Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. 肌苷,辅酶Q10和硫辛酸对线粒体疾病的有益作用 【作 者】M Christine Rodriguez;Jay R MacDonald;Douglas J Mahoney;Gianni Parise;M Flint Beal;Mark A Tarnopolsky 【刊 名】Muscle & nerve 【出版日期】2007 【卷 号】 【页 码】235-242 【doi】 【影响因子】(2007) (2015) 摘要: 线粒体疾病具有共同的细胞后果:(1)ATP产生减少;(2)增加对替代厌氧能源的依赖;(3)增加活性氧的产生。本研究的目的是确定联合治疗的效果(肌酸一水合物,辅酶Q 10,以及针对上述细胞后果的硫辛酸,使用线粒体细胞病患者的随机,双盲,安慰剂对照,交叉研究设计,针对多个结果变量。 3例患有线粒体脑病,乳酸性酸中毒和中风样发作(MELAS),4例存在线粒体DNA缺失(3例慢性进行性眼外肌麻痹患者和1例Kearns-Sayre综合征患者),还有9例其他非线粒体疾病分为前两组。 联合疗法可降低所有患者组的静息血浆乳酸和尿8-异前列腺素,并减轻峰值踝背屈强度的下降,而仅MELAS组观察到较高的无脂肪量。一起,这些结果表明,针对线粒体功能障碍的多个最终共同途径的联合疗法可有利地影响细胞能量功能障碍的替代标志物。将来需要在相对均一的人群中进行更大样本量的研究,以确定这种联合疗法是否影响功能和生活质量。 线粒体疾病代表一组影响线粒体能量传导的疾病,其特征是临床,生化和遗传异质性。 18 尽管表型表达差异很大,但大多数患者合并有乳酸性酸中毒,中风或癫痫发作,头痛,色素性视网膜炎,上睑下垂,运动耐力低下,眼肌麻痹,心肌病,神经病和视力减退。 16 , 29 , 38 线粒体功能障碍导致许多细胞后果,包括:(1)ATP生成减少;(2)增加对替代厌氧能源的依赖;(3)增加活性氧(ROS)的产生。 16 , 37 没有疗效的治疗线粒体疾病,大多数策略的目的是为了缓解上述蜂窝后果。 16 , 18 上的患者的线粒体疾病的治疗策略的报告已经检查的单一化合物的效果,如辅酶Q 10(辅酶Q 10) 2 , 4 , 21 或肌酸(CRM)。 13 , 14 , 38 基于的概念,即线粒体功能障碍导致一些细胞的病理生理学后果, 33个 为线粒体疾病大多数治疗策略具有相对于单一疗法使用的联合治疗(或治疗“鸡尾酒”)。某些研究已经评估了针对上述三种方法中的一种以上的联合疗法的疗效。然而,这些是任何一种情况下报告, 8 , 25次 开放试验中, 1 , 19 , 20 , 27 , 32 或回顾性研究。 26 基于线粒体疾病人体试验的潜在功效证据或人体试验或体外研究的证据显示拟议的化合物可以缓解线粒体功能障碍的一种或多种最终常见途径,我们建议评估联合用药的潜在疗效下列化合物:(1)CrM(替代能源 36 和抗氧化剂 30 ); (2)α-硫辛酸(抗氧化剂 17 和可增加CrM的吸收 6 ) ;(3)辅酶Q 10 [作为抗氧化剂 21 并绕过电子传输链(ETC) 19的配合 物I ]。我们在这里报告了一项随机,双盲,安慰剂对照,交叉试验的结果,该试验研究了这种靶向联合治疗性鸡尾酒联合CrM,CoQ 10和α-硫辛酸对线粒体细胞病变患者的影响。 患者: 从麦克马斯特大学的神经肌肉和神经代谢诊所招募了17位具有明确或可能的线粒体疾病的患者。结合临床症状,空腹血清乳酸浓度,肌肉活检结果(红色的纤维状或细胞色素 c 氧化酶阴性纤维)和线粒体DNA(mtDNA)分析。仅8、9和13号患者未鉴定出DNA突变,对于线粒体神经胃肠道脑病的患者,仅进行确认试验(胸苷升高,胸苷磷酸化酶活性降低);然而,他们的乳酸浓度升高,组织学异常,运动耐力低下,有氧能力低,被认为具有“可能的线粒体细胞病变”。一名患者由于个人原因未完成研究的一部分;因此,该患者的数据被排除在分析之外。最终分析基于16位患者(10位女性和6位男性),根据他们的诊断分为三组。表中显示了患者人群的特征 1 。 第一组包括三位线粒体脑病,乳酸性酸中毒和中风样发作的患者(MELAS组)。第二组包括三名被诊断为慢性进行性眼外肌麻痹(CPEO)的患者和一名被诊断为Kearns-Sayre综合征(KSS)的患者,所有患者均在肌肉来源的mtDNA中被检测出缺失(CPEO / KSS组)。第三组包括各种线粒体疾病的患者:六名线粒体细胞病变患者,两名Leber遗传性视神经病变患者和一名线粒体神经胃肠道脑病患者(其他组) 。该研究获得了我们机构伦理委员会的道德批准,所有患者均提供了知情的书面同意。 CPEO,慢性进行性眼外肌麻痹;细胞病变,线粒体细胞病变;KSS,Kearns–Sayre综合征;LHON,Leber的遗传性视神经病变;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作;MNGIE,线粒体神经胃肠道脑病(无胸苷磷酸化酶活性,胸腺嘧啶核苷水平高)。 设计/干预。 患者参加了一项随机,双盲,安慰剂对照,交叉研究,其中每个参与者均接受了2个月的治疗和安慰剂治疗,两次试验之间有5周的清除期。