开题报告是指开题者对科研课题的一种文字说明材料。写法如下:
1、课题名称。题目必须与内容一致,确切、中肯、具体、鲜明、简练、醒目。
2、选题背景。就是对选题起作用的历史情况或现实环境,再简单说明一下预期研究成果的现实指导意义。
3、正文。正文部分必须进行全面的阐述和论证。
4、研究方法及路径。内容思想明确、清晰,方法正确、到位,应结合要研究的内容,有针对性。研究路径是反映研究工作展开的逻辑顺序。
5、时间安排。内容要丰富充实,可分至少5个时间段,任务要具体。
6、预期结果。简单说明一下预期研究成果。
7、参考文献。参考文献表是文中引用的有具体文字来源的文献集合。
写作要点:
第一、要写什么。
这个重点要进行已有文献综述把有关的题目方面的已经有的国内外研究认真介绍一下先客观介绍情况要如实陈述别人的观点然后进行评述后主观议论加以评估说已有研究有什么不足说有了这些研究但还有很多问题值得研究。其中要包括选题将要探讨的问题。
由于研究不足所以你要研究。你的论文要写什么是根据文献综述得出来的,而不是你想写什么就写什么。如果不做综述很可能你的选题早被别人做得很深了。
第二、为什么要写这个。
这个主要是说明你这个选题的意义。可以说在理论上你发现别人有什么不足和研究空白,所以你去做就有理论价值了。那么你要说清楚你从文献综述中选出来的这个题目在整个相关研究领域占什么地位。这就是理论价值。 然后你还可以从实际价值去谈。
就是这个题目可能对现实有什么意义可能在实际中派什么用场等等。
01 论文开题报告需要有一个明确的毕业论文题目,一般要简洁,不宜太长;需要讲明课题的研究目的、意义,以及论文所需要引用的文献;需说明研究课题的可行性与创新性以及介绍本人所研究课题的初步方案。 论文开题报告是一份摘要,详细说明了您的工作大纲。它确定了您正在研究的问题,明确说明将要研究的所有问题,并描述您需要的资源和材料。需要有一个明确的毕业论文题目,一般要简洁,不宜太长;需要讲明课题的研究目的、意义,以及论文所需要引用的文献;需说明研究课题的可行性与创新性以及介绍本人所研究课题的初步方案。 开题报告的内容一般包括:题目、立论依据(毕业论文选题的目的与意义、国内外研究现状)、研究方案(研究目标、研究内容、研究方法、研究过程、拟解决的关键问题及创新点)、条件分析(仪器设备、协作单位及分工、人员配置)等。 论文开题报告建议 1、题目不宜太长,最好保证在20字以内,以最少的工程术语表达论文的核心工作。 2、尽量用一句话说完,不要变成两句话。政府的工作报告中经常出来这样的句式,但不宜出现在论文标题中,举个例子,十七大报告的题目是《高举中国特色社会主义伟大旗帜,为夺取全面建设小康社会新胜利而奋斗》。 3、避免使用动宾结构。动宾结构的语气比较强烈,像第2点中的政府工作报告中是这么写的,但是论文不需要,论文需要的是简单朴素地描述事实。 4、必须与你的关键词有极大的联系,通过论文标题必须能够一眼看出你要做的工作内容,关键词也是研究工作的简短概括,因此论文标题必须和你的关键词有极大的联系。
加州大学伯克利分校(University of California Berkeley)的分子生物学家Jennifer Doudna说,“这项技术还没有准备好。”Doudna是CRISPR-Cas9基因组编辑系统的先驱,“这并不令人意外,但令人非常失望和不安。”
基因编辑胚胎在全球引起巨大争议的一个原因是,如果允许婴儿出生,这些编辑过的基因就可以传递给后代——这是一种影响深远的干预,被称为改变生殖系。研究人员一致认为,这项技术有一天可能有助于消除镰状细胞贫血和囊性纤维化等遗传疾病,但在用于人类改造之前,还需要进行更多的实验。
而目前许多国家都禁止植入基因编辑胚胎。据《自然》报道,俄罗斯有一项法律,禁止在大多数情况下进行基因工程,但尚不清楚这些规则是否会在胚胎基因编辑方面得到实施,或者如何实施。2017年,一项针对多个国家的辅助生殖法规的分析显示,俄罗斯关于辅助生殖的法规并没有明确提到基因编辑。
在禁止以繁殖人为目的的生殖性克隆,并且明确注明这种行为是“反人类物种的罪行”。随着技术的发展,法国人还就医疗辅助生育、安乐死、修改基因等问题展开过长时间的讨论,目前,法国法律仍不允许修改受精卵治疗遗传病,法国专家认为,基因修改面临着疗效、安全性、后遗症等尚不可知的重大问题。
坚守科研伦理道德底线,坚决反对违规开展基因编辑婴儿,全面调查涉事机构并予以处罚。
我们知道米区分1原谷种子2杂交谷种子3转基因谷种子。1原谷种子种植产量低,亩产500斤谷子。2杂交谷种子种植产量高,亩产1200斤谷子。3转基因谷种子种植产量非常高,亩产1800斤谷种。原谷种子代代相传。杂交谷种子只能耕种一造,到了第二造活2代减少70% ,到了第三代基本没有谷子收。转基因谷种子只能活1代(一造)。我们人本身就是动物,有亚洲人和亚洲人结婚生出来的孩子后代,有亚洲人和欧洲人结婚生出来的孩子后代,人要是基因更改未尝不可,但是有不确定性(如:会不会短命?会不会发生异常?会不会只能活三代,到了孙子代,孙子会不会短命?等等不确定因素),好处是:治疗人类动物免疫缺陷、遗传病。转基因动物那就更可怕了!只如果能活一代,繁殖后代跟正常动物的寿命不一样话,那就拒绝呗!销毁了!除非有人测过,能正常代代相传。
确实是真的,但是他这个技术目前需要拥有突变的能力,如果没有这个能力,可能没什么用处,可能还需要几年的时间才有更准确的消息。2020年7月14日的时候,刘如谦发布了一篇关于基因编辑的论文,他是与华盛顿州大学微生物学家合作,这个论文是发表在《自然》杂志上,并开发了第一个精确编辑线粒体DNA的分子工具。
该工具在人体细胞的实验室实验中发挥了作用,并可能为研究以及未来数十种难以治疗的线粒体DNA打开新的大门,突变引起的疾病的新疗法《科学》杂志评论了这项技术,因为在过去的几年中,围绕CRISPR研究,刘中达在基础编辑范围,特异性,准确性和体内递送方向方面取得了重大进展,在基因编辑治疗疾病方面也有深入的研究。
然而,目前使用CRISPR技术进入细胞核并转化染色体DNA,有可能用于治疗由核遗传物质突变引起的疾病,这对于我们人体细胞来说,不仅DNA存在于细胞核中,而且DNA也存在于细胞质中的线粒体中。这些基因突变也会导致遗传疾病。线粒体中的DNA编码13种蛋白质。尽管种类不多,但它们中的每一种都参与了细胞的能量供应链。线粒体DNA突变可能导致几十种代谢性疾病,包括心肌病,还有遗传性视神经病变等。
目前还没有治愈这些疾病的方法。开发能够准确校正线粒体DNA的基因编辑工具将为此类疾病的治疗打开大门,CRISPR系统需要引导RNA才可以来定位基因组中的特定位置,而RNA他实际上不能进入线粒体,因此,目前线粒体DNA的转化方法主要使用无RNA系统的核酸酶,包括转录激活因子样效应核酸酶和锌指核酸酶。
线粒体基因编辑现在只是处在简单的单个基因的编辑,并不能对它的作用有很大的改变就,依靠这种技术治病,还有很长的路要走。
