有机化学的发展简史“有机化学”这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然动植物有机体中提取的有机物。因而许多化学家都认为,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下合成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述,认识了一些有机化合物的性质。法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。这个问题成为困扰人们多年的谜团。从1858年价键学说的建立,到1916年价键的电子理论的引入,才解开了这个不解的谜团,这一时期是经典有机化学时期。1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“—”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只能与一个别的元素的原子结合,氢就选作价的单位。一种元素的价数就是能够与这种元素的一个原子结合的氢原子的个数。凯库勒还提出,在一个分子中碳原子之间可以互相结合这一重要的概念。1848年巴斯德分离到两种酒石酸结晶,一种半面晶向左,一种半面晶向右。前者能使平面偏振光向左旋转,后者则使之向右旋转,角度相同。在对乳酸的研究中也遇到类似现象。为此,1874年法国化学家勒贝尔和荷兰化学家范托夫分别提出一个新的概念:同分异构体,圆满地解释了这种异构现象。他们认为:分子是个三维实体,碳的四个价键在空间是对称的,分别指向一个正四面体的四个顶点,碳原子则位于正四面体的中心。当碳原子与四个不同的原子或基团连接时,就产生一对异构体,它们互为实物和镜像,或左手和右手的手性关系,这一对化合物互为旋光异构体。勒贝尔和范托夫的学说,是有机化学中立体化学的基础。1900年第一个自由基,三苯甲基自由基被发现,这是个长寿命的自由基。不稳定自由基的存在也于1929年得到了证实。在这个时期,有机化合物在结构测定以及反应和分类方面都取得很大进展。但价键只是化学家从实践经验得出的一种概念,价键的本质尚未解决。现代有机化学时期 在物理学家发现电子,并阐明原子结构的基础上,美国物理化学家路易斯等人于1916年提出价键的电子理论。他们认为:各原子外层电子的相互作用是使各原子结合在一起的原因。相互作用的外层电子如从—个原了转移到另一个原子,则形成离子键;两个原子如果共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用的原子的外层电子都获得惰性气体的电子构型。这样,价键的图象表示法中用来表示价键的短划“—”,实际上是两个原子共用的一对电子。1927年以后,海特勒和伦敦等用量子力学,处理分子结构问题,建立了价键理论,为化学键提出了一个数学模型。后来马利肯用分子轨道理论处理分子结构,其结果与价键的电子理论所得的大体一致,由于计算简便,解决了许多当时不能回答的问题。
当今,化学的发展非常迅速。在20世纪发现和人工合成的化合物的种类是2285万多种,是此之前发现的所有化合物总数的41倍强。但“化学家太谦虚”,20世纪化学取得的辉煌成就,并未获得社会应有的认可。1 化学所面临的挑战 化学的形象正在被与其交叉的学科的巨大成功所埋没化学是一门中心科学,化学与生命、材料等八大朝阳科学有非常密切的联系,产生了许多重要的交叉学科,但化学作为中心学科的形象反而被其交叉学科的巨大成就所埋没。化学这门重要的中心科学(central science)反而被社会看作是伴娘科学(bridesmaid science)而不受重视。 化学正被各种各样的环境污染问题所困扰 化学的发展在不断促进人类进步的同时,在客观上使环境污染成为可能,但是起决定性的是人的因素,最终要靠人们的认识不断提升来解决这个问题。