治疗阶段包括3 g CrM + 2 g葡萄糖+调味剂(新碱;加利福尼亚州帕洛阿尔托的Avicena),300 mgα-硫辛酸(Tishcon,Westbury,纽约)和120 mg CoQ 10(Qgel; Tishcon)每天的0:900和21:00。在安慰剂阶段,将外观相同,品尝相同的粉末(5 g葡萄糖+调味剂; Avicena)和凝胶胶囊(大豆油; Tishcon)用作安慰剂。 禁食4小时后,两个试验的患者在大约每天同一时间(2-3小时内)在每个干预阶段之前和之后完成测试。 测量。 仅在首次访问时记录参与者的身高和体重。所有其他访视均采取了其他所有结果指标。参与者使用定制的力传感器设备进行了握力,踝背屈(关节角度为90°)和膝盖伸展强度测试,数据已直接输入包含数据采集和分析软件的计算机中,如前所述。 38 对于所有力量测量,参与者都在右侧进行测试,并根据手的大小进行个性化设置,并在每次访问之间保持恒定。为了达到峰值强度,参与者进行了3个5s试验,相隔约30 s。记录具有最佳结果的试验值。参与者还进行了1分钟的等距握力和踝背屈疲劳测试(9秒钟工作时间:1秒钟休息周期)。使用肺活量计(Koko; PDS Instrumentation,路易斯维尔,科罗拉多州)进行肺功能测试,包括1秒内的强制肺活量和强制呼气量。每位患者每次访视均至少完成两次肺活量测定,以确保该值与他们的首次尝试一致。进行生物电阻抗(Prism BIA 101A; RJL Systems,Clinton Twp,密歇根州)以确定身体成分。 静脉血液采样和尿液采集。 从肘前静脉将全血收集到预先冷却的,装有肝素(用于乳酸分析)或EDTA(用于测定CoQ 10)的真空管中,并以2500 rpm离心10分钟。将血浆储存在-80℃。每位患者都提供了尿液样本样品,将其约10 ml快速冷冻并保存在-80°C下用于肌酸,肌酐,8-羟基-2'-脱氧鸟苷(8-OHdG)和8-异前列腺素的后续分析( 8-IsoP)。 乳酸 使用YSI 2300 Stat Plus乳酸分析仪(YSI,Yellow Springs,俄亥俄州)测定血浆乳酸浓度。乳酸的批内和批内变异系数分别为%和%。 辅酶Q 10。 使用电化学检测器通过高效液相色谱(HPLC)测定血浆CoQ 10浓度。将血浆( ml)等分到装有1 ml 1-丙醇和 ml辅酶Q 9的10 ml真空容器中,混合5分钟,然后在300 g下 离心5分钟。使用μM注射器过滤器过滤样品,然后将其转移到色谱瓶中,以进行HPLC直接分析。将辅酶Q 9添加到混合物中以作为内标,作为辅酶Q 9的水平在人体血液中微不足道。将所得样品注入装有3μm填料的反相不锈钢色谱柱(150×3 mm)RP‐C18中,该色谱柱带有一个电化学检测器(ESA,贝德福德,马萨诸塞州),该检测器连接到带有单个电极的保卫室(5020型) ; E = +350 mV)和带有双电极的库仑分析池(5011型; E1 = -400 mV,E2 = +300 mV)。使用混合和脱气的甲醇,1-丙醇和乙醇(70:20:10)的流动相,其中含有50 mM乙酸锂作为电导盐,流速为 ml / min,总运行时间少于15分钟 首先通过还原泛醌(E = -400 mV),然后氧化所得泛醇(E = +300 mV)测量辅酶Q 10。辅酶Q 10和辅酶Q 10 H 2在最后一个电极上以最高灵敏度检测到。标准曲线的相关系数为。变异系数确定为<2%。 肌酸和肌酐。 使用HPLC测定尿液中的肌酸浓度,肌酐和肌酸:肌酐的比例。将尿液(1 ml)等分到微量离心管中,并以10,000 rpm离心10分钟。使用ddH 2 O 将尿液上清液稀释至十分之一稀释( ml上清液至 ml ddH 2O)。使用冷藏自动进样器将稀释的尿液上清液保持在10°C。使用Hewlett Packard LC1100系列HPLC(Agilent,Mississauga,Ontario),将紫外检测器设置为λ= 210 nm,将样品注入250× mm C18 Phenomenex10-μHydro-RP 80色谱柱中。Hewlett Packard LC1100数据分析程序会生成校准曲线并分析所得数据。流动相是使用氢氧化钾以 ml / min的流速将磷酸二氢钾(20 mM)调节至pH 。变异系数为%。 8-IsoP。 按照制造商的说明,使用商业酶联免疫吸附测定法(MediCorp,蒙特利尔,魁北克)测定尿中的8-IsoP浓度。标准曲线的相关系数为。变异系数为%。8-IsoP值相对于肌酐(g)表示。 8-OHdG。 如前所述,使用HPLC测定尿液中8-OHdG的浓度。 3 8-OHdG值相对于肌酐(g)表示。 统计。 使用三向(组×处理×时间)或双向(组×处理)重复测量方差分析(ANOVA)进行统计分析。鉴于先前的假设,即由于三种成分中的每一种都具有抗氧化特性,因此联合疗法可减少乳酸盐并降低氧化应激,我们对氧化应激标志物使用了单尾检验。当发现重要结果时,将运行Tukey HSD事后测试。所有分析均使用Statistica v。5软件(StatSoft,Tulsa,俄克拉荷马州)进行。 P <的值被认为具有统计学意义。所有数据均以平均值±SD给出。 辅酶Q 10和肌酸:肌酸酐。 如预期的那样,与安慰剂阶段相比,联合治疗的血浆辅酶Q 10和尿肌酸:肌酐的比率明显更高。