根据现阶段科学家们的研究线粒体基因可以通过特定的技术进行编辑。这个重大的突破说明距离治病不远了。
从简单地剪切致病基因,到开发出不再传播疾病的工程动物,基因编辑技术已经释放出巨大的潜力。随着研究的深入,科学界还发现,除了编辑具有遗传讯息的DNA片段,编辑RNA可以在不改变基因组的情况下,帮助调整基因表达方式,此外,RNA的寿命是相对短暂的,这也意味着它的变化是可以逆转的,从而避免基因工程中的巨大风险。
2017年10月,来自Broad研究所的张锋研究团队在《自然》期刊上发表了题为“RNA targeting with CRISPR-Cas13”的文章,首次将CRISPR-Cas13系统公之于众,证实了CRISPR-Cas13可以靶向哺乳动物细胞中的RNA。仅仅时隔三周,又一篇名为“RNA editing with CRISPR-Cas13”的力作发表于《科学》期刊。在该研究中,张锋研究团队再次展示了这一RNA编辑系统,能有效地对RNA中的腺嘌呤进行编辑。
在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a酶一大优势在于更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。但CRISPR-Cas13系统还有一个重要的问题,Cas13a酶本质上是一种相对较大的蛋白质,因此很难被包装到靶组织中,这也可能成为RNA编辑技术临床应用的一大障碍。
2018年3月16日,一项发表在《细胞》期刊的重磅成果为RNA编辑技术带来一大步飞跃,来自美国Salk研究所的科学家利用全新的CRISPR家族酶扩展了RNA编辑能力,并将这个新系统命名为“CasRx”。
CasRx(品红色)在人类细胞核中靶向RNA(灰色),Salk研究所
“生物工程师就像自然界的侦探一样,在DNA模式中寻找线索来帮助解决遗传疾病。CRISPR彻底改变了基因工程,我们希望将编辑工具从DNA扩展到RNA。”研究领导者Patrick Hsu博士表示,“RNA信息是许多生物过程的关键介质。在许多疾病中,这些RNA信息失去了平衡,因此直接靶向RNA的技术将成为DNA编辑的重要补充。”
除了高效性且无明显脱靶效应,新系统的一个关键特征是其依赖于一种比以前研究中物理尺寸更小的酶。 这对RNA编辑技术至关重要,这使得该编辑工具能够更容易被包装到病毒载体,并进入细胞进行RNA编辑。来自东京大学的科学家Hiroshi Nishimasu并未参与这项研究,他表示:“在这项研究中,研究人员发现了一种较Cas13d更加‘紧凑’的酶CasRx。从基础研究到治疗应用,我认为CasRx将成为非常有用的工具。”
此外,在这项研究中,研究人员还展示了利用这种新型RNA编辑系统来纠正RNA过程的能力。他们将CasRx包装到病毒载体中,并将其递送到利用额颞叶痴呆(FTD)患者干细胞中培养的神经细胞,最终使tau蛋白水平恢复到健康水平上,有效率达到80%。
Patrick Hsu博士最后说道:“基因编辑技术通过对DNA的切割带来基因序列的改变。在经过基因编辑的细胞中,其效果是永久的。虽然基因编辑技术能够很好地将基因完全关闭,但对调节基因的表达上并不那么优秀。展望未来,这一最新工具将在RNA生物学研究中发挥重要作用,并有望在未来凭借该技术对RNA相关疾病进行治疗。”
该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默。
3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默,证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性,通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向Pscsk9的sgRNA到小鼠肝脏,有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平。这为治疗后天性的代谢疾病提供了新方案。
同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。
近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比,Cas13d没有脱靶)和敲除效率(Cas13d达到96%,shRNA达到65%)。而与Cas9介导的基因敲除技术相比,Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。
此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低Pten的质粒、尾静脉注射敲低Pcsk9的AAV8病毒、眼部注射敲低Vegfa的AAV病毒。对注射后的小鼠进行相应分析,分别得到Pten基因下调及其下游蛋白AKT的磷酸化上调,Pcsk9下调造成血清胆固醇下调;Vegfa下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。
2020年3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向 Pten 基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了 Pten 的高效沉默, 证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性, 通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向 Pscsk9 的sgRNA到小鼠肝脏, 有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平 。这为治疗后天性的代谢疾病提供了新方案。
同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也 探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低 Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积**,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。
近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比, Cas13d没有脱靶)和敲除效率(Cas13d达到96% ,shRNA达到65%)。而与Cas9介导的基因敲除技术相比, Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的 ,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。
