二、统计套利模型交易策略与数据的处理
统计套利具 体操 作策略有很多,一般来说主要有成对/一篮子交易,多因素模型等,目前应用比较广泛的策略主要是成对交易策略。成对策略,通常也叫利差交易,即通过对同一行业的或者股价具有长期稳定均衡关系的股票的一个多头头寸和一个空头头寸进行匹配,使交易者维持对市场的中性头寸。这种策略比较适合主动管理的基金。
成对交易策略的实施主要有两个步骤:一是对股票对的选取。海通证券分析师周健在绝对收益策略研究―统计套利一文中指出,应当结合基本面与行业进行选股,这样才能保证策略收益,有效降低风险。比如银行,房地产,煤电行业等。理论上可以通过统计学中的聚类分析方法进行分类,然后在进行协整检验,这样的成功的几率会大一些。第二是对股票价格序列自身及相互之间的相关性进行检验。目前常用的就是协整理论以及随机游走模型。
运用协整理论判定股票价格序列存在的相关性,需要首先对股票价格序列进行平稳性检验,常用的检验方法是图示法和单位根检验法,图示法即对所选各个时间序列变量及一阶差分作时序图,从图中观察变量的时序图出现一定的趋势册可能是非平稳性序列,而经过一阶差分后的时序图表现出随机性,则序列可能是平稳的。但是图示法判断序列是否存在具有很大的主观性。理论上检验序列平稳性及阶输通过单位根检验来确定,单位根检验的方法很多,一般有DF,ADF检验和Phillips的非参数检验(PP检验)一般用的较多的方法是ADF检验。
检验后如果序列本身或者一阶差分后是平稳的,我们就可以对不同的股票序列进行协整检验,协整检验的方法主要有EG两步法,即首先对需要检验的变量进行普通的线性回归,得到一阶残差,再对残差序列进行单位根检验,如果存在单位根,那么变量是不具有协整关系的,如果不存在单位根,则序列是平稳的。EG检验比较适合两个序列之间的协整检验。除EG检验法之外,还有Johansen检验,Gregory hansan法,自回归滞后模型法等。其中johansen检验比较适合三个以上序列之间协整关系的检验。通过协整检验,可以判定股票价格序列之间的相关性,从而进行成对交易。
Christian L. Dunis和Gianluigi Giorgioni(2010)用高频数据代替日交易数据进行套利,并同时比较了具有协整关系的股票对和没有协整关系股票对进行套利的立即收益率,结果显示,股票间价格协整关系越高,进行统计套利的机会越多,潜在收益率也越高。
根据随机游走模型我们可以检验股票价格波动是否具有“记忆性”,也就是说是否存在可预测的成分。一般可以分为两种情况:短期可预测性分析及长期可预测性分析。在短期可预测性分析中,检验标准主要针对的是随机游走过程的第三种情况,即不相关增量的研究,可以采用的检验工具是自相关检验和方差比检验。在序列自相关检验中,常用到的统计量是自相关系数和鲍克斯-皮尔斯 Q统计量,当这两个统计量在一定的置信度下,显著大于其临界水平时,说明该序列自相关,也就是存在一定的可预测性。方差比检验遵循的事实是:随机游走的股价对数收益的方差随着时期线性增长,这些期间内增量是可以度量的。这样,在k期内计算的收益方差应该近似等于k倍的单期收益的方差,如果股价的波动是随机游走的,则方差比接近于1;当存在正的自相关时,方差比大于1;当存在负的自相关是,方差比小于1。进行长期可预测性分析,由于时间跨度较大的时候,采用方差比进行检验的作用不是很明显,所以可以采用R/S分析,用Hurst指数度量其长期可预测性,Hurst指数是通过下列方程的回归系数估计得到的:
Ln[(R/S)N]=C+H*LnN
R/S 是重标极差,N为观察次数,H为Hurst指数,C为常数。当H>时说,说明这些股票可能具有长期记忆性,但是还不能判定这个序列是随机游走或者是具有持续性的分形时间序列,还需要对其进行显著性检验。
无论是采用协整检验还是通过随机游走判断,其目的都是要找到一种短期或者长期内的一种均衡关系,这样我们的统计套利策略才能够得到有效的实施。
进行统计套利的数据一般是采用交易日收盘价数据,但是最近研究发现,采用高频数据(如5分钟,10分钟,15分钟,20分钟收盘价交易数据)市场中存在更多的统计套利机会。日交易数据我们选择前复权收盘价,而且如果两只股票价格价差比较大,需要先进性对数化处理。Christian L. Dunis和Gianluigi Giorgioni(2010)分别使用15分钟收盘价,20分钟收盘价,30分以及一个小时收盘价为样本进行统计套利分析,结果显示,使用高频数据进行统计套利所取得收益更高。而且海通证券金融分析师在绝对收益策略系列研究中,用沪深300指数为样本作为统计套利 配对 交易的标的股票池,使用高频数据计算累计收益率比使用日交易数据高将近5个百分点。