联合治疗后(±μg/ ml)的血浆CoQ 10浓度比安慰剂(±μg/ ml)高172%( P <; n = 14),肌酸:肌酐比高600% (±)比安慰剂(±)( P <)。 血浆乳酸盐。 在血浆乳酸中发现显着的治疗×时间相互作用( P <,单尾),在联合治疗阶段血浆乳酸浓度较低,在安慰剂阶段未观察到效果(图 1 )。* P <,单尾。COMB,联合疗法;CPEO,慢性进行性眼外肌麻痹;KSS,Kearns–Sayre综合征;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作。黑柱,联合疗法;开列,安慰剂。 观察到FFM,TBW和%BF的显着三向相互作用(组×治疗×时间)( P <)(图 2 ),FFM和TBW升高,%BF降低仅对MELAS集团。(A) 三组中每个治疗阶段之前和之后的无脂质量(FFM), (B) 全身水(TBW)和 (C) 身体脂肪百分比(%BF)。* P <;** P <,单尾。COMB,联合疗法;CPEO,慢性进行性眼外肌麻痹;KSS,Kearns–Sayre综合征;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作。黑柱,联合疗法;开列,安慰剂。 肺功能。 在1 s内未观察到治疗,组或时间对强制肺活量或强制呼气量的影响(表 2 )。 表2. 肺功能( n = 11)。 CPEO,慢性进行性眼外肌麻痹;FEV 1,用力呼气量1 s;FVC,强制肺活量;KSS,Kearns–Sayre综合征;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作。 强度措施。 尽管对于每个阶段的结束,无论采用何种治疗方法,峰值握力都降低的趋势不明显( P = ),但对于峰值握力的处理,组别或时间均无影响。对于握把或脚踝背屈疲劳(表示为峰值疲劳或区域疲劳)或峰值伸膝力量,也没有任何治疗,组或时间效应。但是,观察到踝背屈峰值强度存在显着的双向相互作用(治疗×时间),安慰剂后,踝背屈峰值强度显着下降(从± Nm降至± Nm),但未观察到组合治疗(从± Nm到± Nm)( P <, n = 16)。 尿液8-OHdG和8-IsoP。 尿8-OHdG没有治疗或组作用;然而,与安慰剂相比,联合治疗后降低8-OHdG /肌酐的趋势无统计学意义(分别为3,±1, ng / g肌酐与4,165±1, ng / g肌酐; P = )。观察到8-IsoP的治疗效果,因此与安慰剂相比较,联合治疗后观察到较低的尿8-IsoP /肌酐含量(分别为6,±3, ng / g肌酐与7,±3, ng / g肌酐。 ; P <)。 CrM,CoQ 10和硫辛酸 的联合治疗 可降低静息乳酸浓度,防止峰值踝背屈强度降低和氧化应激降低,这可通过尿中8-IsoP排泄和尿液的显着减少来体现。 所有组中8-OHdG排泄的方向性趋势。此外,在MELAS组中,患者的身体成分发生了积极变化(FFM和TBW增加,%BF降低)。联合疗法对肺功能,峰值握力或膝盖伸展力量,或握力或脚踝背屈百分比或区域疲劳没有影响。 从突变线粒体疾病的结果导致在氧化磷酸化的缺陷,导致在nonaerobic能源的依赖性增加 16 , 38 和一个升高的血浆乳酸浓度。 16 , 29 , 38 无论是磷酸肌酸(PCR)系统,腺苷酸激酶/ AMP脱氨酶,或糖酵解/糖原分解可以被用来提供ATP; 但是,由于对糖酵解/糖酵解的依赖性增加,导致乳酸升高 38 CrM被包括在本研究中用于增强PCr系统的联合治疗中。联合治疗后尿肌酸:肌酐的升高和血浆乳酸浓度的降低间接表明联合治疗中的CrM成分可能为肌肉收缩提供了另一种厌氧能源。 从线粒体疾病患者的肌肉中观察到总肌酸 36 和PCr 14的 水平较低,进一步支持了在此类患者中补充CrM的潜在益处。Kornblum等人的最新研究。 14 研究了补充CrM对CPEO或KSS患者肌内PCr的影响。相反,先前在健康受试者中,观察到的结果 6 , 11 没有导致CrM工作在补充尽管肌酸的血浆浓度显著随着由磷- 31核磁共振光谱法测量增加肌内肌酸浓度。 14 当前研究的局限性在于未在大脑或骨骼肌中测量肌酸或PCr含量。然而,伯克等。 6 表明,在健康志愿者中,将CrM与硫辛酸联合使用时,肌肉PCr和总肌酸浓度显着高于单独补充CrM时。 因此,硫辛酸在我们的患者中可能会增加CrM的摄取,从而导致观察到的静息血浆乳酸浓度降低。 乳酸浓度较低的另一种或其他解释可能是联合治疗改善了线粒体ATP的产生。辅酶Q 10是ETC中的电子受体,它将电子从络合物I和II转移到络合物III。 16 , 18 , 33 的CoQ的目标10的补充是旁路缺陷在ETC最大化ATP产生。 16 一项使用来自线粒体细胞病变患者的培养淋巴细胞的研究发现,结合CoQ 10的联合疗法可增加线粒体ATP的产生,其中约49%归因于CoQ 10。 19 相比之下,人类研究的结果不是决定性的,对于一些报道报道辅酶Q的有益效果10在降低血浆休息乳酸浓度患者的线粒体疾病, 1 , 2 ,而另一些则没有。 19 , 20 , 38 不同于以往的报道中,病人在我们的研究也给予硫辛酸。 硫辛酸天然存在于线粒体内,是丙酮酸脱氢酶和α-酮戊二酸脱氢酶的重要辅助因子。 33 硫辛酸用作有效的抗氧化剂 31 , 33 ,并且降低氧化应激在健康志愿者的标记。 