此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性 。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低 Pten 的质粒、尾静脉注射敲低 Pcsk9 的AAV8病毒、眼部注射敲低 Vegfa 的AAV病毒。对注射后的小鼠进行相应分析,分别得到 Pten 基因下调及其下游蛋白AKT的磷酸化上调, Pcsk9 下调造成血清胆固醇下调; Vegfa 下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。
图1 CasRx介导的 Pten 体内体外的下调( Protein & Cell )
A.质粒示意图;B.N2a细胞中 Pten 的下调;C.Western检测PTEN及AKT的表达; D.CasRx与shRNA脱靶比较;E.尾静脉注射质粒示意图;F.G.H.免疫荧光,qPCR,western分别检测 Pten 及p-AKT的表达
图2 血清胆固醇的调节以及 Pcsk9 的可逆调控( Protein & Cell )
A.针对 Pcsk9 的AAV8病毒注射示意图;B.肝组织中 Pcsk9 的表达量;C.血清 PCSK9 的表达量;D.血清胆固醇水平;E.F.血清ALT和AST的测定;G.可逆调节注射示意图; H. Pcsk9 的动态调控。
图3 AAV介导CasRx减少了AMD小鼠模型中CNV的面积(National Science Review)
A.小鼠和人序列比较以及sgRNA示意图;B.C.在293T和N2a细胞中敲低 Vegfa ;D.VEGFA蛋白的表达;E.AAV病毒质粒示意图;F.实验流程图;G.CasRx的mRNA表达水平;H.I.激光烧伤之前或之后7天的 Vegfa mRNA水平;J.CNV诱导3天后的VEGFA蛋白水平;K.激光烧伤7天后,用PBS或AAV-CasRx- Vegfa 注射的代表性CNV图像;L.M.CNV面积统计。
2020 年 4 月 8 日, Cell 期刊在线发表了题为 《Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice》 的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室 杨辉 研究组完成。
该项研究通过运用最新开发的 RNA 靶向 CRISPR 系统 CasRx 特异性地在视网膜穆勒胶质细胞中敲低 Ptbp1 基因的表达,首次在成体中实现了视神经节细胞的再生,并且恢复了永久性视力损伤模型小鼠的视力。同时,该研究还证明了这项技术可以非常高效且特异地将纹状体内的星形胶质细胞转分化成多巴胺神经元,并且基本消除了帕金森疾病的症状。该研究将为未来众多神经退行性疾病的治疗提供一个新的途径。
人类的神经系统包含成百上千种不同类型的神经元细胞。在成熟的神经系统中,神经元一般不会再生,一旦死亡,就是永久性的。神经元的死亡会导致不同的神经退行性疾病,常见的有阿尔兹海默症和帕金森症。此类疾病的病因尚不明确且没有根治的方法,因此对人类的健康造成巨大威胁。据统计,目前全球大约有 1 亿多的人患有神经退行性疾病,而且随着老龄化的加剧,神经退行性疾病患者数量也将逐渐增多。
在常见的神经性疾病中,视神经节细胞死亡导致的永久性失明和多巴胺神经元死亡导致的帕金森疾病是尤为特殊的两类,它们都是由于特殊类型的神经元死亡导致。我们之所以能看到外界绚烂多彩的世界,是因为我们的眼睛和大脑中存在一套完整的视觉通路,而连接眼睛和大脑的神经元就是视神经节细胞。
作为眼睛和大脑的唯一一座桥梁,视神经节细胞对外界的不良刺激非常敏感。研究发现很多眼疾都可以导致视神经节细胞的死亡,急性的如缺血性视网膜病,慢性的如青光眼。视神经节细胞一旦死亡就会导致永久性失明。据统计,仅青光眼致盲的人数在全球就超过一千万人。
帕金森疾病是一种常见的老年神经退行性疾病。它的发生是由于脑内黑质区域中一种叫做多巴胺神经元的死亡,从而导致黑质多巴胺神经元不能通过黑质-纹状体通路将多巴胺运输到大脑的另一个区域纹状体。目前,全球有将近一千万人患有此病,我国尤为严重,占了大约一半的病人。 如何在成体中再生出以上两种特异类型的神经元,一直是全世界众多科学家努力的方向。
该研究中,研究人员首先在体外细胞系中筛选了高效抑制 Ptbp1 表达的 gRNA,设计了特异性标记穆勒胶质细胞和在穆勒胶质细胞中表达 CasRx 的系统。所有元件以双质粒系统的形式被包装在 AAV 中并且通过视网膜下注射,特异性地在成年小鼠的穆勒胶质细胞中下调 Ptbp1 基因的表达。
大约一个月后,研究人员在视网膜视神经节细胞层发现了由穆勒胶质细胞转分化而来的视神经节细胞,并且转分化而来的视神经节细胞可以像正常的细胞那样对光刺激产生相应的电信号。
研究人员进一步发现,转分化而来的视神经节细胞可以通过视神经和大脑中正确的脑区建立功能性的联系,并且将视觉信号传输到大脑。在视神经节细胞损伤的小鼠模型中,研究人员发现转分化的视神经细胞可以让永久性视力损伤的小鼠重新建立对光的敏感性。
为进一步发掘 Ptbp1 介导的胶质细胞向神经元转分化的治疗潜能,研究人员证明了该策略还能特异性地将纹状体中的星形胶质细胞非常高效的转分化为多巴胺神经元,并且证明了转分化而来的多巴胺神经元能够展现出和黑质中多巴胺神经元相似的特性。
在行为学测试中,研究人员发现这些转分化而来的多巴胺神经元可以弥补黑质中缺失的多巴胺神经元的功能,从而将帕金森模型小鼠的运动障碍逆转到接近正常小鼠的水平。
需要指出的是,虽然科学家们在实验室里取得了重要进展,但是要将研究成果真正应用于人类疾病的治疗,还有很多工作要做:人类的视神经节细胞能否再生?帕金森患者是否能通过该方法被治愈?这些问题有待全世界的科研工作者共同努力去寻找答案。
(上)CasRx 通过靶向的降解 Ptbp1 mRNA 从而实现 Ptbp1 基因表达的下调。
(中)视网膜下注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将视网膜穆勒胶质细胞转分化为视神经节细胞,转分化而来视神经节细胞可以和正确的脑区建立功能性的联系,并且提高永久性视力损伤模型小鼠的视力。
(下)在纹状体中注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将星形胶质细胞转分化为多巴胺神经元,从而基本消除了帕金森疾病模型小鼠的运动症状。
