组合数学概述 组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好象是有思维的。 组合数学不仅在软件技术中有重要的应用价值,在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。最近,德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。 在1997年11月的南开大学组合数学研究中心成立大会上,吴文俊院士指出,每个时代都有它特殊的要求,使得数学出现一个新的面貌,产生一些新的数学分支,组合数学这个新的分支也是在时代的要求下产生的。最近,吴文俊院士又指出,信息技术很可能会给数学本身带来一场根本性的变革,而组合数学则将显示出它的重要作用。杨乐院士也指出组合数学无论在应用上和理论上都具有越来越重要的位置,它今后的发展是很有生命力,很有前途的,中国应该倡导这个方面的研究工作。万哲先院士甚至举例说明了华罗庚,许宝禄,吴文俊等中国老一辈的数学家不仅重视组合数学,同时还对组合数学中的一些基本问题作了重大贡献。迫于中国组合数学发展自身的需要,以及中国信息产业发展的需要,在中国发展组合数学已经迫在眉睫,刻不容缓。 2. 组合数学与计算机软件 随着计算机网络的发展,计算机的使用已经影响到了人们的工作,生活,学习,社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。我在美国听到过一种说法,将来一个国家的经济实力可以直接从软件产业反映出来。我国在软件上的落后,要说出根本的原因可能并不是很简单的事,除了技术和科学上的原因外,可能还跟我们的文化,管理水平,教育水平,思想素质等诸多因素有关。除去这些人文因素以外,一个最根本的原因就是我国的信息技术的数学基础十分薄弱,这个问题不解决,我们就难成为软件强国。然而问题决不是这么简单,信息技术的发展已经涉及到了很深的数学知识,而数学本身也已经发展到了很深、很广的程度并不是单凭几个聪明的头脑去想想就行了,而更重要的是需要集体的合作和力量,就象软件的开发需要多方面的人员的合作。美国的软件之所以能领先,其关键就在于在数学基础上他们有很强的实力,有很多杰出的人才。一般人可能会认为数学是一门纯粹的基础科学,1+1的解决可能不会有任何实际的意义。如果真是这样,一门纯粹学科的发展落后几年,甚至十年,关系也不大。然而中国的软件产业的发展已向数学基础提出了急切的需求:网络算法和分析,信息压缩,网络安全,编码技术,系统软件,并行算法,数学机械化和计算机推理,等等。此外,与实际应用有关的还有许多许多需要数学基础的算法,如运筹规划,金融工程,计算机辅助设计等。如果我们的软件产业还是把眼光一直盯在应用软件和第二次开发,那么我们在应用软件这个领域也会让国外的企业抢去很大的市场。如果我们现在在信息技术的数学基础上,大力支持和投入,那将是亡羊补牢,犹未为晚;只要我们能抢回信息技术的数学基地,那么我们还有可能在软件产业的竞争中,扭转局面,甚至反败为胜。吴文俊院士开创和领导的数学机械化研究,为中国在信息技术领域占领了一个重要的阵地,有了雄厚的数学基础,自然就有了软件开发的竞争力。这样的阵地多几个,我们的软件产业就会产生新的局面。值得注意的是,印度有很好的统计和组合数学基础,这可能也是印度的软件产业近几年有很大发展的原因。 3. 组合数学在国外的状况 纵观全世界软件产业的情况,易见一个奇特的现象:美国处于绝对的垄断地位。造成这种现象的一个根本的原因就是计算机科学在美国的飞速发展。当今计算机科学界的最权威人士很多都是研究组合数学出身的。美国最重要的计算机科学系(MIT,Princeton,Stanford,Harvard,Yale,….)都有第一流的组合数学家。计算机科学通过对软件产业的促进,带来了巨大的效益,这已是不争之事实。组合数学在国外早已成为十分重要的学科,甚至可以说是计算机科学的基础。一些大公司,如IBM,AT&T都有全世界最强的组合研究中心。Microsoft 的Bill Gates近来也在提倡和支持计算机科学的基础研究。例如,Bell实验室的有关线性规划算法的实现,以及有关计算机网络的算法,由于有明显的商业价值,显然是没有对外公开的。美国已经有一种趋势,就是与新的算法有关的软件是可以申请专利的。如果照这种趋势发展,世界各国对组合数学和计算机算法的投入和竞争必然日趋激烈。美国政府也成立了离散数学及理论计算机科学中心DIMACS(与Princeton大学,Rutgers大学,AT&T 联合创办的,设在Rutgers大学),该中心已是组合数学理论计算机科学的重要研究阵地。美国国家数学科学研究所(Mathematical Sciences Research Institute,由陈省身先生创立)在1997年选择了组合数学作为研究专题,组织了为期一年的研究活动。日本的NEC公司还在美国的设立了研究中心,理论计算机科学和组合数学已是他们重要的研究课题,该中心主任R. Tarjan即是组合数学的权威。我所熟悉的美国重要的国家实际室(Los Alamos国家实验室,以造出第一颗原子弹著称于世),从曼哈顿计划以来一直重视应用数学的研究,包括组合数学的研究。我所接触到的有关组合数学的计算机模拟项目经费达三千万美元。不仅如此,该实验室最近还在积极充实组合数学方面的研究实力。