17 硫辛酸对ROS的清除作用增加,可能会减慢线粒体疾病中的“恶性循环”,在这种情况下,ROS的产生会导致mtDNA突变,从而加剧氧化磷酸化的缺陷,从而导致更多的ROS产生 。 16 因此, 辅酶Q 10与硫辛酸结合使用,可能具有增加ATP产生的能力,从而导致替代能源的利用率下降,血浆血浆乳酸浓度降低。 安慰剂治疗后,联合疗法减轻了峰值踝背屈强度的下降。据推测,在联合治疗CRM的成分会导致与安慰剂相比改进的强度值,如CRM有被证实可以改善患者强度与线粒体疾病 35 , 38 或杜氏肌营养不良症, 34 和中老年健康志愿者。 5 鉴于我们没有直接测量肌肉中的肌酸或PCr含量,因此我们不能得出结论说联合疗法中的CrM成分会导致踝背屈峰值强度下降。其他研究表明,使用CoQ可以改善线粒体疾病患者的强度10补充。 4 , 9 先前的研究表明,补充CrM可以改善人体成分。 5 , 34 的MELAS组在体本研究中证实的改善的组合物,增加FFM和TBW,和降低的%BF-以下组合疗法; 但是,CPEO / KSS或其他组的患者未见这些改善。与本研究其他两组中代表的其他形式的线粒体疾病患者相比,MELAS患者表现出更严重的临床表型。因此,患有MELAS的患者在本研究中测量的所有变量(包括身体组成)方面都有更大的改善空间。 高水平的ROS和氧化应激与线粒体疾病的病理生理有关。氧化应激的更高水平已报告患者的线粒体疾病与对照组相比 21 , 39 和患者的线粒体DNA突变更高程度的异质性。 7 联合疗法中的所有三种化合物均具有降低氧化应激的特性。 肌酸在无细胞系统中具有直接的抗氧化特性 15, 并为与多种氧化剂孵育的哺乳动物细胞提供细胞保护作用。 30 辅酶Q 10充当脂质的抗氧化剂和线粒体膜 10 , 33 并且还可以通过绕过氧化磷酸化中的缺陷来减少ETC的电子泄漏。 10 最后, 补充硫辛酸后,健康志愿者的尿中异前列腺素水平较低 。 17 我们观察到,与安慰剂相比,联合治疗后的8-IsoP浓度更低;但是,仅观察到了8-OHdG含量降低的趋势。异前列腺素是由花生四烯酸的过氧化作用形成的类似于前列腺素的化合物。 22 - 24 它们是化学稳定的,在体内形成的,并且是一个过氧化特异性产物可检测在稳态水平在多种人类组织和体液中的 24 ; 所有这些特征都使8-IsoP被认为是评估体内氧化应激的最可靠标记。 23 , 24 的8-OHdG由鸟苷残基的羟基化形成,并且经常被用来作为对DNA损伤ROS的生物标志物。 28 , 39 由于的8-OHdG是用于向所有的DNA,不仅线粒体DNA的氧化损伤的生物标记物,它是可能的核DNA的存在可能掩盖或稀释用于降低氧化性损伤的mtDNA的联合治疗的有益效果。 很少有随机对照试验检查了营养药物在线粒体疾病患者中的作用。那些已经进行了严格的检查,单一化合物的唯一的效果,如CRM的 12 , 13 , 38 或辅酶Q 10, 9 已审查。其他的研究,审查的联合治疗效果 1 , 19 , 20 , 26 , 27 , 32 没有使用与我们的研究相同的严格研究设计。结果,与这些研究进行直接比较非常困难,特别是当结合不同线粒体疾病人群中检查了不同的化合物,组合和结果指标这一事实时。考虑到几乎无限的组合,在将来进行临床试验评估之前,必须采用多种筛选方法,基于合理的首要原则测试潜在疗法。方法论,例如使用转基因动物模型或杂种动物,可能被证明可用于评估“线粒体混合物”中目前使用的十几种化合物的许多潜在组合。 我们的结果表明,与安慰剂相比, 针对线粒体功能障碍的三种后果的CrM,CoQ 10和硫辛酸的联合疗法可改善静息血浆乳酸浓度,身体成分,踝背屈强度和氧化应激。 但是,由于一个患者组比其他患者具有更大的获益 (MELAS> CPEO / KSS =其他) ,因此一种治疗策略可能并不普遍适用于所有线粒体疾病。 这项研究由沃伦·拉默特(Warren Lammert)及其家人慷慨捐赠。辅助酶Q 10和硫辛酸由Tishcon捐赠,肌酸一水合物由Avicena捐赠。 8-IsoP,8-异前列腺素; 8-OHdG,8-羟基-2'-脱氧鸟苷; %BF,身体脂肪百分比;辅酶Q 10,辅酶Q 10 ; CPEO,慢性进行性眼外肌麻痹;CrM,肌酸一水合物;ETC,电子传输链;FFM,无脂肪物质;HPLC高效液相色谱;KSS,Kearns–Sayre综合征;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作;mtDNA,线粒体DNA;PCr,磷酸肌酸;ROS,活性氧;TBW,全身水 略
几十年来,有关线粒体保留自身基因的可能原因,科学家提出了一些假说,但都一直存在争论。分析显示,线粒体保留的基因与其自身结构的建造有关,否则就有被细胞核放置错位的风险。而且,这些基因所在的DNA通过一种非常古老的形态紧密连结起来,从而不会被分解。威廉姆斯和约翰斯顿认为,这种通常不会在我们自身DNA中存在的设计,很可能就是防止线粒体基因在线粒体制造能量时不被分解的原因所在。在线粒体内部制造能量——以三磷酸腺苷(ATP)的形式——的时候,同时会产生自由基。自由基也是受到辐射损伤的常见副产物。从本质上来说,线粒体制造能量的同时也会伴随一定的损伤,而线粒体本身也能够承受这样的损伤。“在这种极端的环境下,你需要有专业的工作者,因为细胞核并不一定能胜任这项工作,”威廉姆斯说道。研究人员还观察到,线粒体基因的丢失在真核生物界内呈现出相同的模式。这或许告诉我们,演化可能以同样的路径进行了许多次,而且并不总是随机的过程。在细胞内部环境中,不同生物体线粒体基因丢失情况的演变变得几乎是可预知的。“如果我们能够利用好过去历史中的演化数据,就可以对未来发生的情况作出预测,为合成生物学和疾病探索提供巨大的可能性,”约翰斯顿说道。通过自己开发的算法,研究人员下一步的计划是探索线粒体疾病发生的原因。这类疾病通常会带来灾难性后果。尽管这项研究还不能完全解决我们为什么还保留线粒体DNA的问题,但论文作者称,研究结果的确为争论中的许多不同观点找到了一个中间地带。