一些著名的环境事件多数与化学有关,诸如臭氧层空洞、白色污染、酸雨和水体富营养化等;另一方面把所有的环境问题都归结为化学的原因,显然是不公平的,比如森林锐减、沙尘暴和煤的燃烧等。这当然与化学没有树立好自己的品牌有关系,在最早的化学工艺流程里面,根本没有把废气和废渣的处理纳入考虑范围,因此很多化学工艺都是会带来环境污染的。现在,有些人把化学和化工当成了污染源。人们开始厌恶化学,进而对化学产生了莫名其妙的恐惧心理,结果造成凡是有“人工添加剂”的食品都不受欢迎,有些化妆品厂家也反复强调本产品不含有任何“化学物质”。事实上,这些是对化学的偏见,监测、分析和治理环境的却恰恰是化学家。2 绿色化学是应对挑战的必然 科学不但要认识世界和改造世界,还要保护世界。化学也如此,为了应对化学所面临的挑战,提倡绿色化学是刻不容缓。 绿色化学的概念绿色化学又称环境无害化学、环境友好化学或清洁化学,是指化学反应和过程以“原子经济性”为基本原则,即在获取新物质的化学反应中充分利用参与反应的每个原料原子,在始端就采用实现污染预防的科学手段,因而过程和终端均为零排放和零污染,是一门从源头阻止污染的化学。绿色化学不同于环境保护,绿色化学不是被动地治理环境污染,而是主动的防止化学污染,从而在根本上切断污染源,所以绿色化学是更高层次的环境友好化学。绿色化学的产生及其背景当今,可持续发展观是世人普遍认同的发展观。它强调人口、经济、社会、环境和资源的协调发展,既要发展经济,又要保护自然资源和环境,使子孙后代能永续发展。绿色化学正是基于人与自然和谐发展的可持续发展理论。在1984年,美国环保局(EPA)提出“废物最小化”,这是绿色化学的最初思想。1989年,美国环保局又提出了“污染预防”的概念。 1990年,美联邦政府通过了“防止污染行动”的法令,将污染的防止确立为国策,该法案条文中第一次出现了“绿色化学”一词。1992年,美国环保局又发布了“污染预防战略”。1995年,美国政府设立了“总统绿色化学挑战奖”。1999年英国皇家化学会创办了第一份国际性《绿色化学》杂志,标志着绿色化学的正式产生。我国也紧跟世界化学发展的前沿,在1995年,中国科学院化学部确定了《绿色化学与技术》的院士咨询课题。 绿色化学的核心内容原子经济性是绿色化学的核心内容,这一概念最早是1991年美国Stanford大学的著名有机化学家Trost(为此他曾获得了1998年度的“总统绿色化学挑战奖”的学术奖)提出的,即原料分子中究竟有百分之几的原子转化成了产物。理想的原子经济反应是原料分子中的原子百分之百地转变成产物,不产生副产物或废物,实现废物的“零排放”。他用原子利用率衡量反应的原子经济性,认为高效的有机合成应最大限度地利用原料分子的每一个原子,使之结合到目标分子中。绿色化学的原子经济性的反应有两个显著优点:一是最大限度地利用了原料,二是最大限度地减少了废物的排放。原子利用率的表达式是: 原子利用率= (预期产物的式量/反应物质的式量之和)×100% 如无公害氧化剂过氧化氢的制备可采用乙基蒽醌法,即由氢和氧在2-乙基蒽醌和Pd为催化剂作用下直接合成,2-乙基蒽醌复出并可循环使用。此反应原子利用率为100%,体现了原子经济性,减少废物的生成和排放,是典型的零排放例子。 绿色化学的12项原则和5R原则为了简述了绿色化学的主要观点,和曾提出绿色化学的12项原则,这12项原则对我们今后从事绿色化学的研究具有一定的指导作用。Ⅰ.防止——防止产生废弃物要比产生后再去处理和净化好得多。 Ⅱ.讲原子经济——应该设计这样的合成程序,使反应过程中所用的物料能最大限度地进到终极产物中。 Ⅲ.较少有危害性的合成反应出现——无论如何要使用可以行得通的方法,使得设计合成程序只选用或产出对人体或环境毒性很小最好无毒的物质。 Ⅳ.设计要使所生成的化学产品是安全的——设计化学反应的生成物不仅具有所需的性能,还应具有最小的毒性。 