土工试验常见问题探讨论文
摘 要:根据工作经验与国家现行规范及行业标准相结合,针对土工试验中存在的问题,从试样制备、土物理性质试验及力学性质试验三个方面进行了剖析,提出了解决问题的办法。
关键词:土工试验;试样制备;土的物理性质试验;土的力学性质试验
土工试验是岩土工程勘察的重要组成部分,是野外勘察工作的延续。野外勘探与室内土工试验有机地结合,将准确完成土样的定性、定量分析与评价,为建设单位提交符合现场实际情况的勘察成果。由于岩土体的不均匀性,取样、运输、保管过程中的扰动,试验仪器及操作方法的差异等使得岩土试验结果出现部分失真,在一定程度上影响勘察成果的真实性与准确性。本文就岩土样试验中经常出现的部分问题进行剖析,以便勘察单位在过程质量控制中采取相应措施,为设计部门提交真实、准确的勘察成果。
1、试样的制备
岩土工程勘察市场竞争激烈,勘察费用较低,勘察单位的设备技术更新改造投入较少,勘察手段的单一,导致采取的原状岩土样质量较差,土体结构受到严重扰动和破坏(尤其是采用岩芯管岩芯切样);部分样品采集后没有在现场用蜡封堵,水分蒸发;冬天没有防冻措施,使样品受冻;运输过程中没有减震措施,特别是灵敏度较高的粉土和软塑土。由以上原因造成的土体结构破坏和含水量变化,严重影响到岩土体的原状,该类样品根本不能作为力学试验样使用。
采样不合格的岩土样,在试样制备时应注意。开启土样筒后,先检查土样结构,确定土样是否已受扰动或取土质量是否符合规定,对不符合规范要求的试样必须舍弃。
对合格土样用环刀切取时,首先应做好以下几点:
①应在环刀内壁涂一薄层凡士林,目的是为减少环刀与土样间的摩擦,避免土样压密扰动。
②将环刀垂直下压,环刀垂直下压是避免环刀偏向受压时环刀一侧出现相对压密而另一侧出现样品与环刀间的小缝隙,造成土的容重失真及压缩时压缩模量偏小。
③环刀下压过程中,边压边削,可避免土样受到环刀外侧壁与土样间的过大摩擦而使土样受到一定程度的压密。
④压入环刀后对土样的上下端面削平,对于软土要用钢丝锯修复平整,若用切土刀整平则刀面极易带起软土形成二次扰动,对其它土可采用切土刀削平。这四种措施都可有效避免土样在室内试验时受到扰动。
在制样过程中要对土样的颜色、名称、包含物、矿物成分、软硬程度、塑性状态、结构构造等进行描述,不仅是判定土类别的依据,也有利于后期数据整理时进行对比和综合分析处理,得出符合工程实际的数据。
2、土的物理性质试验
含水率试验
土层的不均匀、取样扰动或进水、取土器和筒壁的挤压、原状样密封不严、土样在运输和存放期间保护不当而失水等均会引起含水率的变化。除此之外在试验室若操作不当对土样含水率的测试结果也会造成偏差:
①取样点的位置不同,尤其是对粉质含量高的粉质粘土、粉土、砂土,样的上、中、下不同部位含水量会有较大的差别,为克服这种影响可分上中下不同部位同时取等量样品,加以混合后再取为含水量试验样品。
②铝盒烘干时应开口,以利水的充分蒸发。铝盒质量应定期标定:铝盒在长期使用过程中由于氧化、磨损其质量也有一定变化,定期标定能有效降低试验误差。
③烘干时间及温度对含水量测试数据影响较大,从而影响到地基土承载力基本值。以粉土为例,含水量每提高5%,承载力基本值降低约5%~10%。因而应严格掌握烘干时间和温度。
红粘土、膨胀土等粘粒含量很高的土类,有较大的比表面积,吸附水能力强,需在105℃~110℃温度下烘干8h,粉土、粉砂土不得小于6h,但对含有机质的土(尤其是有机质含量大于5%的土),应在65℃~70℃烘至恒重,温度过高会造成有机质的损失,使含水量偏大。决不能为赶工期而省时省工,更不能不分土类别、不分温度、不分时间地进行烘干。
土粒比重试验
从理论上讲要得到一个准确的土粒比重值较为困难,因为国标中采用的试验方法存在下列因素的影响:
①结合水的影响。土粒带负电荷,与其周围的水相互作用,形成结合水,结合水吸附在粘粒表面,使测出的土粒体积大于实际体积,导致测试结果偏小。
②土粒间胶结物固化的影响。制备试样在烘干过程中,不可溶的胶质矿物如SiO2、Al2O3、粘土矿物等易固化形成团粒,形成的团粒较难靠水的作用分散,加热煮沸对团粒不能达到完全分散的作用,使计算出的'土粒相对密度偏小。
土粒比重是土的基本物理指标之一,是一个相对稳定的值,它决定于土的矿物成分,一般无机物矿物颗粒的比重为~,有机质为~,泥炭为~,土粒的比重变化幅度很小,同一地区同一类型的土相对密度基本接近,通常可按地区经验数据选用。由于土粒比重试验相对复杂且费时,但也不能在一个地区根本就没有进行过土粒比重试验,而盲目套用其它地区的经验,这是不科学的。
界限含水量试验
液、塑限联合测定法的界限含水量土样制备方式对比较均匀的土可采用天然含水状态的土样;对不均匀的土样,采用风干土样。当试样中含有粒径大于的土粒和杂物时,应过的筛。进行界限含水率试验时应将试验样品加入不同水量充分调和均匀,填入试样杯中,按规范测定三个不同含水率的点。