RNA-editing Cas13 enzymes have taken the CRISPR world by storm. Like RNA interference, these enzymes can knock down RNA without altering the genome , but Cas13s have higher on-target specificity. New work from Konermann et al. and Yan et al. describes new Cas13d enzymes that average only 2.8 kb in size and are easy to package in low-capacity vectors! These small, but mighty type VI-D enzymes are the latest tools in the transcriptome engineering toolbox.
Microbial CRISPR diversity is impressive, and researchers are just beginning to tap the wealth of CRISPR possibilities. To identify Cas13d, both groups used very general bioinformatic screens that looked for a CRISPR repeat array near a putative effector nuclease. The Cas13d proteins they identified have little sequence similarity to previously identified Cas13a-c orthologs, but they do include HEPN nuclease domains characteristic of the Cas13 superfamily. Yan et al. proceeded to study orthologs from Eubacterium siraeum (EsCas13d) and Ruminococcus sp. (RspCas13d), while Konermann et al. characterized orthologs from “Anaerobic digester metagenome” (AdmCas13d) and Ruminococcus flavefaciens (nicknamed CasRx), as well as EsCas13d.
Like other Cas13 enzymes, the Cas13d orthologs described in these papers can independently process their own CRISPR arrays into guide RNAs. crRNA cleavage is retained in dCas13d and is thus HEPN-independent. These enzymes also do not require a protospacer flanking sequence, so you can target virtually any RNA sequence ! In bacteria, Cas13d-mediated cleavage promotes collateral cleavage of other RNAs. As with other Cas13s, this collateral cleavage does not occur when Cas13d is expressed in a mammalian system.
Since Cas13d is functionally similar to previously discovered Cas13 enzymes - what makes these orthologs so special? The first property is size - Cas13d enzymes have a median length of ~930aa - making them 17-26% smaller than other Cas13s and a whopping 33% smaller than Cas9! Their small size makes then easy to package in low-capacity vectors like AAV, a popular vector due to its low immunogenicity. But these studies also identified other advantages, including Cas13d-specific regulatory proteins and high targeting efficiency, both of which are described below.
The majority of Type VI-D loci contain accessory proteins with WYL domains (named for the three conserved amino acids in the domain). Yan et al. from Arbor Biotechnologies found that RspCas13d accessory protein RspWYL1 increases both targeted and collateral RNA degradation by RspCas13d. RspWYL1 also increased EsCas13d activity, indicating that WYL domain-containing proteins may be broader regulators of Cas13d activity. This property makes WYL proteins an intriguing counterpart to anti-CRISPR proteins that negatively modulate the activity of Cas enzymes, some of which are also functional in multiple species (read Arbor Biotechnologies' press release about their Cas13d deposit here ).