Ⅴ.溶剂和辅料是较安全的——尽量不同辅料(如溶剂或析出剂)当不得已使用时,尽可能应是无害的。 Ⅵ.设计中能量的使用要讲效率——尽可能降低化学过程所需能量,还应考虑对环境和经济的效益。合成程序尽可能在大气环境的温度和压强下进行。 Ⅶ.用可以回收的原料——只要技术上、经济上是可行的,原料应能回收而不是使之变坏。Ⅷ.尽量减少派生物——应尽可能避免或减少多余的衍生反应(用于保护基团或取消保护和短暂改变物理、化学过程),因为进行这些步骤需添加一些反应物同时也会产生废弃物。 Ⅸ.催化作用——催化剂(尽可能是具选择性的)比符合化学计量数的反应物更占优势。 Ⅹ.要设计降解——按设计生产的生成物,当其有效作用完成后,可以分解为无害的降解产物,在环境中不继续存在。 Ⅺ.防止污染进程能进行实时分析——需要不断发展分析方法,在实时分析、进程中监测,特别是对形成危害物质的控制上。 Ⅻ.特别是从化学反应的安全上防止事故发生——在化学过程中,反应物(包括其特定形态)的选择应着眼于使包括释放、爆炸、着火等化学事故的可能性降至最低。 为了更明确的表述绿色化学在资源使用上的要求,人们又提出了5R理论:Ⅰ.减量——Reduction 减量是从省资源少污染角度提出的。减少用量、在保护产量的情况下如何减少用量,有效途径之一是提高转化率、减少损失率。②减少“三废”排放量。主要是减少废气、废水及废弃物(副产物)排放量,必须排放标准以下。Ⅱ.重复使用——Reuse 重复使用这是降低成本和减废的需要。诸如化学工业过程中的催化剂、载体等,从一开始就应考虑有重复使用的设计。Ⅲ.回收——Recycling 回收主要包括:回收未反应的原料、副产物、助溶剂、催化剂、稳定剂等非反应试剂。 Ⅵ.再生——Regeneration 再生是变废为宝,节省资源、能源,减少污染的有效途径。它要求化工产品生产在工艺设计中应考虑到有关原材料的再生利用。 Ⅴ.拒用——Rejection 拒绝使用是杜绝污染的最根本办法,它是指对一些无法替代,又无法回收、再生和重复使用的毒副作用、污染作用明显的原料,拒绝在化学过程中使用。3 绿色化学的发展前景反应原料的绿色化 即反应原料符合5R原则。原子经济性反应 在基本有机原料的生产中,已有一些原子经济性反应的典范,如丙烯氢甲酰化制丁醛、甲醇羰化制醋酸和从丁二烯和氢氰酸合成己二腈等。高效合成法 不涉及分离高效的的多步合成无疑是洁净技术的重要组成部分。.提高反应的选择性———定向合成 如不对称合成。.环境友好催化剂 例如在正己烷的裂解反应中,固体酸SiO2-AlCl3比普通AlCl3具有更好的选择性,更小的腐蚀性。.物理方法促进化学反应 如微波引发和促进Diels Alder反应、Claisen重排、缩合等许多重要的有机反应。.酶促有机化学反应 酶促有机化学反应有高效性、选择性、反应条件温和和自身对环境友好等特点。溶剂 化学污染不仅来源于原料和产品,而且与反应介质、分离和配方中使用的溶剂有关,有毒挥发性溶剂替代品的研究是绿色化学的重要研究方向。如超临界流体、水相有机合成和室温熔盐溶剂等。.计算机辅助绿色化学设计和模拟 在化学化工领域,计算机已广泛用于构效分析、结构解析、反应性预测、故障诊断及控制等许多方面。无疑,计算机在寻找符合绿色化学原则的最佳反应路线、化工过程最优化、产品设计等方面推动了绿色化学的更快发展。环境友好产品 如可降解塑料、环境友好农药、绿色燃料、绿色涂料和CFCs替代物等。绿色化学为化学的发展注入了新的活力,在21世纪化学必将大有可为。浅谈绿色化学摘 要 建立绿色化学的根本目的是从节约资源和防止污染的观点出发,重新审视和改革传统化学,从而使我们对环境的治理可以从治标转向治本。为此,工业、农业、日常生活等采用无毒、无害并可循环使用的物料,化学反应的绿色化,是从“本”治理环境污染的重要途径。当今,化学的发展非常迅速。