美国另外一个重要的国家实验室Sandia国家实验室有一个专门研究组合数学和计算机科学的机构,主要从事组合编码理论和密码学的研究,在美国政府以及国际学术界都具有很高的地位。由于生物学中的DNA的结构和生物现象与组合数学有密切的联系,各国对生物信息学的研究都很重视,这也是组合数学可以发挥作用的一个重要领域。前不久召开的北京香山会议就体现了国家对生物信息学的高度重视。据说IBM也将成立一个生物信息学研究中心。由于DNA就是组合数学中的一个序列结构,美国科学院院士,近代组合数学的奠基人Rota教授预言,生物学中的组合问题将成为组合数学的一个前沿领域。 美国的大学,国家研究机构,工业界,军方和情报部门都有许多组合数学的研究中心,在研究上投入了大量的经费。但他们得到的收益远远超过了他们的投入,更主要的是他们还聚集了组合数学领域全世界最优秀的人才。高层次的软件产品处处用到组合数学,更确切地说就是组合算法。传统的计算机算法可以分为两大类,一类是组合算法,一类是数值算法(包括计算数学和与处理各种信息数据有关的信息学)。依我个人的浅见,近年来计算机算法又多了一类:那就是符号计算算法。吴文俊院士开创的机器证明方法就属于符号计算,引起了国际上的高度评价,被称为吴方法。而国际上还有专门的符号计算杂志。符号算法和吴方法跟代数组合学也有十分密切的联系。组合数学,数值计算(包括计算数学,科学计算,非线性科学,和与处理各种信息数据有关的信息学)和统计学可能是应用最广的数学分支,而组合数学的价值甚至不亚于统计学和数值计算。由于数学机械化近年来的发展和在计算机科学中的重要性,把数学机械化,科学计算和组合数学组合起来,就可以说是中国信息产业的基础。组合数学家H. Wilf和D. Zeilberger1998因为在组合恒等式的机械化证明方面的成果,获得1998年美国数学会的Steele奖。 Gian-Carlo Rota教授在他去年不幸逝世之前,还专门向我提出,希望我向中国有关部门和领导人呼吁,组合数学是计算机软件产业的基础,中国最终一定能成为一个软件大国,但是要实现这个目标的一个突破点就是发展组合数学。中国在软件技术上远远落后于美国,而在组合数学上则更是落后于美国和欧洲。如果中国只是想在软件技术上跟着西方走,而不在组合数学上下功夫,那么中国的软件将一直处于落后的状态。他特别强调组合数学在计算机科学中的作用,以及在大学计算机系加强组合数学教学和人才培养。 最近Thomson Science公司创刊的一份电子刊物《离散数学和理论计算机科学》即是一个很好的说明。它的内容涉及离散数学和计算机科学的众多方面。由于计算机软件的促进和需求,组合数学已成为一门既广博又深奥的学科,需要很深的数学基础,逐渐成为了数学的主流分支。本世纪公认的伟大数学家盖尔芳德预言组合数学和几何学将是下一世纪数学研究的前沿阵地。这一观点不仅得到国际数学界的赞同,也得到了中国数学界的赞同和响应。 加拿大在Montreal成立了试验数学研究中心,他们的思路可能和吴文俊院士的数学机械化研究中心的发展思路类似,使数学机械化,算法化,不仅使数学为计算机科学服务,同时也使计算机为数学研究服务。吴文俊院士指出,中国传统数学中本身就有浓厚的算法思想。 今后的计算机要向更加智能化的方向发展,其出路仍然是数学的算法,和数学的机械化。另外的一个有说服力的现象是,组合数学家总是可以在大学的计算机系或者在计算机公司找到很好的工作,一个优秀的组合数学家自然就是一个优秀的计算机科学家。相反,美国所有大学计算机系都有组合数学的课程。 除上述以外,欧洲也在积极发展组合数学,英国、法国、德国、荷兰、丹麦、奥地利、瑞典、意大利、西班牙等国家都建立了各种形式的组合数学研究中心。近几年,南美国家也在积极推动组合数学的研究。澳大利亚,新西兰也组建了很强的组合数学研究机构。值得一提的是亚洲的发达国家也十分重视组合数学的研究。日本有组合数学研究中心,并且从美国引进人才,不仅支持日本国内的研究,还出资支持美国的有关课题的研究,这样使日本的组合数学这几年的发展极为迅速。台湾、香港两地也从美国引进人才,大力发展组合数学。新加坡,韩国,马来西亚也在积极推动组合数学的研究和人才培养。台湾的数学研究中心也正在考虑把组合数学作为重点方向来发展。世界各地对组合数学的如此钟爱显然是有原因的,那就是没有组合数学就没有计算机科学,没有计算机软件。 4. 组合数学花絮 ** 在日常生活中我们常常遇到组合数学的问题。如果你仔细留心一张世界地图,你会发现用一种颜色对一个国家着色,那么一共只需要四种颜色就能保证每两个相邻的国家的颜色不同。这样的着色效果能使每一个国家都能清楚地显示出来。但要证明这个结论确是一个著名的世界难题,最终借助计算机才得以解决,最近人们才发现了一个更简单的证明。 ** 我国古代的河洛图上记载了三阶幻方,即把从一到九这九个数按三行三列的队行排列,使得每行,每列,以及两条对角线上的三个数之和都是一十五。组合数学中有许多象幻方这样精巧的结构。1977年美国旅行者1号、2号宇宙飞船就带上了幻方以作为人类智慧的信号。 ** 当你装一个箱子时,你会发现要使箱子尽可能装满不是一件很容易的事,你往往需要做些调整。从理论上讲,装箱问题是一个很难的组合数学问题,即使用计算机也是不容易解决的。 ** 在中小学的数学游戏中,有这样一个问题,一个船夫要把一只狼,一只羊和一棵白菜运过河。