Not all Cas13d proteins are functional in mammalian cells, but Konermann et al. saw great results with CasRx and AdmCas13d fused to a nuclear localization signal (NLS). In a HEK293 mCherry reporter assay, CasRx and AdmCas13d produced 92% and 87% mCherry protein knockdown measured by flow cytometry, respectively. Cas13d CRISPR array processing is robust, with CasRx and either an unprocessed or processed gRNA array (22 nt spacer with 30 nt direct repeat) mediating potent knockdown. Multiplexing from the CRISPR array yielded >90% knockdown by CasRx for each of four targets, including two mRNAs and two nuclear long non-coding RNAs.
One interesting twist to Cas13d enzymes is their cleavage pattern: EsCas13d produced very similar cleavage products even when guides were tiled across a target RNA, indicating that this enzyme does not cleave at a predictable distance from the targeted region. Konermann et al. show that EsCas13d favors cleavage at uracils, but a more detailed exploration of this cleavage pattern is necessary.
Konermann et al. compared CasRx to multiple RNA regulating methods: small hairpin RNA interference, dCas9-mediated transcriptional inhibition (CRISPRi), and Cas13a/Cas13b RNA knockdown. CasRx was the clear winner with median knockdown of 96% compared to 65% for shRNA, 53% for CRISPRi, and 66-80% for other Cas13a and Cas13b effectors. Like previously characterized Cas13 enzymes, CasRx also displays very high on-target efficiency; where shRNA treatment produced 500-900 significant off-targets, CasRx displayed zero. Unlike Cas9, for which efficiency varies widely across guide RNAs, each guide tested with CasRx yielded >80% knockdown. It seems that CasRx may make it possible to target essentially any RNA in a cell.
Since catalytically dead dCasRx maintains its RNA-binding properties, Konermann et al. tested its ability to manipulate RNA species through exon skipping. Previous CRISPR exon-skipping approaches used two guide RNAs to remove a given exon from the genome, and showed success in models of muscular dystrophy . In this case, Konermann et al. targeted MAPT , the gene encoding dementia-associated tau, delivering dCasRx and a 3-spacer array targeting the MAPT exon 10 splice acceptor and two putative splice enhancers. After AAV-mediated delivery to iPS-derived cortical neurons, dCasRx-mediated exon skipping improved the ratio of pathogenic to non-pathogenic tau by nearly 50%, showing proof-of-concept for pre-clinical and clinical applications of dCasRx.
The identification of Type VI Cas13d enzymes is another win for bioinformatic data mining. As we continue to harness the natural diversity of CRISPR systems, only time will tell how large the genome and transcriptome engineering toolbox will be. It is, however, certain that the impact of CRISPR scientific sharing will continue to grow, and we at Addgene appreciate our depositors for making their tools available to the broader community.
References