在20世纪发现和人工合成的化合物的种类是2285万多种,是此之前发现的所有化合物总数的41倍强。但“化学家太谦虚”,20世纪化学取得的辉煌成就,并未获得社会应有的认可。关键词 绿色化学 环境保护 生物技术 前言 人类正面临有史以来最严重的环境危机,由于人口急剧的增加,资源的消耗日益扩大,人均耕地、淡水和矿产等资源占有量逐渐减少,人口与资源的矛盾越来越尖锐;环保问题就成为经济与社会发展的重要问题之一。作为国民经济支柱产业之一的化学工业及相关产业,在为创造人类的物质文明作出重要贡献的同时,在生产活动中不断排放出大量有毒物质,化学工业也为环境和人类的健康带来一定的危害。发达国家对环境的治理,已开始从治标,即从末端治理污染转向治本,即开发清洁工业技术,消减污染源头,生产环境友好产品。“绿色技术”已成为21世纪化工技术与化学研究的热点和重要科技前沿。 化学可以粗略地看作是研究从一种物质向另一种物质转化的科学。传统的化学虽然可以得到人类需要的新物质,但是在许多场合中却既未有效地利用资源,又产生大量排放物,造成严重的环境污染。绿色化学则是更高层次的化学,它的主要特点是“原子经济性”,即在获得物质的转化过程中充分利用每个原料原子,实现“零排放”,因此既可以充分利用资源,又不产生污染。传统化学向绿色化学的转变可以看作是化学从“粗放型”向“集约型”的转变。绿色化学可以变废为宝,可使经济效益大幅度提高。绿色化学已在全世界兴起,它对我国这样新兴的发展中国家更是一个难得的机遇。1 采用无毒、无害并可循环使用的新物料 原料选择 工业化的发展为人类提供了许多新物料,它们在不断改善人类物质生活的同时,也带来大量生活废物,使人类的生活环境迅速恶化。为了既不降低人类的生活水平,又不破坏环境,我们必须研制并采用对环境无毒无害又可循环使用的新物料。 以塑料为例,据统计,到1989年美国在包装上使用的塑料就超过亿kg(20世纪90年代数量进一步上升),打开包装后即被抛弃,这些塑料废物破坏环境是我们面临的一大问题:掩埋它们将永久留在土地里中;焚烧它们会放出剧毒。 我国也大量使用塑料包装,而且在农村还广泛地使用塑料大棚和地膜,造成的“白色污染”也越来越严重。解决这个问题的根本出路在于研制可以自然分解或生物降解的新型塑料,目前国际上已有一些成功的方法,例如:光降解塑料和生物降解塑料。前者已经投入生产。光生物双降解塑料研究是我国“八五”科技攻关的一个重大项目,已取得一些进展。 溶剂的选择 大量的与化学制造相关的污染问题不仅来源于原料和产品,而且源自在其制造过程中使用的物质。最常见的是在反应介质,分离和配方中所用的溶剂。在传统的有机反应中,有机溶剂是最常用的反应介质,这主要是因为它们能较好地溶解有机化合物。但有机溶剂的毒性和难以回收又使之成为对环境有害的因素。因此,在无溶剂存在下进行的有机反应,用水作反应介质,以及超临界流体作反应介质或萃取溶剂将成为发展洁净合成的重要途径。 固相反应 固相化学反应实际上是在无溶剂化作用的新颖化学环境下进行的反应,有时可比溶液反应更为有效并达到更好的选择性。它是避免使用挥发性溶剂的一个研究动向。 以水为溶剂的反应 由于大多数有机化合物在水中的溶解性差,而且许多试剂在水中会分解,因此一般避免用水作反应介质。但水作为反应溶剂有其独特的优越性,因为水是地球上自然丰度最高的“溶剂”,价廉、无毒、不危害环境。此外水溶剂特有的疏水效用对一些重要有机转化是十分有益的,有时可提高反应速率和选择性,更何况生命体内的化学反应大多是在水中进行的。水相有机合成在有机金属类反应,水相Lewis酸催化的反应现都已取得较大进展。因此在某些有机化学反应中,开发利用以水作溶剂是大有可为的。 超临界流体作为有机溶剂 超临界流体是指超临界温度及超临界压力下的流体,是一种介于气态与液态之间的流体。在无毒无害溶剂的研究中,最活跃的研究项目是开发超临界流体(SCF),特别是超临界CO2作溶剂。