三、统计套利模型的应用的拓展―检验资本市场的有效性
Fama(1969)提出的有效市场假说,其经济含义是:市场能够对信息作出迅速合理的反应,使得市场价格能够充分反映所有可以获得的信息,从而使资产的价格不可用当前的信息进行预测,以至于任何人都无法持续地获得超额利润.通过检验统计套利机会存在与否就可以验证资本市场是有效的的,弱有效的,或者是无效的市场。徐玉莲(2005)通过运用统计套利对中国资本市场效率进行实证研究,首先得出结论:统计套利机会的存在与资本市场效率是不相容的。以此为理论依据,对中国股票市场中的价格惯性、价格反转及价值反转投资策略是否存在统计套利机会进行检验,结果发现我国股票市场尚未达到弱有效性。吴振翔,陈敏(2007)曾经利用这种方法对我国A股市场的弱有效性加以检验,采用惯性和反转两种投资策略发现我国A股若有效性不成立。另外我国学者吴振翔,魏先华等通过对Hogan的统计套利模型进行修正,提出了基于统计套利模型对开放式基金评级的方法。
四、结论
统计套利模型的应用目前主要表现在两个方面:1.作为一种有效的交易策略,进行套利。2.通过检测统计套利机会的存在,验证资本市场或者某个市场的有效性。由于统计套利策略的实施有赖于做空机制的建立,随着我股指期货和融资融券业务的推出和完善,相信在我国会有比较广泛的应用与发展。
参考文献
[1] . Burgess:A computational Methodolology for Modelling the Dynamics of statistical arbitrage, London business school,PhD Thesis,1999.
[2]方昊.统计套利的理论模式及应用分析―基于中国封闭式基金市场的检验.统计与决策,2005,6月(下).
[3]马理,卢烨婷.沪深 300 股指期货期现套利的可行性研究―基于统计套利模型的实证.财贸研究,2011,1.
[4]吴桥林.基于沪深 300 股指期货的套利策略研究[D].中国优秀硕士学位论文.2009.
[5]吴振翔,陈敏.中国股票市场弱有效性的统计套利检验[J].系统工程理论与实践.2007,2月.
关于半参统计模型的估计研究
【摘要】随着数据模型技术的迅速发展,现有的数据模型已经无法满足实践中遇到的一些测量问题,严重的限制了现代科学技术在数据模型上应用和发展,所以基于这种背景之下,学者们针对数据模型测量实验提出了新的理论和方法,并研制出了半参数模型数据应用。半参数模型数据是基于参数模型和非参数模型之上的一种新的测量数据模型,因此它具备参数模型和非参数模型很多共同点。本文将结合数据模型技术,对半参统计模型进行详细的探究与讨论。
【关键词】半参数模型 完善误差 测量值 纵向数据
本文以半参数模型为例,对参数、非参数分量的估计值和观测值等内容进行讨论,并运用三次样条函数插值法得出非参数分量的推估表达式。另外,为了解决纵向数据下半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。另外,本文初步讨论了平衡参数的选取问题,并充分说明了泛最小二乘估计方法以及相关结论,同时对半参数模型的迭代法进行了相关讨论和研究。
一、概论
在日常生活当中,人们所采用的参数数据模型构造相对简单,所以操作起来比较容易;但在测量数据的实际使用过程中存在着相关大的误差,例如在测量相对微小的物体,或者是对动态物体进行测量时。而建立半参数数据模型可以很好的解决和缓解这一问题:它不但能够消除或是降低测量中出现的误差,同时也不会将无法实现参数化的系统误差进行勾和。系统误差非常影响观测值的各种信息,如果能改善,就能使其实现更快、更及时、更准确的误差识别和提取过程;这样不仅可以提高参数估计的精确度,也对相关科学研究进行了有效补充。