在实际试验时操作人员能够对含砾石、岩屑、杂物的土样过筛后进行试验,但当土中含原生的铁、锰质结核时而往往忽视过筛,直接将土中的铁、锰质结核压碎混入土中,这种方法造成土的液、塑限含水量偏小。
土样加水后应充分拌和,拌合后试验样品的含水量必须均匀,否则锥体下落试验点处的含水量难以代表实际样品的含水量。
试样调好后填入盛土杯也是一个关键环节,填入的样品要均匀,不能有空洞,杯口土面应平整。低含水量的试验样易在盛土杯中产生土体密实度差异现象,高含水量试验样易出现盛土杯土体空洞现象,操作时应注意。杯口土面平整时,不能用调土刀过分抹平,尤其对易失水的粉土更容易造成杯表面含水量降低,产生试验误差。在具体试验过程中可在一杯土的不同位置测试两次,以此来检验试样是否均匀。对于搓条法进行塑限试验,虽然规范允许,试验时人为影响因素较大,试验误差过大。这种方法虽然简便,但应慎重选用。
土体的定名
土体定名应规范,在土体定名时经常出现粉土定名的误区。规范规定:粉土是粒径大于的颗粒质量不超过总质量的50%,且塑性指数不大于10的土。在实际运用中,由于颗分试验较繁杂,仍采用按塑性指数不大于10来划定粉土的做法。土工试验时,粉砂有时也具有一定的塑性指数,若仅按塑性指数划分粉土可能会造成误判。另外,按《建筑地基基础设计规范》(GB50021-2001)规定粉土承载力特征值深宽修正时、按《建筑抗震设计规范》(GB5007-2002)进行液化判别时,均需根据粉土粘粒含量数值来进行计算和判别,虽然对地震烈度小于等于6度的地区,对非持力层粉土一般建筑不需进行液化判别和承载力特征值深宽修正,但也不能仅以塑性指数作为判定粉土的条件。
3、土力学性质试验
固结试验
土的固结试验是测定土体在压力作用下的压缩特性,以此计算建筑物的沉降量,是地基设计的重要参数之一。在试验时常有以下因素影响其准确度。
①由于频繁折卸仪器、透水石磨损、滤纸规格的变化等因素,均会影响测试结果,因而仪器应定期校正。
②上透水石的含水量差异会对土体固结产生一定程度的变化,这种变化对一般的土样影响比较隐蔽,不易发现,但对具膨胀性的土样会有很大的影响,当透水石的含水量较土样含水量大时会引起土样吸水膨胀,出现前后级荷载百分表读数差别很小的现象,有时甚至出现后级读数较前级读数小的异常情况。在透水石含水量较土样含水量小时,会加速土样的失水呈收缩趋势,造成压缩量过大。因而下透水石的含水量未接近土的天然含水量。
③安装试样仪器归零必须严格到位,环刀上、下土面必须紧密与上、下透水石处的滤纸接触。由于环刀使用时外力破坏会出现外径变化情况,使得环刀不能有效放入规定限位,造成透水石不能与环刀上、下土面有效接触,使初级压缩偏大,产生实验误差。
④百分表归零时应使百分表量测的活动轴杆有足够的量程,以避免压缩变形量较大时,仪器量程小于土样压缩变形而造成压缩试验的失真。
⑤试验稳定标准在《土工试验方法标准》(GB/T50123-1999)中规定:施加每级压力后,每小时变形达时,测定试验高度变化作为稳定标准。
原来的1h快速法由于缺少理论依据而不再使用,但实际工作中,由于固结仪器数量的限制、试验工期的紧迫仍会沿用,这种违背规范的现象,应禁止。
抗剪强度试验
直剪试验受力条件复杂(如发生剪切位移时法向加荷由最初轴心受压变为偏心受压,剪切破坏面人为限制),排水条件不易控制,按《土工试验方法标准》GB/T50123-1999第18条规定快剪试验一般适用于渗透系数小于10-6cm/s的细粒土,粉质粘土渗透系数一般大于10-5cm/s,粉土K值更大,用直剪试验已非常勉强,在室内试验对较软的粉土及粉质粘土直剪时,发现四级荷载下很少存在峰值强度,绝大部分需剪切至位移6mm处,剪切强度指标回归性差(尤其最后一级荷载强度偏低,再现性差),剪切强度指标仅能作为参考。另外较软弱的土即使渗透系数满足要求,当后二级荷载加上时会发生土样挤入透水石与剪切盒之间缝隙的情况而无法剪切。虽然直剪试验方便简单,但其对粉土、粉质粘土及较软弱土强度指标可信度较差,三轴试验可取得较好的效果,在一个勘查项目的土工试验中可进行一定数量的三轴剪切试验进行对比。
另外在进行固结快剪及快剪试验时,应严格控制剪切速度,对粘性土速度控制在为宜,严禁提高剪切速度,造成剪切强度偏低,误导设计。
4、体会