超临界CO2是指温度和压力在其临界点(℃,7 )以上的CO2流体。它通常具有流体的密度,因而有常规常态溶剂的溶解度;在相同条件下,它又具有气体的粘度,因而又具有很高的传质速度。而且,由于具有很大的可压缩性,流体的密度,溶剂溶解度和粘度等性能可由压力和温度的变化来调节。其最大优点是无毒、不可燃、价廉等。 催化剂的选择 许多传统的有机反应用到酸、碱液体催化剂。如烃类的烷基化反应一般使用氢氟酸、硫酸、三氯化铝等液体酸做催化剂,这些液体酸催化剂的共同缺点是:对设备腐蚀严重,对人身危害和产生废渣污染环境。为了保护环境,多年来人们从分子筛、杂多酸、超强酸等新催化材料入手,大力开发固体酸做为烷基催化剂。其中采用新型分子筛催化剂的乙苯液相烃化技术较为成熟,这种催化剂选择性高,乙苯收率超过,而且催化剂寿命长。 2 化学反应的绿色化 为了节约资源和减少污染,合成效率成了当今合成方法学研究中关注的焦点。合成效率包括两方面,一是选择性(化学、区域、非对映体和对映体选择性),另一个就是原子经济性,即原料分子中究竟有百分之几的原子转化为产物,理想的原子经济反应是原料分子中的原子百分之百的转变为产物,不产生副产物或废弃物,实现废物的“零排放”。为此,化学化工工作者在设计合成路线时,要减少“中转”、增加“直快”、“特快”,更加经济合理地利用原料分子中的每一个原子,减少中间产物的形成,少用或不用保护基或离去基,避免副产物或废弃物的产生。实现原子经济反应的有效手段很多,在些不作赘述。 3 生物技术的应用 生物科学是当代科学的前沿。生物技术是世界范围内新技术革命的重要组成部分,生物化工是21世纪最具有发展潜力的产业之一,它将成为创造巨大社会财富的重要产业体系。采用生物技术已在能源、采油、采矿、肥料、农药、蛋白质、聚合物、表面活性剂、催化剂、基本有机化工原料、精细化学品的制造等方面得到广泛应用。从发展绿色化学的角度出发,它最大的特点和魅力就在节约能源和易于实现无污染生产而且可以实现用一般化工技术难以实现的化工过程,其产品常常又具有特殊性能。因此,生物技术的研究和应用倍受青睐。 绿色化学是人类的一项重要战略任务。绿色化学的根本目的是从节约资源和防止污染的观点来重新审视和改革传统化学,从而使我们对环境的治理可以从治标中转向治本。绿色化学的发展不仅将对环境保护产生重大影响,而且将为我国的企业与国际接轨创造条件。 参考文献1. 朱清时. 绿色化学和新的产业革命[J]. 现代化工,1998(6)2. 闵思泽. 环境友好石油炼制技术的发展[J].化学进展,1998(1)3. 黄培强. 绿色合成:一个逐步形成的学科前沿[J]. 化学进展,1998(4)4. 高兆林, 谭丕亨. 绿色化学浅说[J]. 山东化工,1999(2)[5.王恩举.漫谈绿色化学.大学化学,2002,(4)6.. 徐光宪.今日化学何去何从?.大学化学,2003,(1)7. 董昌耀,杨世忠.中学绿色化学教育实施策略探讨,化学教育. 2002来
是篇 化工 毕业设计(论文) 太长了 我就不在这发了 给你网址 你去看看 应该能帮上你
有机化学实验室管理初探实验室是教学和科研工作的重要场所,是师生及科研人员遵循理论联系实际的原则,进行教学实验和开展科学研究的主要场所。随着教学改革的不断深入,实验室工作受到越来越多的重视,实验室工作水平成为反映高等学校教学水平、科研水平与管理水平的重要标志。其中有机化学实验室与无机、分析、物化等实验室相比,具有相同性,更具有特殊性,主要表现为物品的特殊性,尤其是危害性药品,直接危及实验室的安全管理和环境保护。加强对有机化学实验室特殊性的认识,采用合理化的管理方式,在保证安全无污染的条件下,使实验教学工作顺利进行,具有十分重要的意义。 1.有机化学实验室各要素 有机化学实验教学紧密配合于有机化学教学,主要从性质、制备及合成等方面加强学生对该门学科的直观了解,以达到巩固和加深理解课堂内容的目的。