举例来说,在模拟算例及坐标变换GPS定位重力测量等实际应用方面,体现了这种模型具有一定成功性及实用性;这主要是因为半参数数据模型同当前所使用的数据模型存在着一致性,可以很好的满足现在的实际需要。而新建立的半参数模型以及它的参数部分和非参数部分的估计,也可以解决一些污染数据的估计问题。这种半参数模型,不仅研究了纵向数据下其自身的t型估计,同时对一些含光滑项的半参数数据模型进行了详细的阐述。另外,基于对称和不对称这两种情况,可以在一个线性约束条件下对参数估计以及假设进行检验,这主要是因为对观测值产生影响的因素除了包含这个线性关系以外,还受到某种特定因素的干扰,所以不能将其归入误差行列。另外,基于自变量测量存在一定误差,经常会导致在计算过程汇总,丢失很多重要信息。
二、半参数回归模型及其估计方法
这种模型是由西方著名学者Stone在上世纪70年代所提出的,在80年代逐渐发展并成熟起来。目前,这种参数模型已经在医学以及生物学还有经济学等诸多领域中广泛使用开来。
半参数回归模型介于非参数回归模型和参数回归模型之间,其内容不仅囊括了线性部分,同时包含一些非参数部分,应该说这种模型成功的将两者的优点结合在一起。这种模型所涉及到的参数部分,主要是函数关系,也就是我们常说的对变量所呈现出来的大势走向进行有效把握和解释;而非参数部分则主要是值函数关系中不明确的那一部分,换句话就是对变量进行局部调整。因此,该模型能够很好的利用数据中所呈现出来的信息,这一点是参数回归模型还有非参数归回模型所无法比拟的优势,所以说半参数模型往往拥有更强、更准确的解释能力。
从其用途上来说,这种回归模型是当前经常使用的一种统计模型。其形式为:
三、纵向数据、线性函数和光滑性函数的作用
纵向数据其优点就是可以提供许多条件,从而引起人们的高度重视。当前纵向数据例子也非常多。但从其本质上讲,纵向数据其实是指对同一个个体,在不同时间以及不同地点之上,在重复观察之下所得到一种序列数据。但由于个体间都存在着一定的差别,从而导致在对纵向数据进行求方差时会出现一定偏差。在对纵向数据进行观察时,其观察值是相对独立的,因此其特点就是可以能够将截然不同两种数据和时间序列有效的结合在一起。即可以分析出来在个体上随着时间变化而发生的趋势,同时又能看出总体的变化形势。在当前很多纵向数据的研究中,不仅保留了其优点,并在此基础之上进行发展,实现了纵向数据中的局部线性拟合。这主要是人们希望可以建立输出变量和协变量以及时间效应的关系。可由于时间效应相对比较复杂,所以很难进行参数化的建模。
另外,虽然线性模型的估计已经取得大量的成果,但半参数模型估计至今为止还是空白页。线性模型的估计不仅仅是为了解决秩亏或病态的问题,还能在百病态的矩阵时,提供了处理线性、非线性及半参数模型等方法。首先,对观测条件较为接近的两个观测数据作为对照,可以削弱非参数的影响。从而将半参数模型变成线性模型,然后,按线性模型处理,得到参数的估计。而多数的情况下其线性系数将随着另一个变量而变化,但是这种线性系数随着时间的变化而变化,根本求不出在同一个模型中,所有时间段上的样本,亦很难使用一个或几个实函数来进行相关描述。在对测量数据处理时,如果将它看作为随机变量,往往只能达到估计的作用,要想在经典的线性模型中引入另一个变量的非线性函数,即模型中含有本质的非线性部分,就必须使用半参数线性模型。
另外就是指由各个部分组成的形态,研究对象是非线性系统中产生的不光滑和不可微的几何形体,对应的定量参数是维数,分形上统计模型的研究是当前国际非线性研究的重大前沿课题之一。因此,第一种途径是将非参数分量参数化的估计方法,也称之为参数化估计法,是关于半参数模型的早期工作,就是对函数空间附施加一定的限制,主要指光滑性。一些研究者认为半参数模型中的非参数分量也是非线性的,而且在大多数情形下所表现出来的往往是不光滑和不可微的。所以同样的数据,同样的检验方法,也可以使用立方光滑样条函数来研究半参数模型。
四、线性模型的泛最小二乘法与最小二乘法的抗差
(一)最小二乘法出现于18世纪末期
在当时科学研究中常常提出这样的问题:怎样从多个未知参数观测值集合中求出参数的最佳估值。尽管当时对于整体误差的范数,泛最小二乘法不如最小二乘法,但是当时使用最多的还是最小二乘法,其目的也就是为了估计参数。最小二乘法,在经过一段时间的研究和应用之后,逐步发展成为一整套比较完善的理论体系。现阶段不仅可以清楚地知道数据所服从的模型,同时在纵向数据半参数建模中,辅助以迭代加权法。这对补偿最小二乘法对非参数分量估计是非常有效,而且只要观测值很精确,那么该法对非参数分量估计更为可靠。例如在物理大地测量时,很早就使用用最小二乘配置法,并得到重力异常最佳估计值。不过在使用补偿最小二乘法来研究重力异常时,我们还应在兼顾着整体误差比较小的同时,考虑参数估计量的真实性。并在比较了迭代加权偏样条的基础上,研究最小二乘法在当前使用过程中存在的一些不足。应该说,该方法只强调了整体误差要实现最小,而忽略了对参数分量估计时出现的误差。所以在实际操作过程中,需要特别注意。
