首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

思想数学论文范文

发布时间:

思想数学论文范文

数学教学中渗透数学精神与思想论文是我为数学专业的同学带来的论文范文,写论文时可以作为参考哦。

数学教学中渗透数学精神与思想论文【1】

【摘 要】古人言“勤学善思”,多年来,我们却是“勤”有余,“思”不足。

现在,两种“差之毫厘,谬以千里”摆在眼前,孰轻孰重,值得掂量。

从教学实践和教学经验出发,强调在数学基础教育中注重对学生数学思想和数学精神的培养,有助于学生更好地学习和驾驭数学,有助于学生养成完善的人格,有助于科学和人文素养的养成。

【关键词】数学教学 数学知识 数学方法 数学思想 数学精神

著名数学史家M.克莱茵说过:"数学是一种精神,一种理性的精神.正是这种精神,激发、促进、鼓舞并促使人类的思维得以运用到最完善的程度.……"数学的这种精神其实是数学的根本。

教育考试界对中学比较重要的思想和方法进行了层次划分和系统归类,将数学思想和方法分为三大类:

第一类,数学思想方法,主要包括函数与方程的思想、数形结合的思想、分类与整合的思想、化归与转化的思想、特殊与一般的思想、有限与无限的思想、或然与必然的思想、算法的思想。

这些是高考必考的重要数学思想方法。

第二类,数学思维方法,主要包括分析法、综合法、归纳法、演绎法、观察法、实 验法、特殊化方法等。

第三类,数学方法,主要指应用面较窄的具体方法,如配方法、换元法、待定系数法等具体的解题方法。

这三类之间的关系可以用这样一句话概括,就是在问题解决过程中人们利用第二类数学思维方法,在第一类数学思想方法的指导下采用第三类具体的数学方法解决问题。

在我们的高考试题中就是以这样的形式来考查的。

本人在教学实践中把重点放在了提醒学生仔细认真方面。

然而,越来越多的实践让我发现,这不仅仅是因为学生的粗心马虎造成的,而是因为学生们没能真正理解一个等式所包含的深层意义。

例如,我在纠正一个数学成绩还不错的学生的这种错误的时候,他迷惑地说:“老师,为什么一个数字从等号这边移到等号的另一边就要将它的前面的加减号改得与移动前完全相反呢?”他甚至还打比方说:“如果我从一座桥的西端走到东端,难道我就从男生变成了女生了吗?”当时我没有太在意这个学生的问题,只是告诉他这是运算法则的要求,不这样做就是错的。

过后便忘记了。

有机会看到了西方的数学课堂,才猛然发现,自己根本没有真正理解数学这门学问。

在西方的一些课堂上,我看到孩子们计算能力很差,老师却不介意,因为老师致力于培养孩子们的数学思维力,教导孩子数为什么是数,数有什么用,想办法让孩子们联系生活自己去设计数学题,将数学形成一种生活能力。

说到这肯定会有人问:那计算能力差怎么办?人家考虑问题可不是那么一根筋,想办法发明计算器,让计算器来为人服务就是了。

你想,你算得再准,能有计算器精准吗?把人脑变成电脑是一种悲哀,让电脑为人脑服务才是智慧。

提出“努力渗透基本的数学思想方法”,“培养辩证全面地考虑问题的习惯”,让读者通过基础知识这些“枝叶”,去理解蕴藏于其中的“数学思想方法”。

看到这种观点的时候,我突然想起来那个学生的话。

显然他不理解为什么要这么做,而他又试图去理解,他是想在理解的基础上改正自己经常犯的错误。

而我却没有及时地给他以正确的引导,只是从运算规则的角度让他仔细认真,不再犯类似的错误。

我更深刻地意识到我们数学教学工作的一个问题,那就是我们的教学几乎将全部重点放在了对学生进行数学知识和方法的教授上,而忽视了对其中的数学思想和数学精神的挖掘,而这正是帮助学生加深理解、提高数学学习能力的关键。

数学学习与日常的训练还是有着密切联系,这是一对矛盾,如何来化解矛盾,我们只能是通过平时良好的学习习惯即提高数学课堂的听课效率,提高数学作业的质量,做好补差和补缺工作着手。

题海战术不是提高效率的方法,我们应从以往反复做相同类型题目的题海战术中解脱出来,注重于训练中做错的练习订正及在学习中存在的缺漏的补习“数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。

数学思想是对数学事实与理论经过概括后产生的本质认识。

通过数学思想的培养,数学能力才会有一个大幅度的提高。

掌握数学思想,就是掌握数学的精髓。”

在教学实践中注重对学生数学思想和数学精神的培养,有助于帮助我们的数学教育从以发展智力为中心向智力和非智力协调发展的转变,有助于引导数学教育由短期功利性向终身素质教育的转变,有助于促进从单纯提高数学知识水平向数学素质教育和人文素质教育有机整合的转变。

在数学教学的实践中,注重学生数学思想和数学精神的培养,可以使学生真正理解和驾驭数学;学生在理解的基础上学习数学,其数学成绩和学习效果也会得到真正的提高。

因此,我们在数学教学中有必要将包括数学思想方法、数学意识、数学观念在内的数学精神融入数学课程和数学课堂教学中。

数学教育是教育的重要组成部分,在发展和完善人的教育活动、形成人们认识世界的态度和思想方法方面、推动社会进步和发展的进程中起着重要的作用。

在现代社会中,数学教育又是终身教育的重要方面,是终身发展的需要!

参考文献:

[1]D.A.Drennen, ed., A Modern Introduction to Metaphysics, New York: Free Press of Glencoe, 1962。

[2]张华.经验课程论[M].上海:上海教育出版社,2000.126-131.