Konermann, Silvana, et al. “Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.” Cell (2018) pii: S0092-8674(18)30207-1. PubMed PMID: 29551272
Yan, Winston X., et al. “Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.” Mol Cell. (2018) pii: S1097-2765(18)30173-4. PubMed PMID: 29551514
\1. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors
\2. CRISPR genetic editing takes another big step forward, targeting RNA
\3. How Editing RNA—Not DNA—Could Cure Disease in the Future
[ https://www.obiosh.com/kyfw/zl/aav/209.html](
即便当前不能,以后会能的。基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。在过去几年中, 以ZFN (zinc-finger nucleases)和TALEN (transcription activator-like effector nucleases)为代表的序列特异性核酸酶技术以其能够高效率地进行定点基因组编辑, 在基础研究、基因治疗和遗传改良等方面展示出了巨大的潜力。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。
基因工程技术有哪些 核酸提取和纯化凝胶电泳 分子杂交 序列分析技术 RNA干扰技术等。。。。 高中生物基因工程一共有哪些技术 基因工程又叫DNA重组技术 PCR技术 2.将目的基因导入受体细胞的技术 3.目的基因检测与鉴定的技术 其实每个操作过程都会用到一些技术,这块主要掌握基因工程的详细操作步骤,及操作注意问题 基因工程的主要应用在哪些方面 农牧业、食品工业 运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。 1.转基因鱼 生长快、耐不良环境、肉质好的转基因鱼(中国)。 2.转基因牛 乳汁中含有人生长激素的转基因牛(阿根廷)。 3.转黄瓜抗青枯病基因的甜椒 4.转鱼抗寒基因的番茄 5.转黄瓜抗青枯病基因的马铃薯 6.不会引起过敏的转基因大豆 7.超级动物 导入贮藏蛋白基因的超级羊和超级小鼠 8.特殊动物 导入人基因具特殊用途的猪和小鼠 9.抗虫棉 苏云金芽胞杆菌可合成毒蛋白杀死棉铃虫,把这部分基因导入棉花的离体细胞中,再组织培养就可获得抗虫棉。 环境保护 基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。 利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。 基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质(通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。) 医学 基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。 用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。 我们可以将基因治疗分为性细胞基因和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。 无论哪一种基因治疗,处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。 可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。据统计,截止1998年底,世界范围内已有373个临床法案被实施,累计3134人接受了基因转移试验,充分显示了其巨大的开发潜力及应用前景。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。 医药卫生 1.基因工程药品的生产: 许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。 微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。 ⑴基因工程胰岛素 胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。 将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量...... 请问基因工程的核心技术有哪些 所谓基因工程是在分子水平上对基因进行操作的复杂技术。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 比如: 核酸凝胶电泳技术 核酸分子杂交技术 细菌转化转染技术 DNA序列分析技术 寡核苷酸合成技术 基因定点突变技术 聚合酶链反应技术 基因工程包括哪些 是,基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。 基因工程包括哪些主要内容? 5分 基因工激分为上游技术和下游技术 上游技术:基因重组、克隆和表达的设计与构建(即重组DNA技术) 下游技术:涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。 基因工程技术包括哪些基本步骤 目的基因的提取、基因表达载体的构建、把目的基因导入受体细胞、目的基因的鉴定与检测 基因工程技术包括哪些基本步骤 基因工程的主要操作步骤包括:⑴目的基因的制备,所谓目的基因就是按照设计所需要转移的具有遗传效应的DNA片段.目的基因可以人工合成,也可以用限制性核酸内切酶从基因组中直接切割得到.⑵目的基因与克隆载体的重组,所谓克隆载体就是承载和保护目的基因带入受体细胞的运载者,如质粒,λ噬菌体,病毒等.⑶重组体转入受体细胞,所谓受体细胞就是接受外源目的基因的细胞,大肠杆菌是用得最多的原核细胞受体,另外,动物细胞、植物细胞都可作为受体细胞,把带有目的基因的重组体转入受体细胞要用到各种物理的、化学的和生物的方法.⑷克隆子的筛选和鉴定,带有目的基因的克隆子有没有组合到受体细胞的基因组中去,目的基因有没有在宿主细胞中通过转录、翻译表达出预先设计中想要得到的产物和表达产物如何分离、纯化等技术内容.
基因编辑又称基因组编辑或基因组工程是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。