日本东京大学Umeharu Ohto和日本京都大学Norimichi Nomura团队共同合作近期取得重要工作进展。他们研究发现胆汁酸转运蛋白NTCP的结构对乙型肝炎病毒进入至关重要。该项研究成果2022年5月17日在线发表于《自然》杂志上。 在这里,研究人员报告了人类、牛和大鼠NTCPs在apo状态下的低温电子显微镜(cryo-EM)结构,它揭示了跨膜隧道的存在和底物的可能运输途径。 此外,人类NTCP在LHBs的肉豆蔻酰化preS1结构域存在下的低温电镜结构以及突变和运输试验分析表明了一种结合模式,即preS1和底物竞争NTCP中细胞外通道的开口。重要的是,preS1域相互作用分析能够对人类NTCP中自然发生的HBV不敏感突变进行机理解释。综上所述,他们的研究结果为HBV识别和哺乳动物NTCPs对钠依赖性胆汁酸易位的机制的理解提供了结构框架。 据介绍,慢性乙型肝炎病毒 (HBV) 感染在全球影响超过亿人,是肝硬化和肝细胞癌的主要原因,估计每年导致82万人死亡。HBV感染的建立需要病毒包膜糖蛋白L(LHBs)与宿主进入受体钠-牛磺胆酸共转运多肽(NTCP)之间的分子相互作用,NTCP是一种从血液到肝细胞的钠依赖性胆汁酸转运蛋白。然而,目前对于病毒-转运蛋白相互作用分子基础尚不清楚。 Source: 美国加州大学Arash Komeili研究小组在研究中取得进展。他们发现不同基因簇诱导细菌铁小体细胞器的形成。2022年5月18日出版的《自然》发表了这项成果。 在本研究中,研究人员发现一个与铁结合的隔室,在此命名为“铁小体”,是之前在厌氧细菌磁性脱硫弧菌中发现的。使用蛋白质组学方法,研究人员鉴定了三种铁小体相关(Fez)蛋白,它们在D. magneticus中参与形成铁小体。Fez蛋白由特定的操纵子编码,包括FezB,FezB是在系统发育和代谢不同的细菌和古细菌中发现的P1B-6-ATP酶。研究人员揭示了另外两种细菌物种,Rhodopseudomonas palustris和Shewanella putrefaciens,通过其六基因fez操纵子产生铁小体。 此外,研究发现fez操纵子还可以在外来宿主中形成铁小体。使用S. putrefaciens作为模型,研究表明铁小体可能在厌氧适应铁饥饿中发挥作用。总体而言,该工作发现铁小体可能是一类新的铁储存细胞器,并为研究它们在多种微生物中的形成和结构奠定了基础。 据了解,细胞内铁稳态对于机体至关重要,通过严格调节铁的输入、流出、储存和代谢来维持铁稳态。最常见的铁储存模式使用蛋白质隔室,例如铁蛋白和相关蛋白质。尽管发现了脂质结合的铁隔室,但它们的形成和功能基础仍然未知。 Source: 美国德克萨斯大学西南医学中心Peter M Douglas研究组发现小G蛋白香叶酰化可监测细胞内脂质稳态。2022年5月18日出版的《自然》杂志发表了这项成果。 他们描述了一种在秀丽隐杆线虫中进行细胞内脂质监测的机制,该机制涉及核激素受体 NHR-49 的转录失活,其通过与小 G 蛋白 结合的香叶基香叶酯结合到内吞囊泡进行胞质隔离。由脂质消耗引起的有缺陷的从头类异戊二烯合成限制了 香叶基香叶酰化,这促进了 NHR-49 的核易位和 转录的激活,以增强转运蛋白在质膜上的驻留。因此,他们鉴定了一种细胞可感知的关键脂质,及与其相连 G 蛋白和核受体,它们的动态相互作用使细胞能够感知由于脂质消耗引起的代谢需求,并通过增加营养吸收和脂质代谢来做出反应。 据悉,脂质稳态失衡会对健康产生有害影响。然而,细胞如何感知由于脂质消耗导致的代谢需求并通过增加营养吸收做出反应仍不清楚。 Source: 英国牛津大学Sebastian M. Shimeld研究组探明Hmx基因保留确定了脊椎动物颅神经节的起源。2022年5月18日出版的《自然》杂志发表了该项成果。 他们表明同源盒转录因子 Hmx 是脊椎动物感觉神经节发育的组成成分,并且在小肠绦虫中,Hmx 是驱动双极尾神经元分化程序所必要且充分的,这些细胞以前被认为是神经嵴的同源物。使用绦虫和七鳃鳗转基因,他们证明了茎-脊椎动物谱系中,一个独特的、串联重复的增强子对调节的 Hmx 表达。他们还在绦虫中展示了明显强大的脊椎动物 Hmx 增强子功能,表明上游调控网络的深度保留跨越了脊椎动物的进化起源。这些实验证明了绦虫和脊椎动物 Hmx 之间的调节和功能保护,并指出双极尾神经元是颅感觉神经节的同源物。 研究人员表示,脊椎动物的进化起源包括与掠夺性生活方式的获得相关的感官处理方面的创新。脊椎动物通过由颅感觉神经节服务的感觉系统感知外部刺激,其神经元主要来自颅基板;然而,由于活体谱系之间的解剖学差异以及细胞类型和结构之间的同源性分配困难,阻碍了对基板和颅感觉神经节进化起源的理解。 