问题是当人不在场时,狼要吃羊,羊要吃白菜,而他的船每趟只能运其中的一个。他怎样才能把三者都运过河呢?这就是一个很典型、很简单的组合数学问题。 ** 我们还会遇到更复杂的调度和安排问题。例如,在生产原子弹的曼哈顿计划中,涉及到很多工序,许多人员的安排,很多元件的生产,怎样安排各种人员的工作,以及各种工序间的衔接,从而使整个工期的时间尽可能短?这些都是组合数学典型例子。 ** 航空调度和航班的设定也是组合数学的问题。怎样确定各个航班以满足 不同旅客转机的需要,同时也使得每个机场的航班起落分布合理。此外,在一些航班有延误等特殊情况下,怎样作最合理的调整,这些都是 组合数学的问题。 ** 对于城市的交通管理,交通规划,哪些地方可能是阻塞要地,哪些地方 应该设单行道,立交桥建在哪里最合适,红绿灯怎样设定最合理, 如此等等,全是组合数学的问题。 ** 一个邮递员从邮局出发,要走完他所管辖的街道,他应该怎样选择什么样的路径,这就是著名的"中国邮递员问题",由中国组合数学家管梅谷教授提出,著名组合数学家,J. Edmonds和他的合作者给出了一个解答。 ** 一个通讯网络怎样布局最节省?美国的贝尔实验室和IBM公司都有世界一流的组合数学家在研究这个问题,这个问题直接关系到巨大的经济利益。 ** 据说,假日饭店的管理中,也严格规定了有关的工序,如清洁工的第一步是换什么,清洗什么,第二步又做什么,总之,他进出房间的次数应该最少。既然,这样一个简单的工作都需要讲究工序,那么一个复杂的工程就更不用说了。 ** 库房和运输的管理也是典型的组合数学问题。怎样安排运输使得库房充分发挥作用,进一步来说,货物放在什么地方最便于存取(如存储时间短的应该放在容易存取的地方)。 ** 我们知道,用形状相同的方型砖块可以把一个地面铺满(不考虑边缘的情况),但是如果用不同形状,而又非方型的砖块来铺一个地面,能否铺满呢?这不仅是一个与实际相关的问题,也涉及到很深的组合数学问题。 ** 组合数学中有一个著名问题:是否存在稳定婚姻的问题。假如能找到两对夫妇(如张(男)--李(女)和赵(男)--王(女)),如果张(男)更喜欢王(女),而王(女)也更喜欢张(男),那么这样就可能有潜在的不稳定性。组合数学的方法可以找到一种婚姻的安排方法,使得没有上述的不稳定情况出现(当然这只是理论上的结论)。这种组合数学的方法却有 一个实际的用途:美国的医院在确定录取住院医生时,他们将考虑申请者的志愿的先后次序,同时也给申请排序。按这样的 次序考虑出的总的方案将没有医院和申请者两者同时后悔的情况。 实际上,高考学生的最后录取方案也可以用这种方法。 ** 组合数学还可用于金融分析,投资方案的确定,怎样找出好的投资组合以降低投资风险。南开大学组合数学研究中心开发出了"金沙股市风险分析系统"现已投放市场,为短线投资者提供了有效的风险防范工具。 总之,组合数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。所以组合数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。 胡锦涛同志在1998年接见"五四"青年奖章时发表的讲话中指出,组合数学不同于传统的纯数学的一个分支,它还是一门应用学科,一门交叉学科。他希望中国的组合数学研究能够为国家的经济建设服务。 如果21世纪是信息社会的世纪,那么21世纪也必将是组合数学大有可为的世纪。
数学学习兴趣及其培养内容摘要:学习兴趣是学习动机的一种最重要的成分,它对学生的学习起着重要的作用。学习兴趣促进学生智力的发展,获得较大的成功;同时,这种愉快的精神感受又促进学生对数学学习产生更大的兴趣,二者之间相互促进,使数学学习活动更加活跃、有效,学生的心理素质得到更加和谐的发展。本文讨论了兴趣的特点、形成、发展规律及在教师教学中的应用等,给出了米切尔关于兴趣的结构模型研究。影响兴趣的形成与发展的因素有个体需要、年龄、性格和能力、他人、集体与地区的影响等。在数学教学中,如何培养和激发学生的学习兴趣,是广大数学教师必须重视的一个问题。教师应将对学生学习兴趣的培养渗透到每个教学环节,贯穿于数学教学的全过程。关键词:学习兴趣 兴趣 认知学习兴趣对数学学习具有一定的影响。兴趣是学习活动中的重要动力,是学习获得良好效果的必要条件。数学学习是学生根据数学教学计划、目的要求进行的,由获得数学知识经验而引起的比较持久的行为变化过程。由于数学有其突出的特点,所以学生在获得数学知识经验时也有其特殊性的表现和要求,如数学学习中的再创造性比其它学科要高,数学学习需要较强的抽象概括能力等。这样学生在学习数学时保持浓厚的兴趣就犹为必要。学习数学的兴趣产生于教学过程的趣味性和艺术性情感中,产生于学习过程中的成功与愉快体验之中。当学生的精神处于兴奋状态展开数学学习活动时,学生就会产生强烈的求知欲望,就会在追求与探讨中发展数学的思维能力,促进智力的发展,获得较大的成功;同时,这种愉快的精神感受又促进学生对数学学习产生更大的兴趣,二者之间相互促进,使数学学习活动更加活跃、有效,学生的心理素质得到更加和谐的发展。1.学习兴趣及特点 学习兴趣兴趣是人们爱好某种活动或力求认识某种事物的倾向,这种倾向和一定的情感联系着,兴趣是在需要的基础上产生的,是在生活实践的过程中形成与发展起来的。