(二)半参模型在GPS定位中的应用和差分
半参模型在GPS相位观测中,其系统误差是影响高精度定位的主要因素,由于在解算之前模型存在一定误差,所以需及时观测误差中的粗差。GPS使用中,通过广播卫星来计算目标点在实际地理坐标系中具体坐标。这样就可以在操作过程中,发现并恢复整周未知数,由于观测值在卫星和观测站之间,是通过求双差来削弱或者是减少对卫星和接收机等系统误差的影响,因此难于用参数表达。但是在平差计算中,差分法虽然可以将观测方程的数目明显减少,但由于种种原因,依然无法取得令人满意的结果。但是如果选择使用半参数模型中的参数来表达系统误差,则能得到较好的效果。这主要是因为半参数模型是一种广义的线性回归模型,对于有着光滑项的半参数模型,在既定附加的条件之下,能够提供一个线性函数的估计方法,从而将测值中的粗差消除掉。
另外这种方法除了在GPS测量中使用之外,还可应用于光波测距仪以及变形监测等一些参数模型当中。在重力测量中的应用在很多情形下,尤其是数学界的理论研究,我们总是假定S是随机变量实际上,这种假设是合理的,近几年,我们对这种线性模型的研究取得了一些不错的成果,而且因其形式相对简洁,又有较高适用性,所以这种模型在诸多领域中发挥着重要作用。
通过模拟的算例及坐标变换GPS定位重力测量等实际应用,说明了该法的成功性及实用性,从理论上说明了流行的自然样条估计方法,其实质是补偿最小二乘方法的特例,在今后将会有广阔的发展空间。另外 文章 中提到的分形理论的研究对象应是非线性系统中产生的不光滑和不可微的几何形体,而且分形已经在断裂力学、地震学等中有着广泛的应用,因此应被推广使用到研究半参数模型中来,不仅能够更及时,更加准确的进行误差的识别和提取,同时可以提高参数估计的精确度,是对当前半参数模型研究的有力补充。
五、 总结
文章所讲的半参数模型包括了参数、非参数分量的估计值和观测值等内容,并且用了三次样条函数插值法得到了非参数分量的推估表达式。另外,为了解决纵向数据前提下,半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。同时介绍了最小二乘估计法。另外初步讨论了平衡参数的选取问题,还充分说明了泛最小二乘估计方法以及有关结论。在对半参数模型的迭代法进行了相关讨论和研究的基础之上,为迭代法提供了详细的理论说明,为实际应用提供了理论依据。
参考文献
[1]胡宏昌.误差为AR(1)情形的半参数回归模型拟极大似然估计的存在性[J].湖北师范学院学报(自然科学版),2009(03).
[2]钱伟民,李静茹.纵向污染数据半参数回归模型中的强相合估计[J].同济大学学报(自然科学版),2009(08).
[3]樊明智,王芬玲,郭辉.纵向数据半参数回归模型的最小二乘局部线性估计[J].数理统计与管理,2009(02).
[4]崔恒建,王强.变系数结构关系EV模型的参数估计[J].北京师范大学学报(自然科学版).2005(06).
[5]钱伟民,柴根象.纵向数据混合效应模型的统计分析[J].数学年刊A辑(中文版).2009(04)
[6]孙孝前,尤进红.纵向数据半参数建模中的迭代加权偏样条最小二乘估计[J].中国科学(A辑:数学),2009(05).
[7]张三国,陈希孺.EV多项式模型的估计[J].中国科学(A辑),2009(10).
[8]任哲,陈明华.污染数据回归分析中参数的最小一乘估计[J].应用概率统计,2009(03).
[9]张三国,陈希孺.有重复观测时EV模型修正极大似然估计的相合性[J].中国科学(A辑).2009(06).
[10]崔恒建,李勇,秦怀振.非线性半参数EV四归模型的估计理论[J].科学通报,2009(23).
[11]罗中明.响应变量随机缺失下变系数模型的统计推断[D].中南大学,2011.
[12]刘超男.两参数指数威布尔分布的参数Bayes估计及可靠性分析[D].中南大学,2008.