土工试验是对野外采取的土样进行试验,土样在采取、保管、运输的各个环节稍有不慎都会对“原状土样”试验数据的真实性产生重大影响,因此:一是务必要求野外勘察机台选用符合国家规范要求的标准取样器静压取样,严禁采用轻锤多击法取样或岩芯管回转岩芯切样;二是在取样过程中精心操作,特别是要防止压取长度超过取样器长度,造成土样挤压;三是对取出的土样立即密封妥善保管,做到防晒、防冻;四是对取出的土样及时送到试验室,在运送时装箱置于减震垫上,防止互相碰撞;五是在试验过程中应尽可能地减少对土样的再次扰动,采取有效措施保证试验结果的可靠性,并对试验过程中易出现问题的环节引起高度重视,在试验结果分析整理时应结合具体土样特点进行对比,充分考虑试验过程中可能引起试验结果误差的影响,提交真实、合理的工程试验数据,更好地为工程建设服务。
评价目的 在我国的社会经济生活一次能源消费结构中,煤炭占75%,煤炭在21世纪仍将是我国的主要能源,对国民经济增长提供重要的能源保障。但随着煤炭资源的大规模开采,一方面满足了我国经济建设的需要,另一方面也带来了一系列生态环境题。生产营运期的煤炭开采对生态的影响,则主要表现在采空区形成后引起的地表沉陷、地表水的渗漏、植物生长、土壤侵蚀强度的增强等多方面。本专题通过生态环境影响评价分析识别对生态环境的破坏因素,对可能存在的破坏因素采取削减措施,以保护建设项目周围生态环境。 评价范围 评价范围确定为矿井采区、工业场地、矸石排放场地。 评价对象 以评价区地表塌陷、矸石山、生态植被、农业生态等为对象。 2 项目生态环境现状调查与评价 地形地貌现状 该矿区属中低山侵蚀斜坡地貌,地势北东高、南西低,区内最高点高程为+750m,最低点+475m,区内地形高差+275m,地势较平缓,松林成片,植被茂密。 地质现状 该矿区位于****盆地东南川东弧形褶皱带、黄草背斜南延之东翼部位,轴向北东~南西,在这个区域岩层倾斜平缓,未见有大的构造断裂发育,地质构造尚属简单。出露地层为三叠系和第四系残坡积层。 矿区为一南西~北东向发育的不规则箱状短轴背斜,地层产状,倾向122°,倾角∠23°,区内未见有破坏煤层的断裂构造。 水文地质现状 地表水 矿区位于黄草峡背斜南延之东翼部位,地势总体为南高北低,地形坡向NE,坡度角6~20°,一般15°,有利于地表水排泄。 矿区内无大的地表水体,仅有季节性冲沟,大气降水大多沿冲沟向东排泄。 地下水 地下水主要赋存于长石石英砂岩层中,为裂隙水,主要接受大气降水补给。据观测,开采区只有少量的滴水和淋水。由于矿井浅部有大量采空区,构造裂隙及采动裂隙成为地表水与地下水的联系通道,大气降水通过裂隙进入矿井,成为矿井的补给水源。 含水层 矿区内须家河四段(T3xj4)长石石英岩岩石孔隙率高,构造裂隙较发育,含水性强,为矿井直接充水的含水层。 隔水层 矿区内须家河二段(T3xj2)长石石英砂岩间夹薄层状黄绿色页岩,岩层倾斜平缓,岩溶地下水不发育,含水性弱,为矿区弱含水层,具一定隔水性,为矿井隔水层。 动植物资源现状 矿区内生态系统以林地(主要为灌丛)生态系统为主,其次为农田生态系统,分布于平坦、山地和丘陵的缓坡。该项目井田所在区域植被主要是人工林及农田。项目区受人为干扰较大,土地垦殖指数高,现基本为早地和坡地,无成片的原生植被,主要树种为松树。其余占地上的植物以农作物为主,主要是玉米、小麦和一些蔬菜类,部分坡地和田埂间生长有芭茅、芦苇、苔草、菖蒲等。在道路边以及部分山头上零星分布有少许桦树、榕树、竹子和柑橘树。由于受人为活动干扰较大,在项目区没有发现属国家保护的处于野生状态的濒危珍稀动植物,其它野生兽类动物也极少见。 井田范围内的地表塌陷沉降现状 ****煤矿已开采近15 年,矿山开采薄煤层,多年来采矿未诱发地质灾害发生,未引起地面开裂和地面下沉现象,塌陷裂隙等不良地质问题。该区现状整体稳定。 矸石山现状 *****煤矿已开采近15年,地表已形成矸石山堆填物。矸石山由井下生产产生的矸石堆积而成。矿井目前的排矸量主要为掘进时的矸石,量少,年排矸量为万吨。掘进时产生的矸石2/3用于回填矿井采空区,剩余部分连同地面手选产生的矸石部分卖给砖厂及水泥厂用作原材料,剩余的约万吨临时堆积在工业广场的南侧,现矸石场高约10m左右,宽约20m。矸石山无截排水沟,矸石山前也未建挡矸墙,随着矸石量的不断增加,矸石山可能产生滑动,且在雨季受雨水的冲刷,污染矸场旁的林地,而且容易造成水土流失。 3 生态环境影响分析 煤矿开采过程中引起的生态破坏,主要包括下述三个过程: 过程一,开采活动对土地的直接破坏,如开采会直接摧毁地表土层和植被,从而引起土地和植被的破坏; 过程二,矿山开采过程中的废弃物(如煤矸石、废弃泥土等)需要大面积的堆置场地,从而导致对土地的过量占用和对堆置场原有生态系统的破坏; 过程三,矿山废弃物中的有害成分,通过径流和大气飘尘,会破坏周围的土地、水域和大气,其污染影响面将远远超过废弃物堆置场的地域和空间。 建设项目开采期满后,由于开采及废弃物堆放等对环境还存在一些潜在的影响,影响主要表现在以下二个方面: (1)由于该项目地处山区,局部的地表岩移、沉陷和跨落会从一定程度上加剧地表岩土侵蚀速度,增加边坡泻溜、泥石流灾害发生的危险性,所以开采完成后采空区的影响应引起注意; (2)本建设项目属小型矿山采区,煤矸石堆未加设挡护墙,在—些高危边坡区,可能会有小型泻溜和泥石流发生。