学习兴趣是学生基于自己的学习需要而表现出来的一种认识倾向。从表现形式上讲,学习兴趣是学生学习需要的动态表现形式,是社会和教育对学生的客观要求在学生头脑中的反映;从系统上讲,学习兴趣是学习动机系统中的一个子系统,它是学习动机中最现实、最活跃的成分,是力求认识世界、渴望获得科学文化知识的带有情绪色彩的认识倾向。教育心理学的研究表明,如果大脑中有关学习的神经细胞处于高度的兴奋状态,而无关部分处于高度的抑制状态,有关学习的神经纤维通道便能高度畅通,学习时信息传输就会处于最佳状态。学生一旦对数学知识产生兴趣,就会产生巨大的认识能力,能集中注意力学习,使信息的传导达到最佳状态;反之,如果学生的学习存在着被迫、苦恼、烦躁、紧张,就会使神经细胞中应当抑制的部分变为兴奋,而应当兴奋的部分受到抑制,从而影响学习效果。 兴趣的特点 兴趣是后天形成的,是在需要的基础上发展起来的。人们在实践活动中,通过对某种事物反复接触和了解,随着有关知识经验的不断积累,逐渐形成和发展了对某事物的兴趣。学习的兴趣是可以诱发和培养的。 兴趣具有指向性。任何一种兴趣都对一定事件或活动,为实现某种目的而产生的。人对他感兴趣的事物总是心驰神往,积极地把注意指向并集中于该种活动。兴趣的指向性是建立在需要的基础之上的。 兴趣具有情绪性。在许多心理学教材和工具书中给兴趣下定义时都指出兴趣带有情绪性。生活实践也表明,人们从事感兴趣的活动时,总会处在愉快、满意、兴致淋漓的情绪状态;一个人做没有兴趣的工作时总觉得在做苦差事。 兴趣具有动力性。兴趣的动力作用可以概括为:(1)对一个人所从事的活动起支持、推动和促进作用。(2)为未来活动做准备。 兴趣具有衍生性。人们对事物的认识一般是在旧有的认知结构的基础上进行扩展,而事物之间往往相互联系,所以从旧有的兴趣中往往会产生出新的兴趣。 兴趣具有稳定性。兴趣的稳定性是指下躯持续时间而言,按兴趣维持时间长短可分为持久兴趣与短暂兴趣。直观兴趣是一种短暂兴趣,数学内容的有趣性和实用性、数学美感引起的自觉兴趣和潜在兴趣则是持久兴趣。2 影响兴趣形成与发展的因素 兴趣与需要的关系皮亚杰指出:“兴趣,实际上,就是需要的延伸,它表现出对象与需要之间的关系,因为我们之所以对一个对象发生兴趣,是由于它能满足我们的需要。”人的需要是多种多样的,兴趣也随需要而异。研究表明,一般具有高认知需要的人更喜欢复杂任务;而具有低认知需要的人则更喜欢简单的任务。 兴趣与年龄的关系不同年龄的人有不同的兴趣。年龄的增长直接影响到人的兴趣的数量和质量,对认识兴趣中具有中心意义的读书倾向变化的研究表明,不同年龄阶段的儿童的读书兴趣是有其各自的特点的。9—13 岁的儿童是读书最盛的,进入青年期读书活动的比率逐渐减少。但年龄越增长,选择力越强,感受性和理解力越敏锐,读书兴趣的质量在提高。 兴趣与性格和能力的关系不同性格的人兴趣有所区别。如情绪稳定的人兴趣也较稳定。此外,兴趣受能力制约。当自己感到问题的难度太大或太小时,个人对它就难于发生兴趣。 兴趣与他人、集体及地区的影响有关学生的兴趣常常受教师兴趣 的影响。个人的兴趣也受集体、地区、集团的影响。 兴趣与性别的关系从调查中可知兴趣有受性别影响的倾向。田中在苏州、无锡、镇江3 地区6 县市9 所学校的初三县市中进行调查显示,对数学表现兴趣的是男生多于女生,声明对数学不感兴趣甚至讨厌数学的也是男生多于女生。3 兴趣的形成过程儿童的兴趣在最初主要是与刺激联系在一起的。首先,刺激本身固有的一些特性都先于经验而有引起人注意和兴趣的功能。其次,使人觉得有趣的活动和经验本身也将引起人们的注意和兴趣。要引起或培养一个人的兴趣要按以下两个步骤进行:(1)发现个人或团体目前感兴趣的具体领域和现有水平;(2)把希望其从事的活动直接或通过中间的步骤与其目前的兴趣领域连接起来。章凯和张必隐提出了兴趣的“信息—目标”理论。该理论认为,个体心理的发展是以不断从环境获得信息为基础的;个体在与环境相互作用时希望从中获得信息,以消除原有的或新产生的心理不确定性,实现心理目标的形成、演化和发展的心理过程即兴趣。4 兴趣的作用兴趣在学生的学习活动中起着重要的作用。俄国大教育家乌申斯基指出:“没有丝毫兴趣的强制性学习,将会扼杀学生探求真理的欲望。”教育实践证明,学生对学习本身、对学习科目有兴趣,就可以激起他的学习积极性,推动他在学习中取得好成绩。兴趣对未来活动具有准备作用,对正在进行的活动具有推动作用,对活动的创造性态度具有促进作用。兴趣是推动认识活动的重要动力,是影响学习效果的重要因素。兴趣作为人从事活动的内容或方向,并不是固定不变的。兴趣可以被培养,被“镶嵌”于人的个性之中。由于兴趣—注意的指向性和集中性等特点,人的兴趣和认知的相互作用经常会导致一种恒常而稳定的兴趣—认知倾向。当认知倾向在个体身上内化而恒常地表现出来时,就表现为一种稳定的兴趣的个性倾向性。5 兴趣的发展规律 兴趣发展逐步深化人的兴趣的发展,一般要经过有趣—乐趣—志趣三个阶段。有趣是兴趣发展的低级水平,它往往是由某些外在的新异现象所引起而产生的直接兴趣。它为时短暂,带有直观性、盲目性和广泛性。乐趣是兴趣发展的中级水平,它是在有趣的基础上逐步定向而形成的。在这个阶段,学生的兴趣会向专一的、深入的方向发展,即对某一客体产生了特殊爱好。乐趣已具有专一性、自发性和坚持性的特点。志趣则是兴趣发展的最高水平。它与崇高的理想和远大的奋斗目标相结合,是在乐趣的基础上发展起来的。