[13]郭艳.湖南省税收收入预测模型及其实证检验与经济分析[D].中南大学,2009.
[14]桑红芳.几类分布的参数估计的损失函数和风险函数的Bayes推断[D].中南大学,2009.
[15]朱琳.服从几类可靠性分布的无失效数据的bayes分析[D].中南大学,2009.
[16]黄芙蓉.指数族非线性模型和具有AR(1)误差线性模型的统计分析[D].南京理工大学,2009.
猜你喜欢:
1. 统计学分析论文
2. 统计方面论文优秀范文参考
3. 统计优秀论文范文
4. 统计学的论文参考范例
分形几何(Fractal Geometry)的概念是由曼德布罗特()在1975年首先提出的.几十年来,它已经发展成为一门新型的数学分支.这是一个研究和处理自然与工程中不规则图形的强有力的理论工具,它的应用几乎涉及自然科学的各个领域,甚至于社会科学,并且实际上正起着把现代科学各个领域连接起来的作用,分形是从新的角度解释了事物发展的本质.
分形(fractal)一词最早由于1975年从拉丁文fractus创造出来,《自然界中的分形几何》(Mandelbrot,1982)为其经典之作.最先它所描述的是具有严格自相似结构的几何形体,物体的形状与标度无关,子体的数目N(r)与线性尺度(标度r)之间存在幂函数关系,即N(r)∝1/rD.分形的核心是标度不变性(或自相似性),即在任何标度下物体的性质(如形状,结构等)不变.数学上的分形实际是一种具有无穷嵌套结构的极限图形,分形的突出特点就是不存在特征尺度,描述分形的特征量是分形维数D.不过,现实的分形只是在一定的标度范围内呈现出自相似或自仿射的特性,这一标度范围也就称为(现实)分形的无标度区,在无标度区内,幂函数关系始终成立.
分形理论认为,分形内部任何一个相对独立的部分,在一定程度上都是整体的再现和相对缩影(分形元),人们可以通过认识部分来认识整体.但是分形元只是构成整体的单位,与整体相似,并不简单地等同于整体,整体的复杂性远远大于分形元.更为重要的是,分形理论指出了分形元构成整体所遵循的原理和规律,是对系统论的一个重要的贡献.
从分析事物的角度来看,分形论和系统论体现了从两个极端出发达到对事物全面认识的思路.系统论从整体出发来确立各部分的系统性质,从宏观到微观考察整体与部分的相关性;而分形论则是从部分出发确立整体性质,沿着从微观到宏观的方向展开.系统论强调部分对整体的依赖性,而分形论则强调整体对部分的依赖性,两者的互补,揭示了系统多层次面、多视角、多方位的联系方式,丰富和深化了局部与整体之间的辩证关系.
分形论的提出,对科学认识论与方法论具有广泛而深远的意义.第一,它揭示了整体与部分之间的内在联系,找到了从部分过渡到整体的媒介与桥梁,说明了部分与整体之间的信息“同构”.第二,分形与混沌和现代非线性科学的普遍联系与交叉渗透,打破了学科间的条块分割局面,使各个领域的科学家团结在一起.第三,为描述非线性复杂系统提供了简洁有力的几何语言,使人们的系统思维方法由线性进展到非线性,并得以从局部中认识整体,从有限中认识无限,从非规则中认识规则,从混沌中认识有序.
分形理论与耗散结构理论、混沌理论是相互补充和紧密联系的,都是在非线性科学的研究中所取得的重要成果.耗散结构理论着眼于从热力学角度研究在开放系统和远离平衡条件下形成的自组织,为热力学第二定律的“退化论”和达尔文的“进化论”开辟了一条联系通道,把自然科学和社会科学置于统一的世界观和认识论中.混沌理论侧重于从动力学观点研究不可积系统轨道的不稳定性,有助于消除对于自然界的确定论和随机论两套对立描述体系之间的鸿沟,深化对于偶然性和必然性这些范畴的认识.分形理论则从几何角度,研究不可积系统几何图形的自相似性质,可能成为定量描述耗散结构和混沌吸引子这些复杂而无规则现象的有力工具,进一步推动非线性科学的发展.
分形理论是一门新兴的横断学科,它给自然科学、社会科学、工程技术、文学艺术等极广泛的学科领域提供了一般的科学方法和思考方式.就目前所知,它有很高程度的应用普遍性.这是因为,具有标度不变性的分形结构是现实世界普遍存在的一大类结构,该结构的含义十分丰富,它不仅指研究对象的空间几何形态,而是一般地指其拓扑维(几何维数)小于其测量维数的点集,如事件点的分布,能量点的分布,时间点的分布,过程点的分布,甚至是意识点、思维点的分布.