修建挡护墙后,也存在着经不住特大暴雨、山洪冲击而形成大规模泥石流的潜在危险。煤矸石堆不但存在着泻溜、滑坡,并构成发生大规模滑坡、泥石流灾害的危险,而且破坏了植被、生态景观。 通过上述对煤矿开采及开采期满后可能破坏生态环境的途径分析,该煤矿生产营运期间、闭坑后造成的生态负面效应对植被、动植物、土地利用和景观等方面的影响是比较突出的,现简要分析如下。 对自然景观的影响 矿区现为中低山侵蚀斜坡地貌,区内最高点高程为+750m,最低点+475m,开采标高+575~+513m。开采区为高度适宜的小山峰,植被生长季节表现为绵延起伏的绿色山峦。 本项目煤炭生产是以矿井掘进的形式开采,不会对原有地貌景观造成较大的影响,主平硐工业场地、道路及矸石场等地的建设改变原有地貌景观,但影响范围小,并且远离干线公路。由于煤层开采后地表可能会发生移动,同时伴有裂缝及塌陷坑的产生。矿区煤炭开发后的地貌形态为原有地貌与地表沉陷叠加的结果,但由于井田范围内为起伏较大的中低山区,地表下沉值远不如地形变化大,而且地表裂缝及塌陷坑规模都不大,地貌形态的改变并不十分明显。因此,该煤矿的开采不会使其所在区域层峦叠嶂的视觉景观发生根本变化。 对矿区范围内地表塌陷的影响 地表塌陷预测 地表变形深陷裂缝影响因素很多,涉及面广,既有自然因素的控制,又有人为因素的影响,但不论何种原因,最关键的是环境地质基础。如果地质条件好,构造简单,岩性组合以坚硬岩层为主,单层厚度大,岩石力学指标强,则难以发生地质变形,即使发生,其影响程度也较轻,反之则易于发生,影响程度比前者严重。该矿地质构造简单,经多年采矿未诱发地质灾害发生,未引发地面开裂和塌陷变形。该区现状稳定。未来采矿范围将向深部扩大后,地质条件和采矿工程与已采区的基本相同,且采深更大,采用类比法认为,未来采矿工程对地表造成破坏的可能性小。 地表移动与变形值预计 结合评价区域地形条件,根据国家煤炭局《压煤开采规程》中山区地表移动与变形值计算方法,其计算公式如下,计算结果列于表1。 最大下沉值 (mm): 主要影响半径( r0):r0 = H0/tgβ (tgβ) 倾斜斜率(i):i= Wmax/r 曲率值(k):k = 水平变形值(ε):ε= 水平移动值(u):u= b·Wmax 最大下沉角( ): = 90°- 冒落带高度 计算(按K3煤层计算): 导水裂隙带高度 : 式中: ——煤层开采高度为; ——煤层倾角23°; H0——煤层平均采深,; ——下沉系数,取经验值; b——水平移动系数,取经验值; ——岩石碎膨胀系数,取经验值。 走向边界角、上山、下山边界角 、 、 ,取经验值,分别55°、55°、49°。 表1 地表移动变形预计值一览表 最大下沉值 Wmax(m) 386 主要影响半径 r0(m) 地表变形值 斜率 (mm/m) 曲率 (10-3/m) 水平变形 (mm/m) 水平移动 (mm) 边界角(°) 下山( ) 49 上山( ) 55 走向( ) 55 最大下沉角(°) 76°2′ 冒落带高度(m) 导水裂隙带高度(m) ± 开采传播影响角(°) 73°36′ 根据表1计算得到的地表变形值i、k、ε,并对照《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》(煤行管局字[2000]第81号)建筑物损坏等级划分标准,对地面建(构)筑物的破坏等级属Ⅱ级(轻微损坏),结构处理为小修。说明矿山移动盆地沉陷造成地表建构筑物受损的可能性中等,损失中等,危险性中等。 ****煤矿井田范围内无居民居住。据实地调查,该煤矿采矿影响范围共有民房3户,房屋多为砖混结构(2F),房屋基础多为条石,基础持力层以石灰岩为主,经调查未发现民房墙体开裂和地面裂缝等破坏现象。但随着煤矿的进一步开采,采空区面积的扩大,采煤活动可能对地面居民建筑物造成一定的影响。 水土流失和土壤侵蚀的影响 该项目的在建设期已对原地表具有水土保持功能的植被进行彻底的破坏,开挖后形成的裸露面完全暴露,虽然开挖迹地最终裸露面为基岩,短期内无松散颗粒存在,无土壤流失源,但其中对径流入渗量及汇流时间的减少,极易造成径流量和径流侵蚀能力的增加。 项目开采多年,多余的矸石堆放在矸石场,形成一个松散的堆积体,受降水渗入的影响及弃渣在自然沉降、人为活动的作用下,降低渣体摩擦角,易发生冲刷、滑塌等水土流失现象,若经降水冲刷流入下游农田中,会对种植的农作物产生较大危害,造成不良影响。 煤炭开采、施工带平整、道路开通、生产服务设施等工程,会造成施工区域内地表植被的完全破坏,使土壤的结构、组成及理化性质等发生变化,进而影响土壤的侵蚀状况,新增一定量的土壤侵蚀。