其特点是具有社会性、自觉性、方向性和更强的坚持性,甚至终身不变。 直接兴趣与间接兴趣的相互转化兴趣一般分为直接兴趣和间接兴趣两类。直接兴趣是对事物本身感到需要而引起的兴趣,间接兴趣只是对这种事物或活动的将来结果感到重要,而对事物本身并没有兴趣。间接兴趣在一定条件下可以转化为直接兴趣。学生遇到稍微简单、容易和生动有趣的知识时,便会产生直接兴趣;但一旦遇到复杂的、困难的和枯燥的知识时,便需要有间接兴趣来维持学习。当学生通过顽强学习,克服了学习中的困难时,便又会对这种知识产生直接兴趣。 中心兴趣与广泛兴趣的相互促进中心兴趣是指对某一方面的事物或活动有着极浓厚又稳定的兴趣;广泛兴趣是指对多方面的事物或活动具有的兴趣。广泛兴趣是中心兴趣的基础。 好奇心、求知欲、兴趣密切联系,逐步发展从横的方面来看,好奇心、求知欲和兴趣是相互促进、彼此强化的;从纵的方面看,三者又是沿着好奇心—求知欲—兴趣的方向发展的。好奇心是人们对新奇事物积极探求的一种心理倾向,它可以说是一种本能。好奇心儿童期最为强烈。求知欲是人们积极探求新知识的一种欲望,它带有一定的感情色彩。青少年时期是求知欲最旺盛的时期。某一方面的求知欲如果反复地表现出来,就形成了某一个人对某事物或活动的兴趣。 兴趣与努力不可分割兴趣与努力是可以相互促进的,而不是两个对立面。学生的学习活动既离不开学习兴趣,也离不开勤奋努力,兴趣与努力不断相互促进,方能使学习达到最佳境地。6 激发和培养学生学习数学的兴趣数学的特点是抽象、严谨、应用广泛。徐德雄对江山中学、武汉中学、金陵中学、浦城一中的高三毕业班学生的调查显示%的学生认为课业负担较重的科目是数学,%的学生认为考试次数最多的是数学。因此,在数学教学中,如何培养和激发学生的学习兴趣,是广大数学教师必须十分重视的一个问题,对于学习兴趣的培养应当渗透到每个教学环节,贯穿于数学教学的全过程。 要求学生建立积极的心理准备状态教师要教会学生在学习中遇到不懂的地方有积极的心理暗示,鼓励学生创造性地使用一些方法,增加学习的趣味性。兴趣是可以自己培养的,关键是有积极的态度。 帮助学生形成正确的学习价值观学习价值观使学生形成明确的学习需要,为兴趣的生成奠定基础。在教学中,教师要充分挖掘教学内容的功利和精神价值,并及时准确地传递给学生,帮助学生形成正确的学习目的,明确学习的价值和意义,以唤醒学生学习的内在冲动和激情,促进学习兴趣的生成。 学习价值观激发学习动机和求知欲,为兴趣的深入发展注入动力。教师应善于从帮助学生确立科学合理的学习价值观入手,以培养学生正确的学习理念和优秀的学习品质为切入点,将兴趣根植于崇高的理想信仰和正确的价值观基础之上。只有这样,学生才能形成真实的、稳定的、深入的、持久的学习兴趣,才能真正达到兴趣促进学习的目的。 提高教学水平引发学生学习兴趣 设悬激趣创设悬念,是教师根据教材的数学内容,设置问题情境,使学生产生强烈的求知欲望,激发学习兴趣。如教学“正比例”知识时,教师向学生提出一个实际问题:谁能有办法测量我们校内操场枫树的高度呢?同学们顿时兴趣大发,争论不休,却又想不出什么好办法。这时教师对同学们说:“我倒有一个且很简单的测量办法,不用爬树也不用砍树便可以测出树的高度”。同学们哗然,产生悬念:老师是用什么办法测量树高的呢?很自然地产生了求知欲望,由此学生主动学习,兴趣盎然,从而达到了预期的教学目的。收到良好效果,悬念也得到解决。 实践激趣数学教学中,给学生设置创造思考问题的机会和条件,指导学生在实践中,观察的基础上,动脑筋思考获得新知识。《数学课程标准》中指出:“学生能够认识到数学存在于现实生活中,并被广泛应用于现实世界,才能切实体会到数学的应用价值。”学好数学知识,是为了更好地为生活服务。把知识应用于生活,做到学以致用,让学生充分体验数学的应用价值,同时让学生在解决实际生活中的数学问题时,体验到探索数学的无穷乐趣,从而形成长久的兴趣。 竞争激趣课堂教学中,教师要注重学生争胜好强的特点,发挥他们的学习积极性,给他们提供足够的机会,鼓励他们竞争。 操作激趣感知-表象—概念是儿童认识数学的过程,从具体到抽象,从感性到理性的过程。教学时要注重学生的操作训练,激发学习兴趣,发展学生思维,把抽象的知识转变为具体的内容,使学生的认识由感性的基础上升到理性知识。 评价激趣教学中不管学生对知识的接受理解能力如何。教师都要以亲切的语言给予评价和诱导,忌用简单、粗糙的语言挫伤学生的学习知识性:第一、利用成功评价激趣。如学生通过自己学习实践得出圆周率时,教师评价学生说:“圆周率是我国古代数学家花了很长的时间,反复实验才计算出来,而今你们通过自己的实践也成功地算出来了,真了不起。希望同学们从小就要这样认真学习,事业一定能成功。”从而激发学生的学习兴趣。第二、利用诱导语言激趣。个别同学在学习过程中遇到困难时,要及时给予点拨诱导,让他们跳一下也能摘到果子。给予“试试看”、“再想想”等亲切的语言鼓励他们学习成功,产生兴趣。 加强直观,引导动手操作在课堂教学中,采用直观教具、投影仪等生动形象的教学手段,能使静态的数学知识动态化,不但能激发学生学习的积极性,而且学生学到的知识也能印象深刻,永久不忘。动手操作能有效地引发学生的学习兴趣。 建立平等和谐的师生关系教育是心灵的艺术,应该体现出民主与平等的现代意识。学生对堂课的兴趣与积极性的高低,常依赖于对教师的情感。