Source: 美国斯坦福大学Anthony E. Oro团队近期取得重要工作进展。他们研究发现Gibbin中胚层调节模式上皮细胞的发育。该项研究成果2022年5月18日在线发表于《自然》杂志上。 在这里,研究人员鉴定了由Xia-Gibbs AT-hook DNA-binding-motif-containing 1(AHDC1)疾病基因编码的蛋白质Gibbin,它是早期上皮形态发生的关键调节因子。他们发现增强子或启动子结合的Gibbin与数十种序列特异性锌指转录因子和甲基-CpG 结合蛋白相互作用,以调节中胚层基因的表达。Gibbin的缺失导致GATA3依赖性中胚层基因的DNA甲基化增加,导致发育中的真皮和表皮细胞类型之间的信号通路的缺失。 值得注意的是,Gibbin突变的人类胚胎干细胞衍生的皮肤类器官缺乏真皮成熟,导致表达p63的基底细胞具有缺陷的角质形成细胞分层。体内嵌合CRISPR小鼠突变体揭示了一系列Gibbin依赖性发育模式缺陷,这些缺陷影响了反映患者表型的颅面结构、腹壁闭合和表皮分层。他们的结果表明,在Xia–Gibbs和相关综合征中看到的模式表型源于基因特异性 DNA甲基化决定而导致的异常中胚层成熟。 据介绍,在人类发育过程中正确的外胚层模式需要先前确定的转录因子,如GATA3和p63,以及来自区域中胚层的位置信号。然而,外胚层和中胚层因子对稳定基因表达和谱系定型的机制仍不清楚。 Source: 美国纪念斯隆-凯特琳癌症中心Vinod P. Balachandran等研究人员合作发现,新抗原质量可预测胰腺癌幸存者的免疫编辑。相关论文于2022年5月19日在线发表在《自然》杂志上。 研究人员表示,癌症免疫编辑是癌症的一个标志,它预示着淋巴细胞会杀死更多的免疫原性癌细胞,使免疫原性较低的克隆体在群体中占主导地位。虽然在小鼠身上得到证实,但免疫编辑是否在人类癌症中自然发生仍不清楚。 为了解决这个问题,研究人员调查了70个人类胰腺癌在10年内是如何演变的。研究人员发现,尽管有更多的时间积累突变,但罕见的胰腺癌长期幸存者在原发肿瘤中具有更强的T细胞活性,其复发肿瘤的遗传异质性较低,免疫原性突变(新抗原)较少。为了量化免疫编辑是否是这些观察结果的基础,研究人员通过两个特征来推断了新抗原是否具有免疫原性(高质量),这基于新抗原与已知抗原相似性的"非自体性",以及基于新抗原与野生型肽相比不同地结合到MHC或激活T细胞所需的抗原性距离的"自体性"。利用这些特征,研究人员估计癌症克隆的适应性是T细胞识别高质量新抗原的总成本被致癌突变的收益所抵消。 通过这个模型,研究人员预测了肿瘤的克隆进化,并发现胰腺癌的长期幸存者会发展出具有较少高质量新抗原的复发性肿瘤。因此,研究人员展示了人类免疫系统自然编辑新抗原的证据。此外,研究人员提出了一个模型来预测免疫压力是如何诱导癌细胞群随时间演变的。更广泛地说,这些研究结果表明,免疫系统从根本上监督宿主的基因变化来抑制癌症。 Source: 美国斯坦福大学Mark J. Schnitzer、Sadegh Ebrahimi等研究人员合作揭示感觉皮质编码和区域间通信的新兴可靠性。2022年5月19日,国际知名学术期刊《自然》在线发表了这一成果。 研究人员对小鼠执行视觉辨别任务的8个新皮层区域的神经元活动同时进行了5天的成像,产生了超过21000个神经元的纵向记录。分析显示,整个新皮层的事件序列从静止状态开始,到感知的早期阶段,并通过任务反应的形成。在静止状态下,新皮层有一种功能连接模式,通过共享活动共变的区域组来识别。在感觉刺激开始后约200毫秒内,这种连接重新排列,不同区域共享共变和任务相关信息。 在这个短暂的状态中(大约持续300毫秒),区域间的感觉数据传输和感觉编码的冗余都达到了顶峰,反映了任务相关神经元之间相关波动的短暂增加。刺激开始后约秒,视觉表征达到一个更稳定的形式,其结构对单个细胞反应中突出的、逐日的变化是强大的。在刺激出现约1秒后,一个全局波动模式传达了小鼠对每个受检区域即将作出的反应,并与携带感觉数据的模式正交。 总的来说,新皮层通过在感知开始时感觉编码冗余的短暂提升、对细胞变异性稳健的神经群体编码以及广泛的区域间波动模式来支持感觉性能,这些模式以不干扰的渠道传递感觉数据和任务反应。 据了解,可靠的感觉辨别必须来自高保真的神经表征和脑区之间的交流。然而,新皮层感觉处理如何克服神经元感觉反应的巨大变异性仍未确定。 Source: 近日,美国斯坦福大学Jesse M. Engreitz及其团队的最新研究揭示人类增强子和启动子序列的相容性规则。相关论文于2022年5月20日在线发表在《自然》杂志上。 研究人员设计了一种名为ExP STARR-seq(增强子x启动子自转录活性调节区测序)的高通量报告试验,并应用它来研究人类K562细胞中1000个增强子和1000个启动子序列的组合相容性。研究人员确定了增强子-启动子兼容性的简单规则:大多数增强子以类似的数量激活所有启动子,内在的增强子和启动子的活动以倍数结合来决定RNA输出(R2=)。 此外,有两类增强子和启动子显示出微妙的偏好效应。管家基因的启动子含有GABPA和YY1等因子的内置激活模体,这降低了启动子对远端增强子的反应性。表达不一的基因的启动子缺乏这些模体,对增强子表现出更强的反应性。