分形思想的基本点可以简单表述如下:分形研究的对象是具有自相似性的无序系统,其维数的变化是连续的.从分形研究的进展看,近年来,又提出若干新的概念,其中包括自仿射分形、自反演分形、递归分形、多重分形、胖分形等等.有些分形常不具有严格的自相似性,正如定义所表达的,局部以某种方式与整体相似.
分形理论的自相似性概念,最初是指形态或结构的相似性,即在形态或结构上具有相似性的几何对象称为分形,研究这种分形特性的几何称为分形几何学.随着研究工作的深入发展和领域的拓展,又由于一些新学科,如系统论、信息论、控制论、耗散结构理论和协同论等相继涌现的影响,自相似性概念得到充实与扩展,把信息、功能和时间上的自相似性也包含在自相似性概念之中.于是,把形态(结构)、或信息、或功能、或时间上具有自相似性的客体称为广义分形.广义分形及其生成元可以是几何实体,也可以是由信息或功能支撑的数理模型,分形体系可以在形态(结构)、信息和功能各个方面同时具有自相似性,也允许只在某一方面具有自相似性;分形体系中的自相似性可以是完全相似,这种情况是不多见的,也可以是统计意义上的相似,这种情况占大多数,相似性具有层次或级别上的差别.级别最低的为生成元,级别最高的为分形体系的整体.级别愈接近,相似程度越好,级别相差愈大,相似程度越差,当超过一定范围时,则相似性就不存在了.
分形具有以下几个基本性质:
(1)自相似性是指事物的局部(或部分)与整体在形态、结构、信息、功能和时间等方面具有统计意义上的相似性.
(2)适当放大或缩小分形对象的几何尺寸,整个结构并不改变,这种性质称为标度不变性.
(3)自然现象仅在一定的尺度范围内,一定的层次中才表现出统计自相似性,在这样的尺度之外,不再具有分形特征.换言之,在不同尺度范围或不同层次上具有不同的分形特征.
(4)在欧氏几何学中,维数只能是整数,但是在分形几何学中维数可以是整数或分数.
(5)自然界中分形是具有幂函数分布的随机现象,因而必须用统计的方法进行分析和处理.
目前分形的分类有以下几种:①确定性分形与随机分形;②比例分形与非比例分形;③均匀分形与非均匀分形;④理论分形与自然分形;⑤空间分形与分形事件(时间分形).
分形研究应注意以下几个问题:
(1)统计性(随机性).研究统计意义上的分形特征,由统计数据分析中找出稳态规律,才能最客观地描述自然纹理与粗糙度.从形成过程来看,分形是一个无穷随机过程的体现.如大不列颠海岸线的复杂度是由长期海浪冲击、侵蚀及风化形成的,其他许多动力过程、凝聚过程也都是无穷随机的,不可能由某个特征量来形成.因此,探讨分形与随机序列、信息熵之间的内在联系是非常必要的.
(2)全局性.分形是整体与局部比较而存在的,它包括多层嵌套及无穷的精细结构.研究一个平面(二维)或立体(三维)的粗糙度,要考虑全局范围各个方向的平稳性,即区别各向同性或各向异性分布规律.
(3)多标度性.一个物体的分形特性通常是在某些尺度下体现出来,在另一些尺度下则不是分形特性.理想的无标度区几乎不存在,只有从多标度中研究分形特性才较实际.
模型的建立,其实是分形(相似性)模型的建立.利用相似性原理,建立模型单元,对预测单元进行分形处理和预测.
分形的正问题是给出规律,通过迭代和递推过程产生分形,产生的几何对象显然具有某种相似性.反问题叫做分形重构.广义而言,它指任何一个几何上认为是分形的图形,能否找到产生它的规律,以某种方式来生成它.当我们研究非线性动力学时,混沌动力学会产生分形,而分形重构则是动力学系统研究的逆问题.由于存在“一因多果”、“多因一果”,由分维重构分形还需加入另外参数.
临界现象与分形有关.重整化群是研究临界现象的一种方法.该方法首先对小尺寸模型进行计算,然后被重整化至大的或更大的尺度.如果我们有网格状的一组元素,每个元素具有一定的渗透概率,重整化群方法的一个应用就是计算渗透的开始问题.当元素渗透率达到某一临界值时,这一组元素的渗透流动就会突然地发生.一旦流动开始后,相联结元素之间便具有分形结构.