由此可见,高尚纯洁的爱则是师生心灵的通道,是启发学生心扉的钥匙,是引导学生前进的路标。教师除了要有人格魅力外,在教学中,要以一颗火热的心爱护学生,真诚地对待学生。对学生要一视同仁,才能赢得学生的信赖。在生活上关心他们,在学习上帮助他们,在课堂上注重多表扬少批评,经常走到他们中间,找他们谈心,参加他们的活动,为他们服务,这样才能成为他们的知心朋友,尤其是对学习困难的学生更应多给他们关爱,多找出其闪光点培养他们的自信心,只有这样,建立了平等和谐的师生关系,学生才会亲其师、信其道、学其知,产生兴趣。 应用现代化教学手段培养学习兴趣学生的认识能力是否会有长足的进步,常常取决于我们能否提供一个良好的外界条件。在过去教学中,多数是填鸭式教学,教师只是讲讲、写写,学生只是听听、记记,对知识的理解、认识的提高,很多都是抽象的、模糊的,很难真正搞清楚,而现代教学手段的应用恰好弥补了这一不足。随着科学技术的发展,现代媒介也逐渐走入课堂,广泛用于教学中。应用现代化教学手段,诸如电影,电视,尤其是多媒体计算机辅助教学,代替了过去把黑板、粉笔作为教具的教学模式,既可以提高学生的认识能力,还可以培养学生的学习兴趣,让学生把动画、图象、立体声融合起来,真正做到“图文并茂”,把学生带入一种心旷神怡的境界,有身临其境之感,觉得生动有趣,这样就能激发起学生的学习热情,从而收到良好的效果。参考文献:[1]陈在瑞、路碧澄注。数学教育心理学。北京:中国人民大学出版社,1995。[2]李洪玉,何一粟著。学习动力。武汉:湖北教育出版社,1999。[3]李洪玉,何一粟著。学习能力发展心理学。合肥:安徽教育出版社,2004。[4]刘显国。激发学习兴趣艺术。北京:中国林业出版社,2004。[5]田中。初中学生性别与数学学习关系的问卷调查分析。数学通报,2000(6)。[6]徐德雄。高中数学学业负担的调查及对策。中学数学教学参考,1997(3)。另一篇:谈影响高中数学成绩的原因及解决方法 有人这样形容数学:“思维的体操,智慧的火花”。在当今知识经济时代,数学正在从幕后走向台前,它与计算机技术的结合在许多方面直接为社会创造价值,推动了社会生产力的发展。数学是人类文化的重要组成部分,已成为公民所必须具备的一种基本素质。数学在形成人类理性思维的过程中发挥着独特的、不可替代的作用。作为衡量一个人能力的重要学科,从小学到高中绝大多数同学对它情有独钟,投入了大量的时间与精力。然而并非人人都是成功者,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟头就栽在数学上。笔者在2002年暑假期间参加新疆高中数学骨干教师培训时,有几位给我们授课的文科专家学者,就谈到自己在上高中时虽然很想学好数学,可就是数学成绩提不高,最怕见高中数学老师。这种“惧怕”高中数学的现象目前是比较普遍的,应当引起重视。当然造成这种现象的原因是多方面的,本文仅就从学生的学习状态方面浅谈如下: 面对众多初中学习的成功者沦为高中学习的失败者,笔者对他们的学习状态进行了研究、调查表明,造成成绩滑坡的主要原因有以下几个方面。 1.被动学习。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。没有真正理解所学内容。 2.学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。 3.不重视基础。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。 4.进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。 高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动。针对学生学习中出现的上述情况,教师应当采取以加强学法指导为主,化解分化点为辅的对策: 1.加强学法指导,培养良好学习习惯。 良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。 课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。 上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。 及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。 独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”。 解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。 系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系。以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。 课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。 2.循序渐进,防止急躁 由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。 3.研究学科特点,寻找最佳学习方法 数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的。 4.加强辅导,化解分化点 如前所述高中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点。对易分化的地方教师应当采取多次反复,加强辅导,开辟专题讲座,指导阅读参考书等方法,将出现的错误提出来让学生议一议,充分展示他们的思维过程,通过变式练习,提高他们的鉴赏能力,以达到灵活掌握知识、运用知识的目的。