总之,这种对增强子-启动子兼容性的系统评估表明,在人类基因组中,有一个由增强子和启动子类型调整的乘法模型来控制基因转录。 据了解,人类基因组中的基因调控是由远端增强子控制的,它能激活附近特定的启动子。这种特异性的一个模型是,启动子可能对某些增强子有序列编码的偏好,例如由相互作用的转录因子组或辅助因子介导。这种"生化兼容性"模型已被个别人类启动子的观察和果蝇的全基因组测量所支持。然而,人类增强子和启动子内在兼容的程度还没有得到系统的测量,它们的活动如何结合起来控制RNA的表达仍不清楚。 Source: 美国华盛顿大学医学院David J. Pagliarini和美国摩根里奇研究所Joshua J. Coon共同合作,近期取得重要工作进展。他们通过深度多组学分析来确定线粒体蛋白的功能。该项研究成果2022年5月25日在线发表于《自然》杂志上。 在这里,为了建立更完整的人类线粒体蛋白功能纲要,研究人员使用基于质谱的多组学分析方法分析了200多个CRISPR介导的HAP1敲除细胞系。这项工作产生了大约 830 万个不同的生物分子测量值,提供了对线粒体扰动的细胞反应的深入调查,并为蛋白质功能的机制研究奠定了基础。在这些数据的指导下,他们发现PIGY 游开放阅读框(PYURF)是一种S-腺苷甲硫氨酸依赖性甲基转移酶伴侣,它支持复合物I组装和辅酶Q生物合成,并且在以前未解决的多系统线粒体疾病中被破坏。 研究人员进一步将推定的锌转运蛋白SLC30A9与线粒体核糖体和OxPhos完整性联系起来,并将RAB5IF确定为第二个含有导致脑面胸腔发育不良的致病变异的基因。他们的数据可以通过交互式在线资源进行探索,表明许多其他孤儿线粒体蛋白的生物学作用仍然缺乏强大的功能表征,并定义了线粒体功能障碍的丰富细胞特征,可以支持线粒体疾病的基因诊断。 据了解,线粒体是真核生物新陈代谢和生物能学的中心。近几十年来的开创性努力已经确定了这些细胞器的核心蛋白成分,并将它们的功能障碍与150多种不同的疾病联系起来。尽管如此,数以百计的线粒体蛋白仍缺乏明确的功能,约40%的线粒体疾病的潜在遗传基础仍未得到解决。 Source: 美国加州大学洛杉矶分校Alcino J. Silva和Miou Zhou研究组合作揭示,C-C 趋化因子受体 5 (CCR5)可关闭记忆链接的时间窗口。相关论文发表在2022年5月25日出版的《自然》杂志上。 他们展示了CCR5(一种免疫受体,众所周知是 HIV 感染的共同受体)的表达延迟(12-24 小时)增加在环境记忆形成后决定时间窗口的持续时间,以便将该记忆与后续记忆关联或链接。小鼠背侧 CA1 神经元中 CCR5 的这种延迟表达导致神经元兴奋性降低,进而负调节神经元记忆分配,从而减少背侧 CA1 记忆集合之间的重叠。降低这种重叠会影响一个记忆触发另一个记忆的召回能力,因此关闭记忆链接的时间窗口。 他们的研究结果还表明,与年龄相关的 CCR5 及其配体 CCL5 的神经元表达增加会导致老年小鼠的记忆连接受损,这可以通过 Ccr5 敲除和美国食品和药物管理局(FDA)批准的药物逆转。抑制这种受体具有临床意义。总而言之,这里报道的研究结果提供了对塑造记忆链接时间窗口的分子和细胞机制的见解。 据介绍,现实世界的记忆是在特定的环境下形成的,通常不是孤立地获得或回忆的。时间是记忆组织中的一个关键变量,因为时间接近的事件更有可能有意义地关联,而间隔较长的事件则不是。大脑如何区分时间上不同的事件尚不清楚。 Source: 德国海德堡大学Rohini Kuner研究组发现错误连接和终末器官靶向异常可引起神经性疼痛。2022年5月25日出版的《自然》杂志在线发表了这项成果。 研究人员在神经损伤后超过10个月的时间里,以纵向和非侵入性地方式对基因标记的纤维群进行成像,这些纤维群在皮肤周围感知有害刺激(伤害感受器)和轻柔触摸(低阈值传入),同时跟踪这些小鼠与疼痛相关的行为。完全去神经支配的皮肤区域最初失去感觉,逐渐恢复正常敏感性,并在受伤几个月后出现明显的异常性疼痛和对轻触的厌恶。这种神经再支配引起的神经性疼痛与伤害感受器有关,这些伤害感受器延伸到去神经支配的区域,精确地再现神经支配的初始模式,由血管引导,在皮肤中显示出不规则的终端连接,并降低了模拟低阈值传入的激活阈值。 相比之下,低阈值传入神经(通常在损伤后完整神经区域中介导触觉以及异常性疼痛)没有重新建立神经支配,导致仅具有伤害感受器的迈斯纳小体等触觉末端器官受异常神经支配。敲除与伤害感受器有关的基因完全消除了神经再支配异常性疼痛。因此,该研究结果揭示了一种慢性神经性疼痛的发生机制,这种疼痛是由结构可塑性、异常末端连接和神经再支配过程中伤害感受器受损造成的,并为在临床观察到的对病人产生沉重负担的矛盾感觉提供了机制框架。 据了解,神经损伤会导致慢性疼痛和对轻柔触摸的过度敏感(异常性疼痛)以及受伤和未受伤神经聚集区域的感觉丧失。改善这些混合和矛盾症状的机制尚不清楚。 Source: 星形胶质细胞在不同疾病中的反应性转录调控不同,这一成果由美国加州大学Michael V. Sofroniew、Joshua E. Burda研究组经过不懈努力而取得。2022年5月25日出版的《自然》杂志发表了这项成果。 