临时性占地,也将破坏植被和扰动原地表,使土壤变得疏松,以及开采过程中产生的弃渣等,也将新增一定量的水土流失。 对植被的影响 井田开采造成地表植被的完全破坏。弃渣、生活垃圾等构成的固废物,井下排水、生产生活污水,煤尘、粉尘土等,以及地表塌陷等,均会对周围的植被产生不良影响。尽管项目建设会使原有植被遭到局部损失,但于本矿建设的规模很小,占用的土地十分有限,不会使评价区植物群落的种类组成发生变化,也不会造成某一植物种的消失。且该矿已开采15年,经现场调查并询问当地居民知道,地表植被未发生根本性变化,据此也可类比认为,****煤矿以后的开采对地表植被影响很小。 对野生动物的影响 对动物的影响主要体现在两个方面:一方面是地表沉陷破坏植被使陆生动物失去赖以生存的条件以及地表沉陷新朔地貌导致动物物种的改变。因地表沉陷对植被的影响主要发生在非连续变形的区域,本井田小且无该区域,因此开采破坏植被的量很少,不会破坏井田范围内的生物群落结构。另一方面是施工人员的活动将会使施工区及周围一定范围内野生动物的活动和栖息产生一定影响,引起野生动物局部的迁移,使其群落组成和数量发生一定变化,然而,由于评价区野生动物种类较少,且多为一些常见种类,因此这种不利影响是轻微的。 对土壤的影响 煤炭开采过程中产生的粉尘污染物通过自降和降水淋溶等途径进入土壤环境,从物理、化学和物理化学等方面影响周围土壤的孔隙度、团粒结构、酸碱度、土壤肥力及微量元素含量等,具体分析如下: a、粉尘量很少,不会改变附近土壤酸碱度; b、粉尘中重金属元素含量低且难以被植物直接吸收利用,因而对土壤和作物不会产生污染; c、从静态分析,粉尘在土壤中累积会增强土壤粘结性,造成土壤板结,并且降低了土壤孔隙度,使土壤表层严重结壳,阻碍土壤与大气的气体交换,从而抑制土壤微生物活动,影响土壤地力正常发挥,降低了土壤肥力。但从评价区域土壤理化性质来讲,质地以壤土为主,明显地反映出粘粒不足,增加一些细小颗粒并不会改变土壤的结构。据安徽农学院研究,粉尘对土壤影响的实验结果,粉尘量达到每年每kg土壤接纳2g粉尘条件下,经过20年的积累,方对土壤产生明显影响,本煤矿的开采排尘强度远远低于该数值,所以不会对土壤理化性质产生明显影响。 对土地利用的影响 项目建设对当地土地利用的影响主要是井田开挖、道路建设、和辅助系统等工程建设用地,这些设施对土地的占用使这些土地失去原有的生物生产功能和生态功能。从而对局地的土地利用产生一定的影响,影响到当地的农、林用地。采煤结束后,一般1年(对于耕地)或3~4年(对于灌丛林地)内基本上可恢复原有的土地利用功能,临时占地对整个区域土地利用和经济的不利影响是有限的。 对区域环境功能的影响 生态环境类型由自然生态系统变为人工生态系统,由林地(主要为灌丛)变为矿区,区域生物生产力降低,而人口将大幅度增加。矿井服务期间,水源涵养及水质净化、生物多样性保持、景观及娱乐功能有所减弱,大气污染及噪声功能区基本不发生变化。矿井服务期满进行生态恢复后,植被覆盖率将恢复接近开采前水平,且乔、灌、草搭配协调,物种多样性有所增加,各项环境功能恢复接近开采前水平。 矿井报废期对生态环境影响 矿井在衰竭后期至报废期的时段内,与初采期和盛采期相比对自然环境诸要素的影响将趋于减缓,主要体现在以下几个方面: a、煤炭行业特有的地表变形环境问题,将随着开采活动的减少乃至停止而逐渐趋于稳定,不会再有新的沉陷区出现。但是矿井闭矿时矿井采空区最大,地表沉陷也将达到最大值,因此在地表沉陷区,应采取土地重塑措施,恢复其土地的使用功能。 b、随着资源的枯竭,与矿井有关的煤炭开采、加工和利用的各产污设备也将完成其服务功能,因此这些产污环节也将减弱或消失,如井下及地面污废水的排放、设备噪声、环境空气污染物等,区域环境质量有所好转。 c、在矿井关闭之后,矿井矸石山不仅占用土地,还将继续污染环境,因此应对排矸场所占用的土地进行恢复其原有功能,如平整后覆土复垦或绿化。之后,所贮存的固体废弃物的性质趋于稳定,对环境的不利影响将逐步消失,填沟造地、复垦绿化的完成,形成区域新气象。 d、在闭矿后,矿井工业广场场地景观与自然景观不相协调,应对其平整,恢复植被以减轻对自然景观的影响。 e、矿井报废期还将会面临矿井有害气体继续溢出的环境问题,应采取有力措施予以防范。 4 生态恢复与建设措施 煤矿的开采破坏了原有的林地景观。应加强矿区土地复垦,最大程度上恢复矿区原有的自然景观。 生态恢复与建设方案思路 充分利用工程措施的控制性和速效性,同时发挥植物措施的长效性,植物措施和工程措施相结合,土地整治与复垦措施相辅;以植物措施为主,全面防治与 重点防治相结合;发挥各项措施的综合防护效能,实现总体防治目标。 生态恢复措施 矿井生产、施工保护措施 项目施工过程是应加强管理,要采取少占少破坏的原则;施工过程损毁的灌木,要制定补偿措施。 