如果这两个不行,你可以把这两篇论文综合一下哦
解决排列组合问题要讲究策略,首先要认真审题,弄清楚是排列(有序)还是组合(无序),还是排列与组合混合问题。其次,要抓住问题的本质特征,准确合理地利用两个基本原则进行“分类与分步”。加法原理的特征是分类解决问题,分类必须满足两个条件:①类与类必须互斥(不相容),②总类必须完备(不遗漏);乘法原理的特征是分步解决问题,分步必须做到步与步互相独立,互不干扰并确保连续性。分类与分步是解决排列组合问题的最基本的思想策略,在实际操作中往往是“步”与“类”交叉,有机结合,可以是类中有步,也可以是步中有类。 以上解题思路分析,可以用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。 下面对几种典型的排列组合问题进行策略分析,拟找到解决相应问题的有效方法。 一、特殊优先,一般在后 对于问题中的特殊元素、特殊位置要优先安排。在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。 例1 0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个? 解法一:(元素优先)分两类:第一类,含0,0在个位有A42种,0在十位有A21·A31种;第二类,不含0,有A21·A32种。 故共有(A42+A21A31)+A32A21=30。 注:在考虑每一类时,又要优先考虑个位。 解法二:(位置优先)分两类:第一类,0在个位有A42种;第二类,0不在个位,先从两个偶数中选一个放个位,再选一个放百位,最后考虑十位,有A21A31A31种。故共有A42+A21A31A31=30。 练习1 (89年全国)由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有 个(用数字作答)。 答案:36 二、排组混合,先选后排 对于排列与组合的混合问题,宜先用组合选取元素,再进行排列。 例2 (95年全国)4个不同的小球放入编号为1、2、3、4的四个盒内,则恰有一个空盒的放法有几种? 解:由题意,必有一个盒内有2个球,同一盒内的球是组合,不同的球放入不同的盒子是排列。因此,有C42A43=144种放法。 练习2 由数字1,2,3,4,5,6,7组成有3个奇数字,2个偶数字的五位数,数字不重复的有多少个? 答案:有C43C32A55=1440(个) 三、元素相邻,整体处理 对于某些元素要求相邻排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素进行自排。 例3 5个男生3个女生排成一列,要求女生排一起,共有几种排法? 解:先把3个女生捆绑为一个整体再与其他5个男生全排列。同时,3个女生自身也应全排列。由乘法原理共有A66·A33种。 练习3 四对兄妹站一排,每对兄妹都相邻的站法有多少种? 答案:A44·24=384 四、元素间隔,分位插入 对于某些元素要求有间隔的排列,用插入法。 例4 5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法? 解:先排无限制条件的男生,女生插在5个男生之间的4个空隙,由乘法原理共有A55A43种。 注意:①必须分清“谁插入谁”的问题。要先排无限制条件的元素,再插入必须间隔的元素;②数清可插的位置数;③插入时是以组合形式插入还是以排列形式插入要把握准。 练习4 4男4女站成一行,男女相间的站法有多少种? 答案:2A44·A44 例5 马路上有编号为1、2、3、…、9的9盏路灯,现要关掉其中的三盏,但不能同时关掉相邻的两盏或三盏,也不能关两端的路灯,则满足要求的关灯方法有几种? 解:由于问题中有6盏亮3盏暗,又两端不可暗,故可在6盏亮的5个间隙中插入3个暗的即可,有C53种。 练习5 从1、2、…、10这十个数中任选三个互不相邻的自然数,有几种不同的取法? 答案:C83。 五、元素定序,先排后除或选位不排或先定后插 对于某些元素的顺序固定的排列问题,可先全排,再除以定序元素的全排,或先在总位置中选出定序元素的位置而不参加排列,然后对其它元素进行排列。也可先放好定序的元素,再一一插入其它元素。 例6 5人参加百米跑,若无同时到达终点的情况,则甲比乙先到有几种情况? 解法一:先5人全排有A55种,由于全排中有甲、乙的全排种数A22,而这里只有1种是符合要求的,故要除以定序元素的全排A22种,所以有A55/A22=60种。 解法二:先在5个位置中选2个位置放定序元素(甲、乙)有C52种,再排列其它3人有A33,由乘法原理得共有C52A33=60种。 解法三:先固定甲、乙,再插入另三个中的第一人有3种方法,接着插入第二人有4种方法,最后插入第三人有5种方法。