自组织临界现象的概念可以用来分析地震活动性.按照这个概念,一个自然界的系统处在稳定态的边缘,一旦偏离这个状态,系统会自然地演化回到边缘稳定的状态.临界状态不存在天然的长度标度,因而是分形的.简单的细胞自动机模型可以说明这种自组织临界现象.
分形理论作为非线性科学的一个分支,是研究自然界空间结构复杂性的一门学科,可从复杂的看似无序的图案中,提取出确定性、规律性的参量.既可以反演分形结构的形成机制,又可以从看似随机的演化过程(时间序列)中推测体系演化的结果,近年来倍受地球科学家的注意.在地质统计学,孔隙介质、储层非均匀性及石油勘探开发,固相表面或两相界面,岩石破裂、断层及地震和地形、地貌学等地球科学各个领域得到了广泛的应用.
自20世纪80年代初以来,一些专家学者注意到了地质学中的自相似现象,并试图将分形理论运用于地学之中.以地质学中普遍存在的自相似性现象、地质体高度不规则性和分割性与层次性、地质学中重演现象的普遍性、分形几何学在其他学科中应用实例与地质学中的研究对象的相似性、地质学中存在一些幂函数关系等为内在基础,以地质学定量化的需要、非线性地质学的发展及线性地质学难以解决诸多难点、分形理论及现代测试和电算技术的发展为外在基础,使分形理论与地质学相结合成为可能,它的进一步发展将充实数学地质的研究内容并推动数学地质迈上一个新台阶.目前,分形理论应用于地球科学主要包括以下两个方面的研究:
(1)对“地质存在”——地质体或某些地质现象的分形结构分析,求取相应分形维数,寻找分维值与有关物理参量之间的联系,探讨分形结构形成的机理.这方面的研究相对较多,如人们已对断裂、断层和褶皱等地质构造(现象)进行了分形分析,探讨分维值与岩石力学性质等之间的关系;从大到海底(或大陆)地貌,小到纳米级的微晶表面证实了各类粗糙表面具有分形特征;计算了河流网络,断裂网络,地质多孔介质和粘性指进的分维值以及脉厚与品位或品位与储量等之间的分形关系.
(2)对“地质演化”——地质作用过程进行分形分析,求取分形维数并考察其变化趋势,从而预测演化的结果.例如,科学家们通过对强震前小震分布的分形研究表明,强震前普遍出现降维现象,从而为地震预报提供有力理论工具.当今的研究,不仅仅局限于分维数的计算,分形模型的建立;而更着重于解释地质学中引起自相似性特征的原因或成因,自相似体系的生成过程及模拟,以及用分形理论解决地质学中的疑难问题与实践问题,如地震和灾害地质的预报、石油预测、岩体力学类型划分、成矿规律与成矿预测等.地球化学数据在很大程度上反映了地质现象的结构特征.分维是描述分形结构的定量参数,它有可能揭示出地球化学元素空间分布的内在规律.
分维与地质异常有一定的关系.我们可以对不同地段以一定的地质内容为参量对比它们分维大小的差异,以此求得结构地段的位置及范围,从而确定地质异常;也可以对不同时期可恢复的历史地质结构格局分别求分维,还可以确定分维背景值.分形是自然界中普遍存在的一种规律性.
总之,分形理论已经渗透到地学领域的各个角落,应用范围涉及地球物理学、地球化学、石油地质学、构造地质学及灾害地质学等.