掘进工作面在接近含沙层、导水断野时,必须打超前钻孔控放水;进下有突水危险的地区,必须在其附近设置水闸门或水闸墙;在掘进工作面或其他地点发生明显的突水征兆或大量涌水时,应立即停止工作,采取相应的保护措施,确保含水层不受破坏。 工程施工营地,料场临时占地及弃渣堆放占地会破坏地表植被,临时占地在施工结束时应进行绿化,恢复植被。 对于矿区中废水都应采取措施使其达到污水排放标准后才能向外排放,在井口设立沉降池,使井下煤、泥混浊水沉清后排放。将生产污水经过除铅中和满足排放标准后排放。生活污水集中生化处理后排放。 经常进行洒水除尘,防止煤尘飞扬,保护矿区的空气质量。 工业场地绿化美化区 由于工业广场既是煤矿煤炭开采基地,又是职工生产生活场所,故本区的水土流失防治措施既要具备保持水土功能,又要满足提高环境质量的要求。在做好排水、边坡防护的前提下营造分隔林带划分功能区,同时对场区道路和场区空地进行绿化美化,点缀园林趣味小品,使之成为生态矿区、园林矿区。关于煤矿绿化,提出以下建议: 根据工业场地建筑物平面布置的特点,按功能分区进行场地绿化。综合楼前栽植观赏性较强的树木、花卉、绿篱,并辅以绿地;锅炉房、污水处理站、坑木房、煤仓等产生粉尘、噪声大的生产系统四周,职工宿舍地带,应以乔、灌林相配种植以防尘降噪。 排矸场重点治理 焦子沟煤矿采用沟谷排矸,开采过程中产生大量的矸石,堆放在矸石场。目前对中西部煤矿区沟谷型排矸场的综合整治,已有较为成熟的技术可供运用,本项目可采取的主要措施有:a、拦渣坝:作用是拦蓄弃渣;b、渗水盲沟:其作用是有效排除弃渣区域沟道渗水,防止拦渣坝坝体因沟道长期渗水浸泡而损坏;c、汇流急流槽:目的是排除拦渣坝坝前区域及弃渣阶坎田面洪水;d、排水沟:主要用于排除弃渣堆积面上的汇流洪水;e、渣坎砌护:保护每阶渣坎堆积体稳定;f、弃渣场封闭:作用是防止矸石自燃;g、塬边埂及截水沟:防止塬面超强径流进入弃渣沟道;h、从沟头开始分段堆矸,分段整治,封闭堆矸面。 塌陷区的治理 ****煤矿矿井拟采地区为中山山地,矿区内及影响区居民少、地面无大建筑物,无地表水体,且煤层薄,根据前述预测分析,焦子沟煤层开采后不会引起大的采空区塌陷,对在地面的影响很小。因此建议采取以下措施进行防范: a、开采中应加强山体滑坡区的监测、监控工作,产采取预防措施。对土崖和坡度大于45度以上的山坡,设置危险标志,在边缘修建排水沟减少雨水对其的润滑,在重点保护区修挡土墙、防滑桩和其他护坡工程、植物工程辅以综合治理。 b、对产生裂缝的土地,应根据裂缝宽度的大小,对较小的裂缝平整恢复原状,对较大的裂缝采取充填、平整,使其恢复以减少雨水侵蚀引起的水土流失;对破坏严重的土地,进行复垦复种,并按有关规定进行一定的补偿;若造成土地绝产,并没有按征地处置。 c、选取典型房屋建立岩移观测站点和预警系统,根据监测数据及时进行加固或修缮、赔偿。 植被恢复 由于采煤形成地下采空区,致使其对应地面的地下水和土壤水环境发生变化,地表植被因此衰退,严重时林木会连片枯萎。对于严重衰退地段,应及时采取措施予以恢复。在矿山生态恢复过程中: a、首先选择耐旱、耐贫瘠、速生的作物或牧草,以便在矿山上迅速生长,并获得持久的植被; b、在基质得到一定程度改良后,可采用混播草种使之迅速覆盖废弃地,或与豆科作物轮作、套作的方式达到“种地、养地相结合”的目的; c、根据土壤的元素组成和肥力,辅之一定的水肥(尤其是微生物肥)措施,建立可以维持的土壤生态系; d、按原来疏密度和乔、灌木种类种植树木,封育5年以上,使植被数量和种类接近和达到原有水平。 闭矿期生态恢复 由于我国大多数矿区目前仍处于盛采期至衰竭期这一阶段,加上发达国家所形成的废弃矿井环境对策并不适于中国国情和前些年我国对废弃矿井环境问题重视不够等因素,因此对废弃矿井的环境问题的预测及其对策尚未形成系统的理论和方法。 随着对废弃矿井环境问题的重视和我国部分老矿区报废期的临近(2000~2010年约有224处矿井报废),妥善解决废弃矿井环境问题已提上了议事日程。加大理论研究并在实践中不断完善,坚持“以人为本”的原则,合理利用废弃矿井的自然资源和人文资源,使报废期矿井的环境问题提前得以化解。 总之,煤矿在衰竭后期至报废后的时段内,与初采期和盛采期相比,对自然环境和社会环境的影响因素及影响程度均经历从量变到质变的过程,只要能较准确地预见与量化这些环境问题并采取积极的对策,即可避免一系列的社会与环境负面影响,使区域发展趋于正常化。 本矿开采时间还有年,对于闭矿期生态恢复,现拟定以下几点: a、矸石渣场停止使用,对于不能外运进行综合利用的部分应立即压实覆土,栽种树木、花草; b、工业广场内所有建筑物全部拆除, 并对场地进行平整,然后覆土植树; c、生活区所有建筑物拆除,绿化地和树林留存,其他土地植被采取其自然恢复方式,但必须将建筑垃圾全部清理干净。 