由乘法原理得共有3×4×5=60种。 练习6 要编制一张演出节目单,6个舞蹈节目已排定顺序,要插入5个歌唱节目,则共有几种插入方法? 答案:A1111/A66或C116A55=C115A55或7×8×9×10×11种 六、“小团体”排列,先“团体”后整体 对于某些排列问题中的某些元素要求组成“小团体”时,可先按制约条件“组团”并视为一个元素再与其它元素排列。 例7 四名男歌手与两名女歌手联合举行一场演唱会,演出的出场顺序要求两名女歌手之间有两名男歌手,则出场方案有几种? 解:先从四名男歌手中选2人排入两女歌手之间进行“组团”有A42A22种,把这个“女男男女”小团体视为1人再与其余2男进行排列有A33种,由乘法原理,共有A42A22A33种。 练习7 6人站成一排,其中一小孩要站在爸妈之间的站法有多少种? 答案:A22·A44 七、不同元素进盒,先分堆再排列 对于不同的元素放入几个不同的盒内,当有的盒内有不小于2个元素时,不可分批进入,必须先分堆再排入。 例8 5个老师分配到3个班搞活动,每班至少一个,有几种不同的分法? 解:先把5位老师分3堆,有两类:3、1、1分布有C53种和1、2、2分布有C51C42C22/A22种,再排列到3个班里有A33种,故共有(C53+C51C42C22/A22)·A33。 注意:不同的老师不可分批进入同一个班,须一次到位(否则有重复计数)。即“同一盒内的元素必须一次进入”。 练习8 有6名同学,求下列情况下的分配方法数: ①分给数学组3人,物理组2人,化学组1人; ②分给数学组2人,物理组2人,化学组2人; ③分给数学、物理、化学这三个组,其中一组3人,一组2人,一组1人; ④平均分成三组进行排球训练。 答案:①C63C32C11;②C62C42C22;③C63C32C11·A33;④C62C42C22/A33。 八、相同元素进盒,用档板分隔 例9 10张参观公园的门票分给5个班,每班至少1张,有几种选法? 解:这里只是票数而已,与顺序无关,故可把10张票看成10个相同的小球放入5个不同的盒内,每盒至少1球,可先把10球排成一列,再在其中9个间隔中选4个位置插入4块“档板”分成5格(构成5个盒子)有C94种方法。 注:档板分隔模型专门用来解答同种元素的分配问题。 练习9 从全校10个班中选12人组成排球队,每班至少一人,有多少种选法? 答案:C119 九、两类元素的排列,用组合选位法 例10 10级楼梯,要求7步走完,每步可跨一级,也可跨两级,问有几种不同的跨法? 解:由题意知,有4步跨单级,3步跨两级,所以只要在7步中任意选3步跨两级即可。故有C73种跨法。 注意:两类元素的排列问题涉及面很广,应予重视。 练习10 3面红旗2面黄旗,全部升上旗杆作信号,可打出几种不同的信号? 答案:C52 例11 沿图中的网格线从顶点A到顶点B,最短的路线有几条? 解:每一种最短走法,都要走三段“|”线和四段“—”线,这是两类元素不分顺序的排列问题。故有C74或C73种走法。 例12 从5个班中选10人组成校篮球队(无任何要求),有几种选法? 解:这个问题与例12有区别,虽仍可看成4块“档板”将10个球分成5格(构成5个盒子),是球与档板两类元素不分顺序的排列问题。但某些盒子中可能没有球,故4块“档板”与10个球一样也要参与排成一列而占位置,故有C144种选法。 练习11 (a+b+c+d)10的展开式有几项? 提示:因为每一项都是由a,b,c,d中的一个或多个相乘而得到的10次式,所以可以看成是10个球与3块档板这两类元素不分顺序的排列,故共有C133项。 注意:怎样把问题等价转化为“两类元素的排列”问题是解题的关键。 十、个数不少于盒子编号数,先填满再分隔 例13 15个相同的球放入编号为1、2、3的盒子内,盒内球数不少于编号数,有几种不同的放法? 解:先用6个球按编号数“填满”各盒(符合起码要求),再把9个球放入3个盒内即可,可用2块档板与9个球一起排列(即为两类元素的排列问题),有C112种。 十一、多类元素组合,分类取出。 例14 车间有11名工人,其中4名车工,5名钳工,AB二人能兼做车钳工。今需调4名车工和4名钳工完成某一任务,问有多少种不同调法? 解:不同的调法按车工分为如下三类:第一类调4车工4钳工;第二类调3车工4钳工,从AB中调1人作车工;第二类调2车工4钳工,把AB二人作为车工。故共有C44C74+C43C21C64+C42C22C54=185种不同调法。 注:本题也可按钳工分类。若按A、B分类,会使问题变得复杂
很全的排列组合精讲,希望能对你有帮助~还有《龙门专题》的排列组合也写得很全很细,有空也可以看看哦~其实多练多做把握了解题方法就可以一直很顺的了~还有就是不要粗心哦~有一些该剔除的答案不要忘记去掉~我们也在学排列组合~那么让我们一起加油吧~ ^_________^哦~又找到一个~我自己刚刚看过~很有收益的哦~ ——
317 浏览 3 回答
157 浏览 5 回答
225 浏览 5 回答
123 浏览 7 回答
299 浏览 5 回答
103 浏览 4 回答
320 浏览 4 回答
231 浏览 3 回答
91 浏览 2 回答
247 浏览 6 回答
93 浏览 4 回答
253 浏览 4 回答
216 浏览 2 回答
188 浏览 4 回答
152 浏览 6 回答