有机化学实验室是由试剂药品、仪器设备、人员、安全、环境、实验教学等要素组成。实验人员主要有实验课教师和实验学生,实验学生是实验活动的主体;试剂药品和仪器设备是实验教学顺利进行的物质保障,由于有机化合物的性质和制备等实验所需用的药品及合成产物等不同于其它实验室,使得有机实验室的试剂药品和仪器设备具有特殊性;安全能保障实验室各项工作的顺利进行;清洁卫生的环境有助于提高实验教学的质量。所以有机化学实验室的各项管理的目的是为了使教师和学生能积极高效地从事实验活动。 2.有机化学实验室物品的贮存管理 化学试剂药品的贮存管理 实验室内的各种试剂药品的存放都必须条理化、科学化。化学试剂药品的管理工作看起来简单,其实是涉及面很广的科学工作,由于化学实验试剂药品品种多,很多试剂药品又具有一定的危险性,危险试剂药品应存放在专门的库房里,要求库房要远离人群、住宅、重要建筑物等。对于从库房领回到实验室及实验没有用完的药品,要妥善保管,以确保实验室的安全。[1]因此,管理人员必须研究不同试剂在不同季节的不同特性,做好此项工作,掌握各种试剂的不同性能,从而采取不同的措施进行合理的管理,以提高科学管理的主动性。 有机化学实验室有很多危险药品,分为固态和液态两大类,大多具有易燃、易爆、易挥发、强腐蚀、有毒等危险性,所以这些药品的贮存管理是有机实验室管理的一个重要内容,也是确保实验室安全和环境保护的重要方面,这就给实验室药品的贮存提出了很高的要求。有毒且易挥发的药品必须贮存在通风橱内;易挥发且遇明火即燃的液体,像乙醚、丙酮等,应单独存放,并注意阴凉通风,特别要远离火源;强氧化剂如氯酸钾、硝酸盐、高锰酸盐等,当受热、撞击或混入还原性物质时,就可能引起爆炸,这类物质除应贮存在阴凉通风处外,更不能与还原性物质或可燃性物质放在一起;强腐蚀性药品如浓酸、浓碱、苯酚、甲酸等应盛放在有塞的玻璃瓶中,瓶塞要密封,并且不能放在高位架上,防止碰翻造成灼伤;一些无机盐如钡盐、铅盐、锑盐也具有毒性,要妥善贮存。[2]为了方便查找药品和试剂,本实验室在贮存试剂药品的各个橱柜贴上目录单,目录单包括药品名称、规格、库存量,并做相应的电子目录单,以便根据使用和借出的量及时更改目录单。 低值耐用品和固定资产的贮存管理 循环水泵、多用途旋转蒸发器、冰箱、供箱等大型仪器应固定在离电源插座近的地方,不要轻易移动。电炉、电热套、显微镜、磁力搅拌器等仪器使用后,要检查、维修,并集中放置。[3]为了方便使用和年底的清点对帐,本实验室根据低值耐用品和固定资产的帐单进行了汇总并做成电子文档,如电热套有四种型号,列出型号、厂家、每种型号总台套数、现有台套数、借出情况及存放地点。这方便了实验室的日常管理,也能及时找到学生和教师需要的仪器,大大节省了时间,提高了实验室工作效率。 玻璃仪器的贮存管理 在有机化学实验中,除性质实验外,制备或合成实验基本上使用标准磨口仪器。玻璃仪器极容易破碎,因此必须采取合理化的贮存方法,本实验室采取分类存放保管,并用标签标明,小心放置在橱柜里,必要时垫衬废纸或其它软性衬物,如分液漏斗、恒压滴液漏斗等的配套活塞在使用清洗后,必须加衬废纸,并用橡皮筋固定,以防搞混、碰碎或者活塞打不开,使用后的磨口仪器要将各部分拆开,认真清洗。 3.有机化学实验室物品的合理化使用 低值易耗品的合理化使用 对低值易耗品进行量化管理,首先要进行清仓,摸清库存,确定合理的库存储备。[4]实验室以前采用每次实验发放玻璃仪器的方法,无法找到毁坏者,使得玻璃仪器损坏严重。为扭转低值易耗品破损严重的情况,加强学生的责任心,本实验室对于常用的玻璃仪器如烧杯、漏斗、圆底烧瓶、三角瓶等,施行分发给学生管理的责任制,每位学生有一套常用的玻璃仪器,每次实验后施行自我检查、组长检查、教师监督及学期末的清点。这样的责任制增强了学生爱护公物的自觉性和责任感,减少了玻璃仪器的损坏,有效地延长了仪器的使用寿命,节约了资金。