生态保护计划 煤矿在制定开采计划时应同时制定污染防治、生态保护或恢复计划。煤矿在正常关闭和报废前,必须落实污染和生态恢复计划,提前土地复垦利用、环境保护的资料,经环境保护行政主管部门和其他有关主管部门审核后,再按有关规定办理关闭手续。 5 小结 本矿井规模为3万t/a,采动对地表的影响较小,预计在采空区和采动影响范围内产生大的地表塌陷及地裂缝等对周围生态环境产生不良破坏影响的现象可能性很小。 在开采期及闭矿期,业主必须落实好生态保措施和水土流失防护措施减小对生态系统的破坏。通过采取合理措施,杜绝掠夺式开采,可将该煤矿对生态环境的影响程度降低,闭矿后通过对采空区的回填和进行覆土复植,可基本消除煤矿开采带来的生态问题。
膨胀土是一类结构性不稳定的高塑性粘土,也是典型的非饱和土,它在世界范围内分布极广,迄今发现存在膨胀土的国家达40多个。我国是膨胀土分布最广的国家之一,先后有20多个省、市和自治区发现有膨胀土,总面积在10×104 km2以上,成因以残积或坡积为主。
膨胀土的典型特征是具有裂隙性、膨胀性和超固结性,对气候变化特别敏感。它们对其强度都有强烈的衰减影响,使得膨胀土的工程性能极差,病害十分严重。
膨胀土的灾害防治处理,按工程对象划分,可划分成建筑物地基的变形、边坡稳定性、堤坝建筑和硐室稳定性问题。引起膨胀土灾害的内因主要为亲水性矿物和以SiO2、Al2O3、Fe2O3为主的化学成分、粘粒含量、孔隙比、含水量及其微结构和结构强度;外因是气候条件,如降雨及蒸发、作用压力、地形地貌及绿化、日照和室温。其中膨胀土的水分转移与含水量变化是诱发其危害的关键因素,对其地基处理主要控制其胀缩性。
膨胀土地基的处理,应从上部结构与地基基础两方面着手,设计中除着重抓住控制膨胀土胀缩性这一主要矛盾,选择合理的地基处理方法外,还需考虑上部结构的措施,加强构筑物的整体性与抗变形能力。基于上述考虑,膨胀土地基处理的基本原则如下:
1)在膨胀土地基设计及处理时,首先应考虑场地地形的复杂程度及其对工程的影响,根据地形地貌条件可将场地分为平坦场地与斜坡场地两种。针对前者,膨胀土地基按变形控制设计,并考虑气候条件;后者除按变形控制设计外,还需验算地基的稳定性,防止外部水分侵入与水平变形给边坡带来的严重危害,结合排水系统、坡面防护和设置支挡结构物综合防治。
2)按照建筑物对地基不均匀胀缩变形的适应能力和使用要求进行分类并区别对待,膨胀土地基处理应根据不同类型采取相应措施,使可能发生的变形量控制到容许变形值范围内。同一建筑物不宜跨越不同的地貌单元、土层和工程地质分区,力求规划简单,不要局部突出或拐弯过多。必要时,应设置沉降缝断开。
3)根据场地膨胀土的特性与胀缩等级、当地材料、工程类型与施工条件,并结合膨胀土埋深、厚度、大气影响、上部荷载等因素,回避或减缓膨胀土的不良特性、保持膨胀土工程特性的相对稳定性、改良膨胀土的本身性质以克服其湿热敏感性,以及改变基础形式与埋深,以提高地基的适应性,可选用有针对性的单一或综合方法处理膨胀土地基。
目前国内外有关膨胀土地基处理的方法较多,加固技术也在逐渐发展,下面介绍膨胀土地基的几种常用处理方法。
1.湿度控制法
湿度控制法是通过控制膨胀土含水量的变化,保持地基中的水分不受蒸发及降雨入渗的影响,从而抑制地基的胀缩变形。目前比较成功的保湿方法有:预浸水法、暗沟保湿法、帷幕保湿法和全封闭法。
(1)预浸水法
预浸水法是在施工前用人工方法增加土的含水量,使膨胀土层全部或部分膨胀,并维持高含水量,从而消除或减少膨胀变形量。
预浸水法只有在基底压力不大且能保持地基土现有含水量的少数建筑物施工时可以采用,如蓄水池、冷却塔等。其最常用的施工方法是在场地上挖一系列80cm深的明沟,设置几排调整含水量的竖井,沟底铺25cm厚的熟石灰,再填满石子,使沟内充水约1个月,直到周围的土都已湿润为止。
(2)暗沟保湿法
暗沟保湿法的原理与预浸水法相近,主要是利用膨胀土的胀缩性与含水量密切相关的原理,让膨胀土地基充分浸水至膨胀稳定含水量,并保证该含水量不发生变化,则地基既不会产生膨胀变形,也不会产生收缩变形,从而保证建筑物不因地基胀缩变形而引起破坏。保湿暗沟适用于有经常水源的3层以下房屋的处理,对无经常水源的房屋、强膨胀土地基和长期干旱地区不得采用。
暗沟保湿法的具体做法:施工前预先在基槽中浸水,使地基在整个过程中不产生胀缩变形,建筑施工结束后在地基两侧修建干砌砖石暗沟或接头不密封的水泥管保湿暗沟,土沟底用%的坡度,干砌砖暗沟沟底用1∶3水泥砂浆抹平,沟外侧用砂填实,沟顶铺砂25cm,上部回填素土,应分层夯实,定期向暗沟内供水。由于暗沟中的水向地基土渗透,故建筑物使用过程中地基不产生膨胀变形。
(3)帷幕保湿法