研究人员通过将生物学和信息学分析(包括RNA测序、蛋白质检测、转座酶可及染色质测定与高通量测序(ATAC-seq)和条件基因缺失)相结合的方法来预测转录调节因子,这些调节因子调控了超过12,000个与小鼠和人不同中枢神经系统疾病中星形胶质细胞反应有关的差异表达基因(DEGs)。与星形胶质细胞反应相关的DEG在疾病中表现出明显的异质性。转录调节因子也具有疾病特异性差异,但研究人员发现了一个在这两个物种多种疾病中常见的由61个转录调节因子组成的核心组。实验表明,DEG多样性是由不同转录调节因子与特定细胞内环境之间相互作用决定的。 值得注意的是,相同反应性转录调节因子可以调节不同疾病中显著不同的DEG队列。转录调节因子对DNA结合基序的可及性变化在不同疾病之间存在明显差异;对DEG变化至关重要的调控可能需要多个反应性转录调节因子。通过调节反应性,转录调节因子可以显著改变疾病结果,并可以将其作为治疗靶点。该研究提供了与疾病相关反应性星形胶质细胞DEG及可搜索的预测转录调节因子资源。该研究结果表明,与星形胶质细胞反应性相关的转录变化是高度异质的,并且可通过特定于细胞内环境的转录调节因子组合产生大量潜在的DEG。 据悉,星形胶质细胞对中枢神经系统疾病和损伤作出反应,反应性变化会影响疾病进展。这些变化包括DEGs,然而对DEGs背景多样性和调控知之甚少。 Source: 近日,以色列魏茨曼科学研究所Karina Yaniv、Rudra N. Das等研究人员合作发现,淋巴管转分化可产生专门的血管。相关论文于2022年5月25日在线发表在《自然》杂志上。 研究人员利用斑马鱼臀鳍的循环成像和系谱追踪,从早期发育到成年,发现了一种通过淋巴管内皮细胞(LECs)的转分化形成专门血管的机制。此外,研究人员证明了从淋巴与血液内皮细胞(EC)衍生出的臀鳍血管在成年生物体中的功能差异,揭示了细胞本体和功能之间的联系。研究人员进一步利用单细胞RNA测序分析来描述了转分化过程中涉及的不同细胞群和过渡状态。 最后,结果表明,与正常发育相似,在臀鳍再生过程中,血管从淋巴管中重新衍生出来,表明成年鱼的LEC保留了生成血液EC的效力和可塑性。总的来说,这项研究强调了通过LEC转分化形成血管的先天机制,并为EC的细胞个体发生和功能之间的联系提供了体内证据。 据了解,细胞的谱系和发育轨迹是决定细胞身份的关键因素。在血管系统中,血液和淋巴管的EC通过分化和特化来满足每个器官的独特生理需求。虽然淋巴管被证明来自多种细胞来源,但LEC不知道会产生其他细胞类型。 Source: 德国马克斯·普朗克免疫生物学和表观遗传学研究所Thomas Boehm、Dominic Grün等研究人员合作揭示两种双潜能胸腺上皮细胞祖先类型的发育动态。相关论文于2022年5月25日在线发表于国际学术期刊《自然》。 研究人员结合单细胞RNA测序(scRNA-seq)和一个新的基于CRISPR-Cas9的细胞条形码系统,在小鼠中确定胸腺上皮细胞随时间变化的质和量。这种双重方法使研究人员能够确定两个主要的祖先群体:一个早期双潜能祖先类型偏向皮质上皮,一个产后双潜能祖先群体偏向髓质上皮。研究人员进一步证明,连续提供Fgf7的自分泌导致胸腺微环境的持续扩张,而不会耗尽上皮祖细胞池,这表明有一种策略可以调节胸腺造血活动的程度。 据介绍,胸腺中的T细胞发育对细胞免疫至关重要,并取决于器官型的胸腺上皮微环境。与其他器官相比,胸腺的大小和细胞组成是异常动态的,例如在发育的早期阶段快速生长和高T细胞输出,随后随着年龄的增长,胸腺上皮细胞的功能逐渐丧失,初始T细胞的产量减少。scRNA-seq发现了年轻和年老的成年小鼠胸腺上皮细胞的意外异质性;然而,推定的产前和产后上皮祖细胞的身份和发育动态仍未得到解决。 Source: 美国西奈山伊坎医学院Filip K. Swirski、Wolfram C. Poller等研究人员合作发现,大脑运动和恐惧回路在急性应激期间调节白细胞。2022年5月30日,《自然》杂志在线发表了这项成果。 研究人员发现,在小鼠急性应激期间,不同的大脑区域塑造了白细胞的分布和整个身体的功能。利用光遗传学和化学遗传学,研究人员证明运动回路通过骨骼肌来源的吸引中性粒细胞的趋化因子诱导中性粒细胞从骨髓快速动员到周围组织。相反,室旁下丘脑通过直接的、细胞内的糖皮质激素信号控制单核细胞和淋巴细胞从二级淋巴器官和血液向骨髓排出。这些压力诱导的、反方向的、全群体的白细胞转移与疾病易感性的改变有关。 一方面,急性应激通过重塑中性粒细胞并引导它们被招募到损伤部位来改变先天免疫力。另一方面,促肾上腺素释放激素(CRH)神经元介导的白细胞转移可防止获得自身免疫,但会损害对SARS-CoV-2和流感感染的免疫力。总的来说,这些数据显示,在心理压力期间,不同的大脑区域会不同地、迅速地调整白细胞景观,从而校准免疫系统对身体威胁的反应能力。 据了解,神经系统和免疫系统有着错综复杂的联系。尽管人们知道心理压力可以调节免疫功能,但将大脑中的压力网络与外周白细胞联系起来的机制途径仍然不为人知。 Source:
283 浏览 4 回答
193 浏览 3 回答
174 浏览 6 回答
118 浏览 3 回答
227 浏览 5 回答
132 浏览 3 回答
258 浏览 6 回答
220 浏览 3 回答
308 浏览 3 回答
298 浏览 6 回答
84 浏览 6 回答
131 浏览 4 回答
84 浏览 3 回答
170 浏览 5 回答
252 浏览 3 回答