1、针对不同
转基因技术是指利用DNA重组、转化等技术将特定的外源目的基因转移到受体生物中,并使之产生可预期的、定向的遗传改变。
基因编辑是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。
2、作用不同
基因编辑技术指能够让人类对目标基因进行定点“编辑”,实现对特定DNA片段的修饰。
人们通常将植物基因工程称之为“转基因技术”,所获得的产品被称为转基因植物或转基因作物,有时也使用“遗传修饰生物”或“工程作物”等名称。
3、技术不同
转基因即将人工分离、修饰后的D N A、基因导人生物细胞基因组,在导入基因表达的影响下,原有生物体的性状也会发生变化。
基因编辑依赖于经过基因工程改造的核酸酶,也称“分子剪刀”,在基因组中特定位置产生位点特异性双链断裂(DSB),诱导生物体通过非同源末端连接(NHEJ)或同源重组(HR)来修复DSB,因为这个修复过程容易出错,从而导致靶向突变。这种靶向突变就是基因编辑。
参考资料来源:百度百科-转基因技术
参考资料来源:百度百科-基因编辑
文中表示发布出了基于CS6的RNA荧光追踪技术,韩春雨他本人的科研能力是非常强的只要他的想法是正确的方向,通过不断的研究努力,一定能够得到真正可以借鉴的实验成果。
他在论文中主要是围绕着发明的一种新的基因编辑技术这个技术非常的强大,也非常的吸引人心,开发出了荧光追踪技术,而且与RNA有关是人体基因的一部分,可以看出他本人的科研能力还是比较强的。
[](javascript:void(0);)
|
CRISPR/Cas系统是细菌和古菌特有的一种天然防御系统,用于抵抗病毒或外源性质粒的侵害。当外源基因入侵时,该防御系统的 CRISPR 序列会表达与入侵基因组序列相识别的 RNA,然后 CRISPR 相关酶(Cas)在序列识别处切割外源基因组DNA,从而达到防御目的。
根据Cas蛋白的特点,可将CRISPR/Cas系统分为Ⅰ、Ⅱ、Ⅲ型。Ⅰ型和Ⅲ型系统需要借助复杂的蛋白复合体发挥作用,Ⅱ型系统仅借助 Cas9蛋白和sgRNA即可对靶目标进行编辑,结构简单,操作容易,因此目前主要使用Ⅱ型CRISPR/Cas9 系统。
CRISPR/Cas自诞生以来,迅速发展,已经成为生命科学领域最耀眼、最有前景的技术。尤其是近两年,在全世界科学家的共同努力下,CRISPR/Cas相关新进展新突破不断涌现。
一、基因编辑技术的发展史
基因编辑可以分为三代,第一代:ZFN;第二代:TELEN;第三代:CRISPR/Cas。这三个基因编辑技术都利用了DNA修复机制,所以我们先来了解一下DNA修复机制( 图1 )。[图片上传失败...(image-8dab49-1625385468208)]
图1-NHEJ修复(左),HDR修复(右)
NHEJ(Non-homologous end joining)
非同源性末端接合
NHEJ修复机制不需要任何模版,修复蛋白直接将双股裂断的DNA末端彼此拉近,在DNA连接酶的帮助下重新接合( 图1 )。
HDR(Homology directed repair)
同源重组修复
当细胞核内存在与损伤DNA同源的DNA片段时,HDR才能发生。
NHEJ的机制简单又不依靠模版,因而NHEJ的活性相对于HDR高出许多。但NHEJ修复出错的概率较高,容易造成移码突变等,基因编辑正是利用了这一点( 图1 )。
1.ZFN的识别切割机制
融合锌指模块和FokI切割结构域形成ZFN ;以二聚体的形式靶向切割每个锌指结构;特异识别3个碱基 ;组装多个锌指结构(识别12-18bp)形成的ZFN对可特异切割基因组靶点 ( 图2 )。
[图片上传失败...(image-3f1d8d-1625385468209)]
图2-ZFN基因编辑原理图
2.TALEN的识别切割机制
两个TALE靶向识别靶点两侧的序列;每个TALE融合一个FokI内切酶结构域;FokI通过TALE靶向形成二聚体切割靶点;设计灵活识别特异性强( 图3 )。
[图片上传失败...(image-6dcfc-1625385468209)]
图3-TELEN基因编辑原理图
3.CRISPR/Cas9的识别切割机制
crRNA通过碱基配对与 tracrRNA结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA( 图4 )。
[图片上传失败...(image-c85235-1625385468209)]
图4-CRISPR/Cas9基因编辑原理图
ZFN、TELEN、CRISPR/Cas9比较
[图片上传失败...(image-dd6344-1625385468209)]
图5-三种基因编辑的比较
二、CRISPR/Cas技术的介绍
CRISPR/Cas9 系统的发现
1987年,在大肠杆菌的基因组中首次发现了一个特殊的重复间隔序列——CRISPR序列,随后,在其他细菌和古菌中也发现了这一特殊序列。
2005年,发现这些CRISPR序列和噬菌体的基因序列匹配度很高,说明CRISPR 可能参与了微生物的免疫防御。
2011年,CRISPR/Cas系统的分子机制被揭示:当病毒首次入侵时,细菌会将外源基因的一段序列整合到自身的CRISPR的间隔区;病毒二次入侵时,CRISPR 转录生成 前体crRNA (pre-crRNA), pre-crRNA 经过加工形成含有与外源基因匹配序列的crRNA,该crRNA与病毒基因组的同源序列识别后,介导 Cas 蛋白结合并切割,从而保护自身免受入侵。
2013年,发现CRISPR/Cas9系统可高效地编辑基因组。随后张锋等使用CRISPR系统成功的在人类细胞和小鼠细胞中实现了基因编辑。
从此开始,CRISPR/Cas9技术给生命科学领域带来了巨大冲击,CRISPR/Cas9相关研究成果频频登上CNS等顶级期刊,近两年更是成为诺贝尔奖热门候选。
CRISPR/Cas技术的原理
CRISPR/Cas9系统的工作原理是 crRNA( CRISPR-derived RNA )通过碱基配对与 tracrRNA(trans-activating RNA )结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA。而通过人工设计 crRNA 和 tracrRNA 这两种 RNA,改造成具有引导作用的sgRNA (single guide RNA ),从而引导 Cas9 对 DNA 的定点切割(图4)。
CRISPR/Cas技术的优势
设计简单,简明的碱基互补设计原则,识别不受基因组甲基化影响,能靶向几乎任意细胞任意序列,方便同时靶向多个靶点,切割效率高。
三、CRISPR/Cas的脱靶效应
PAM**** (Protospacer adjacent motif )
前间区序列邻近基序