在每次实验结束后,要求各组学生认真清理自己的仪器,损坏者要填破损单,重新补齐。仪器破损单由指导教师根据损坏情况签署赔偿比例,按仪器原价的30%赔偿,学期末汇总破损单,按班级计算。每学期认真填写低值易耗品的申请单,做到根据教学大纲确定选开和必开的实验项目,按操作说明认真考核和记录每项实验所用实验材料的消耗量,记录每项实验所用低值易耗品的数量。这种强制的量化管理办法,可以逐渐形成一种良性循环,减少浪费、节约资金,推进实验室的管理工作。 药品的合理化使用 根据有机化学实验室药品的特殊性,我们加强了药品的合理化使用,采用微量或半微量的方法。对于危险品和贵重类药品,严格确定实验用量,要求学生必须按量称取,实验结束后,必须认真检查验收并及时归位,以防危险品外流,发生意外事故;对于易挥发的有毒药品,必须在通风橱内进行操作,以保障学生安全和防止污染环境;对于强腐蚀性药品,必须戴乳胶手套,以防灼烧,造成伤害;对常规性药品则采取机动灵活的管理办法,对于用量比较大的药品,提前准备好,放到实验室前的准备台上,供学生公用,实验结束后,将剩余的药品和试剂及时整理归位,并在药品目录单上及时更改数量。有机实验有很多制备、合成实验,本实验室为了加强循环使用和节省原料,设计了实验进度表,如:先进行苯胺的合成实验,将制备好的苯胺做为乙酰苯胺制备的原料,这样制备的苯胺就可更好地被其它实验利用,也为实验室节约了药品,避免了浪费。实验室将合成实验的产品用于性质测定实验,如:乙酸水杨酸的制备,可将制备出的乙酸水杨酸用于熔点测定实验。本实验室还加强了与其它实验室的合作,将制备的物质提供给其它实验室使用。这样不仅为实验室节约了药品,加强了药品的循环使用,还加强了各个实验室的协调合作,使各实验室成为紧密联系的整体,让学生明白有机实验不仅能增强他们的动手能力,更能让他们制备合成的物质有实际的运用价值,增强了学生做实验的主动性。 4.有机化学实验室安全及环境的合理管理 有机化学实验室有众多的师生在其中工作,若不进行科学化、规范化的安全、环境管理,极有可能造成实验室的混乱。有机化学实验室中,放置有大量的药品、玻璃仪器及其他仪器,容易引发燃烧、爆炸、毒害等事故。为了保证教学和科研工作的正常进行、师生的人身安全、实验室的安全,环境就必须实行科学化、规范化的管理。[5]可从以下几个方面加强管理:(1)制定相应的安全守则、安全管理规章制度,加强安全防范措施,如配备灭火器材、防爆器材、急救药箱等。(2)采取通风橱、抽风设备等,以达到室内空气清洁卫生,为师生创造良好的实验环境。(3)为了确保实验室内有害物质不造成水源污染和室外污染,实验室施行“三废”处理措施,实验室放置专门收集废液的容器,分类收集固体废弃物、有机废液、无机废液,定时做统一处理。(4)环境卫生值日制度,每次实验结束后安排值日生负责实验室环境卫生工作,值日生必须切实负责整理好公用仪器、药品、整理台面、清扫地面和清理水槽。 5.有机化学实验室帐目的合理管理 要有合理的帐目管理,定时进行清点、对帐、补帐、核算。要认真如实地填写实验项目卡、实验室使用记录本、实验室日志,及时填写低值耐用品、固定资产的借出记录。还要督促教师填写实验室日志,学生及时填写玻璃仪器赔偿记录。 综上所述,有机化学实验室的科学化、规范化管理是一项复杂的、系统性很强的、极其重要的工作,本文仅就其中的几个方面做了一点简单的总结。
如果只是格式问题的话,建议参考之前你们同学做过的论文,各学校不一样
337 浏览 3 回答
193 浏览 2 回答
323 浏览 2 回答
330 浏览 5 回答
98 浏览 2 回答
87 浏览 5 回答
196 浏览 4 回答
88 浏览 5 回答
333 浏览 3 回答
335 浏览 3 回答
172 浏览 3 回答
186 浏览 2 回答
333 浏览 5 回答
162 浏览 1 回答
307 浏览 2 回答