帷幕保湿法是在建筑物两侧设置用不透水材料做成的帷幕,用来截断地基中水分向外转移或地基外的水分进入,保证地基中水分的相对稳定,防止地基土胀缩变形。帷幕形式有砂帷幕、填砂的塑料薄膜帷幕、填土的塑料薄膜帷幕、沥青油毡帷幕以及塑料薄膜灰土帷幕等。
帷幕埋深由建筑场地条件和当地大气影响急剧层深度来确定,根据地基土层水分变化情况,在房屋四周分别采取不同帷幕深度,以截断侧向土层水分的转移,帷幕配合宽散水进行地基处理,效果明显,尤其当膨胀土地基上部覆盖层为卵石、砂质土等透水层时,采用该法防止侧向渗水进入地基,效果良好。帷幕保湿法既可用于新建房屋,也可用于已损坏房屋的处理,前者通常情况下是在建房的同时建造帷幕。
建造帷幕时,帷幕深度应不小于基础的最小埋深;不透水材料可用油毡,但一般应选用较厚的聚乙烯薄膜,一般宜用两层,铺设时台阶部分不应少于10cm,并采用热合处理;隔水宜采用2∶8或3∶7灰土回填,在塑料薄膜失效时,灰土仍可起防水作用,散水宽度一般不小于,但必须覆盖帷幕,做法严格遵守规范规定。
(4)全封闭法
全封闭法一般在膨胀土路堤中应用,也称为包盖法或包边路堤,主要在膨胀土广泛分布的地区,出于经济上的考虑和受填料条件所限,不得不采用弱膨胀土和中膨胀土填筑路堤时,可直接用接近最佳含水量的中、弱膨胀土填筑路堤堤心部位,用普通粘土或改性土作为路堤两边边坡与基底及顶面的封层,从而形成包心填方,让膨胀土永久地封存在非膨胀土之中,避免膨胀土与外界大气直接接触,保持膨胀土湿度,使其失去胀缩性,从而成为良好的路基填料。在通常情况下,全封闭法仅适用于非浸水路堤。
为了能确保封闭效果,有效地限制堤内膨胀土湿度变化,封层应有相当的厚度。在用膨胀土填筑路基时,每一层铺设厚度宜控制在30cm以内,先用普通粘土填包边层,之后再填筑膨胀土夹心层,包边层和夹心层可同时碾压,压实后必须形成人字形路拱,并平整坡面。封顶层可用普通粘土填筑,厚度一般不应小于,表面用碾压机碾压平整。边坡包边宽度不小于,并按设计要求做好梯形路拱,每一段路堤按标准施工完毕后,人工刷好边坡,并拍打密实、平整,施工应选在非雨水季节。
2.土质改良法
土质改良法顾名思义就是在膨胀土中掺入其他材料,使其物理、力学特性得到改善,克服其不良的湿热敏感性,从而能满足工程的使用性能。目前对土质改良法子类归属尚不规范,不同部门、不同行业与工程手册等还没有统一。从膨胀土的土质改良法实质出发,按其加固机理不同而区比较合适。为此,将膨胀土的土质改良法划分为物理改良法、化学改良法与综合改良法。
(1)物理改良法
物理改良法是在膨胀土中添加其他非膨胀性固体材料,通过改变膨胀土原有的土颗粒组成及级配,从而减弱膨胀土的胀缩能力,达到改善其工程性质的目的。厂家的掺和料有风积土、砂砾石、粉煤灰与矿渣等。
物理改良法并没有改变膨胀土的本性,主要适用于弱膨胀土的改良。采用该法处理膨胀土,需掺和较高的添加材料,实际选用时,需慎重考虑。
(2)化学改良法
化学改良法是利用在膨胀土中加入某种其他物质,并添加材料使加入物质与膨胀土中的粘土颗粒发生某种化学反应或物质交换过程,以达到降低膨胀土膨胀潜势、增加强度和提高水稳定性的目的。该种处理方法的最大优点在于能从本质上改善膨胀土的不良工程性质,理论上可以根本消除膨胀土的胀缩性,是国内外膨胀土工程处理技术中的热点领域,应用广泛。
当前,应用化学加固膨胀土的添加材料种类较多,按形态既有固体添加剂、也有液体添加剂,按其化学成分划分还有无机添加剂和有机添加剂等。
(3)综合改良法
综合改良法是利用物理改良与化学改良加固机理,既改变膨胀土的物质组成结构,又改变其物理力学性质,集化学改良土水稳定性较好和较大的凝聚力及物理改良材料有较高内摩擦角和无胀缩性的优点,达到强化膨胀土的土质改良效果。由于该法充分利用了一些固体废弃物与价格低廉的材料,如粉煤灰、矿渣与砂砾石等,有利于环保,且改良质量良好,得到了工程界的普遍重视。当前在膨胀土工程建设中应用较多的有二灰土、石灰砂砾料与矿渣复合料等。
需要说明的是,在膨胀土的各种土质改良法中,均普遍存在着如何能达到添加剂均匀有效地改良膨胀土的施工问题,以及如何科学合理地确定质量控制指标与快速准确地进行掺入料计量问题。因此,除需继续研究各种改良新方法外,加强其施工工艺的研究也十分必要。
此外,还可采用换填法、压实控制法、桩基等方法进行膨胀土的处理,其设计和施工方法可参考相关规范。
189 浏览 3 回答
202 浏览 2 回答
302 浏览 2 回答
239 浏览 4 回答
97 浏览 2 回答
155 浏览 2 回答
341 浏览 5 回答
257 浏览 3 回答
151 浏览 5 回答
177 浏览 5 回答
257 浏览 5 回答
94 浏览 4 回答
100 浏览 5 回答
116 浏览 3 回答
269 浏览 6 回答