PAM序列区是CRISPR/Cas9系统行使切割功能的基本条件。如果靶序列 3′端没有PAM序列,即使靶序列与sgRNA序列完全匹配,Cas9蛋白也不会切割该序列位点。 PAM序列主要影响CRISPR/Cas9的DNA切割效率。在细胞水平上,NGG介导的切割效率是最高的。
sgR****NA ****(Single guide RNA )
向导 RNA
sgRNA与目标基因组相结合的 20nt 序列区决定着 CRISPR/Cas 系统的靶向特异性。CRISPR/Cas9与靶位点识别的特异性其实主要依赖于sgRNA与靠近PAM区的10~12 bp的碱基配对,而其余远离PAM序列 8~10 bp 碱基的错配对靶位点识别的影响并不明显。目前研究结果均提示,可能靠近 PAM 的 8~14 bp 序列是决定特异性的关键,其他序列也均在不同程度上影响脱靶效应。
CRISPR/Cas9的脱靶效应给研究带来了一定程度上的不确定性,也是限制其发挥更大潜力的主要原因之一。
2017年5月30日, Nature 杂志子刊 Nature Methods 刊登了美国哥伦比亚大学研究人员的一篇文章,研究人员通过CRISPR/Cas9成功修复了导致小鼠失明的基因后,对小鼠进行全基因测序,发现修复后的小鼠基因组有超过1500个单核苷酸突变,以及超过100个位点发生大片段插入或缺失( 图6 )。文章的结论无疑引发了巨大震动,也给正在进行中的CRISPR/Cas9带来了不确定性。
[图片上传失败...(image-f21b76-1625385468208)]
图6--动物体内实验中CRISPR/Cas9编辑后发生意想不到的突变
仔细分析后,发现该文章并不十分严谨,文章仅有两只小鼠作为实验组,一只作为对照组,数量不足以证明结论是否只是个例。而且单碱基突变是生物体内自然现象,不能全归于CRISPR/Cas9。整个实验只基于一个sgRNA数据,且该sgRNA特异性评分很低,造成脱靶效应也应该在预料之中( 图7 )。
[图片上传失败...(image-751d94-1625385468208)]
图7--针对 Nature Methods 文章的回应
经过一系列的研究和改进,目前CRISPR系统的脱靶性已经很低,当然,要想达到理想的状态,还有很长的路要走。
四、CRISPR/Cas技术的进展
2016年6月,张锋在 Science 发表文章,发现CRISPR/Cas13a能有切割细菌的特定RNA序列。
2016年9月,Jennifer Doudna在 Nature 发表文章,证实CRISPR/Cas13a可以用于RNA检测。
2017年2月22日,美国纪念斯隆.凯特林癌症中心(MSK)研究人员在 Nature 杂志发文,使用腺相关病毒(AAV)介导,将CRISPR/Cas9基因编辑技术应用于CAR-T疗法。该研究既解决了传统CAR-T疗法的随机整合可能存在的潜在危害,又大大降低了CAR-T细胞发生分化或癌化的风险,赋予了CAR-T技术全新的高效性、稳定性、安全性。
2017年8月2日,Shoukhrat Mitalipov在 Nature 发表长文,使用CRISPR/Cas9技术修正了植入子宫前的人类胚胎中一种和遗传性心脏病有关的变异。该研究证实了通过编辑人类胚胎进行治疗遗传病是安全可行的。值得一提的是,该成果受到了基因编辑领域大牛George Church等人的质疑。
2017年8月11日,杨璐菡等在 Science 发表文章,通过CRISPR/Cas9技术敲除猪基因组中的内源逆转录病毒(PERV)序列,并克隆出多只PERV失活小猪。向最终实现使用猪器官进行人体器官移植的终极目标迈进了一大步。
2017年9月,杂交水稻之父”袁隆平院士宣布使用CRISPR/Cas9技术敲除与镉吸收和积累相关基因的水稻育种成功。该研究从根本上解决了水稻镉污染的问题,将扭转我国部分农作物重金属超标的问题,进而改善部分人群重金属慢性中毒的问题。
2017年10月4日,张锋在 Nature 发表论文证实CRISPR/Cas13a能够在哺乳动物细胞中编辑特定的RNA。CRISPR/Cas13a能够达到RNAi相似的降低基因表达的效率,而且有更强的特异性,且对细胞内天然的转录后调控网络的影响更小。
2017年10月19日,Jennifer Doudna在 Nature 发表文章,设计了高精确性的Cas9变体—HypaCas9。该研究极大地降低了Cas9的脱靶效应,且不降低靶向切割效率。
2017年10月25日,张锋在 Science 发表文章介绍CRISPR新系统--REPAIR,可以高效的进行RNA的单碱基修复。因为不改变DNA序列,所以为通过基因编辑治疗遗传病而又不永久影响基因组提供了新可能。
2017年10月25日,哈佛大学Broad研究所的David Liu实验室在 Nature 发表长文,报道了新型腺嘌呤基因编辑器——ecTadA-dCas9,可以将A·T碱基对转换成G·C碱基对,该技术首次实现了不依赖DNA断裂即可进行基因编辑的技术,即单碱基基因编辑技术。该技术高于其它基因组编辑方法的效率,且几乎没有随机插入、删除或其它突变等不良副作用,因此为今后大范围治疗点突变遗传疾病提供了极大的便利。
五****、展望
近几年CRISPR/Cas基因编辑技术飞速发展,推广应用到了生物、医学、农业以及环境等多个领域,造就了一批批科研奇迹,尤其是在遗传病的治疗、疾病相关基因的筛查与检测、肿瘤治疗以及动植物的改造、病原微生物防治等领域有着巨大的潜力,也将深远地影响整个世界。
特别感谢:BioArt主编给予的帮助和意见以及吉满生物吴晨提供图1-图5的图片。
|
| |
时隔6年,韩春雨再次发表新论文,论文中有很多的信息都是值得关注的。比如说开发出了基于CAS6的RNA荧光追踪技术,这样的一个技术也让该论文可以在顶级的杂志上进行发表,并且也让人们更加关注韩春雨所作的生物科学相关的实验。
韩春雨是河北科技大学的副教授,同时也是硕士研究生导师.韩春雨在2016年的时候就发表过一个顶级的文章研究成果,是指发明的一种新的基因编辑技术,所以引发了强烈的关注,而且很多人都存在这一个技术是非常强的,而且也是非常吸引的。但是论文发表不代表就有相关的成果,一定要具有可重复性,所以有人就提出韩春雨的实验室无法重复的,有人也说是可以重复的,总而言之就是之前的实验成果备受争议。不过韩春雨并没有放弃,而是进行新技术的研发,开发出了基于CAS6的RNA荧光追踪技术,这样的一个系统其实还是属于基因上的编辑和追踪,而且是跟RNA有关的,也是人体中的基因部分,所以还是说明了韩春雨本人的科研能力是比较强的。
韩春雨本人可以说是处于舆论漩涡中,但是韩春雨自己的科研实力还是非常不错的,并且也能够体现出韩春雨的团队是能够继续的去进行相关的研发。只要韩春雨能够按照正确的方向,或者说自己想要研究的方向不断的努力,那么也是能够获得让更多人认可的实验成果,最终也能获得很多荣誉的。而且相关的知识科研性比较高,也只有同行来进行评判,才能够知道究竟是学术造假还是真正可以借鉴的实验成果。
科学研发的过程中必然会出现一些争议性的事情,这是很正常的。只要是有一定的科学证据是可以支撑的,那么都应该值得肯定。