从前有座山,山里有座庙,庙里有两个和尚,一个大和尚,一个小和尚,大和尚给小和尚讲故事。大和尚说:从前有座山,山里有座庙,庙里有两个和尚,一个大和尚,一个小和尚,大和尚给小和尚讲故事,大和尚说:…… 有没有一些童年的记忆,甚至有些愤怒的搞笑,这个三天三夜也讲不完的故事,就是我小时候,哥哥常常忽悠我的故事。 你知道吗?这个无聊的故事背后,包含一个伟大的思维模型: 什么是分形理论? 简单讲,就是局部与整体的自相似性。 讲复杂点吧,是这样的: 分形,源自拉丁语:frāctus,有“零碎”、“破裂”之意,又称碎形、残形,通常被定义为“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状”,即具有自相似的性质。 1982 年曼德博提出了更正式的定义: 后来他认为这种定义过于严格,于是简化并扩展了这个定义: 又过了一段时间,曼德博决定使用以下方式来描述分形: 为什么要讲复杂点呢? 因为分形其实比你想象中更复杂,更难。 先看看生活中,有哪些例子: 如果你有有散步习惯,看看小区的树,是否有分形相似。我自己随处拍了几张典型的分形特征 自然界里一定程度上类似分形的事物还有云、山脉、闪电、海岸线、雪片、植物根、多种蔬菜(如花椰菜和西兰花)和动物的毛皮的图案等等。除了真实自然界外,在数学领域,用递归法,利用计算机技术,可以做出很多分形图形。 下面我们看非常出名的 龙之图形: 首先,我们先选取一条线段作为最初的图形P(0)。然后我们把这个图形做两个形变:第一,沿着中线对折,成为直角折线,第二,将这个直角折线拉伸,使其两个端点距离与最初线段长度相等。经过这两个形变之后,它成为第二个图形P(1)。然后我们对P(2)中的每一条直线段也做同样的形变,并不断重复。 我们来看看这种对一个线段进行简单的拉伸和弯折两个动作的变换最终会形成什么样的图形,第五张照片是这样的:第8张图片第11张图片 第13张图片经过多次迭代变形,最终图形这个图形数学家把它叫做Dragon’s Curve (龙之曲线),据说是因为它外形像一只龙。不管你信不信,反正我信了。类似的分形非常之多,并且其中不乏绚丽多彩的。 比如曼德博的上帝的指纹是不是很神奇,局部与整体自相似性 科赫雪花除此之外,还有很多,如:康托尔集,皮亚诺曲线等等。 分形图形,生活中和数学上有很多,大体可分为三类。 这是最强的一种自相似,分形在任一尺度下都显得一样。由迭代函数系统定义出的分形通常会展现出精确自相似来。这是一种较松的自相似,分形在不同尺度下会显得大略(但非精确)相同。半自相似分形包含有整个分形扭曲及退化形式的缩小尺寸。由递推关系式定义出的分形通常会是半自相似,但不会是精确自相似。 这是最弱的一种自相似,这种分形在不同尺度下都能保有固定的数值或统计测度。大多数对“分形”合理的定义自然会导致某一类型的统计自相似(分形维数本身即是个在不同尺度下都保持固定的数值测度)。随机分形是统计自相似,但非精确及半自相似的分形的一个例子。 概括起来,分形图形有如下特点 ①在任意小的尺度上都能有精细的结构;②太不规则,以至无论是其整体或局部都难以用传统欧氏几何的语言来描述; ③具有(至少是近似的或统计的)自相似形式; ④一般地,其“分形维数”(通常为豪斯多夫维数)会大于拓扑维数; ⑤在多数情况下有着简单的递归定义。 分形理论,严格来说,属于数学学科研究范畴,但在生活中也有很多类似案例,具备半相似性和统计相似性,因此可以指导我们思考问题和认识世界。 如果研究股票k线图,仔细观察月k线,周k线,日k线,小时k线,分钟k线,你会发现其具有分形相似,如果能把握好,可以指导炒股票。 我们上学的时候都学过,我国的海岸线全长约万公里(北起鸭绿江口,南止北仓河口)。这个长度是以1公里长的标尺测量得到的。然而如果我们采用短些的标尺,例如1 厘米长的标尺,则测得海岸线长度为万公里,这是地理书上给出长度的212倍。如果我们再细分,估计会得到更长海岸线。正如1967年Mandelbrot就提出“英国的海岸线有多长?”的问题一样,按照分形理论和无限细分法,海岸线是无限长的。 看分形理论时,我突然想到,每个人的一生是否可以分形到每年每月每日,答案是肯定的。 从七八岁开始,如果你的性格确定,你的大致行为方式确定,你的一生过得非常相似,一天一年是你一生的局部缩影,具有自相似性。 反过来,你希望一生有收获,一年有进步,你需要做的就是每一天把时间充分利用好。你每一天的生活工作学习状态,其实就是一年的分形状态。 生活很多变,人生很复杂,但一切的复杂都源于简单。利用分形理论,化繁为简,你只需要过好你每一天,过好每一天的标准很简单,就是这一天的时间,你是否做了最科学最合理最充实的安排。回到文章开端,从前有座山,山里有个庙…… 其实,这个故事,就是人生分形的缩影,看起来无聊,却真切的反映出人生的分形和无穷无尽,描述了无数大众人生的轮回转换,最简单的故事中,蕴含着最真切的道理。
142 浏览 2 回答
219 浏览 4 回答
137 浏览 2 回答
189 浏览 2 回答
204 浏览 3 回答
165 浏览 2 回答
192 浏览 2 回答
179 浏览 3 回答
249 浏览 3 回答
153 浏览 3 回答
126 浏览 3 回答
293 浏览 3 回答
347 浏览 3 回答
185 浏览 3 回答
173 浏览 7 回答