[3]钟启泉《为了中华民族的复兴 为了每位学生的发展:基础教育课程改革纲要(试行)解读》(华东师范大学出版社2001)

[4]【日】米山国藏《数学的精神思想和方法》(四川教育出版社1986)

[5]李醒民;论科学的精神功能[J];厦门大学学报(哲学社会科学版);2005年05期

数学教育的数学价值及数学意义【2】

摘要:本文从数学的实用价值中分析数学教育对人的作用,然后分析了数学教育中数学文化的作用及对人的发展的意义。

关键词:数学教育;教育价值;数学文化;数学意义

数学,从小学到初中、高中,都是必须要学的一门重要的课程。

甚至到了大学,很多专业依然要开设高等数学。

为什么我们要学这么多的数学呢?数学在一个人的教育经历中究竟扮演者怎样的角色呢?数学对于一个人的发展又有怎样的意义呢?先进技术对社会生活带来的好处,一般我们是很容易看到的,但是在其背后,基础科学所起到的作用却常常被忽略,尤其是数学的作用。

关于数学的意义,我们很难找到一个既正确又简明易懂的解释。

在数学教育中,数学意义的认识在不断深入和完善。

在数学教学中,部分师生常思考“数学有没有用?”这个问题。

对于数学,我们应该在考虑实用意义的同时考虑它对人的发展的意义。

下面我们将从数学的实用价值,数学的文化价值,及数学教育的数学意义方面来进行分析。

一、数学的实用价值

在每个人从小到大的求知过程中,数学总是占据着非常大的比例,也起着非常重要的作用。

那么,人究竟为什么要学习数学呢?对于这个问题有这样的一个回答,“数学告诉我们如何理解周围的世界,如何处理日常生活中的问题,如何为将来的职业作准备”。

[1]数学有一个非常重要的特征,就是它的研究对象具有抽象性。

数学研究对象的抽象性使得数学的'应用非常广泛。

在数学中,我们要确定一个定理或者一条规律必须靠严格的逻辑推理,仅仅靠一些实验数据或者平常的经验总结是远远不够的,更别提依靠直觉或想象了,这是数学具有的一种严谨的精神。

从历史上来看数学是非常重要的,回顾一下科学发展的历史,我们就会发现,数学的进步影响着天文学、物理学、生物学的很多重大发展。

比如黎曼几何是爱因斯坦的相对论发展的基础,而微积分的创立,则促进了物理学的发展,特别是牛顿力学中万有引力定律的发现,诸多名人的话语也让我们感受到数学在科学发展历史上起到的重要作用。

恩格斯说:数学是研究现实世界中的数量关系和空间形式的科学。

这句话告诉我们,数学为我们探索未知的科学提供了一种分析问题、处理问题的工具。

在现代化的今天,数学看似已经没那么重要了。

其实,数学仍然是迅速发展的高科技的重要基础,而且高科技的发展也使得数学的应用领域越来越广泛。

电子计算机的发明与应用使人类进入了信息时代,而电子计算机的发明应归功于数学家图灵和冯诺依曼。

在计算机出现之前,数理逻辑中就有一种图灵机,图灵机是计算机的一种简单的数学模型,它诱发了电子计算机的产生。

在计算机技术的迅速发展及其在其他领域越来越广泛的应用中,数学都起到了基础性的作用。

还有很多例子,如医学上的CT技术、网络系统安全技术、指纹的识别、网络系统安全等,在这些技术的背后,数学都起着十分重要的作用。

在这些领域中,数学常常是解决实际问题时用到的关键的基础工具。

数学的实用价值还表现在我们现代社会生活的各个方面,数学己经成为我们生活的基本工具,比如表示空气污染程度的百分数,天气预报中用到的降雨概率,买房、卖车、购买股票等投资活动中所采用的具体方案策略,购物过程中的各种打折方式的换算,房屋装修设计和装修费用的估算,对媒体中各种信息的统计分析,都需要数学知识。

没有数学,现代人几乎不能生活,至少不能更好地生活。

人们一旦掌握了公式,就能对具体的、实际的、直观的生活世界中的事件作出实践上所需要的,具有经验的确定性的预言。

……因此数学化及其所建立的公式对我们的生活来说具有决定性的意义[2]。

二、数学文化及其对人的发展的意义

“为什么教”的问题,是数学文化在中小学数学教育中需要阐述的主要问题。

就其作用来说,数学文化能够对学生进行能力训练,培养学生的学习兴趣,促进德育教育的开展,并且在学生综合素质培养等各方面都起着非常重要的作用。

数学文化教学可以改造学生的数学观念,提升学生的数学素养;学生良好的数学素养能够提高学生的整体素质,帮助他们更好地适应未来社会的发展。

数学教育可以培养人的思维,而这种思维习惯会影响人的一生。

朱正先生提到:“我在学术研究方面所做的工作,凭仗的也就是当年数学“体操”所训练出来的思维能力。

我的一本《1957年的夏季:从百家争鸣到两家争鸣》,……其实是得益于数学的。”[3]王蒙先生在著作《我的人生哲学》里有一段话,“回想童年时代花的时间一大部分用在做数学题上,这些数学知识此后直接用到的很少,但是数学的学习对于我的思维的训练却是极其有益的。”[4]两位文学家的话,是对“为什么学数学”这个问题给出的一个完美的回答。

它使我们明白了一个道理:一个人工作以后所从事的职业即使是和数学没有多少关系,原来他学过的数学的定义定理也几乎全忘光了,然而那时数学的学习对他思维的训练依然是有用的,对他后来的工作也一直会起到潜移默化的作用。

数学能够使人养成说话、做事严密的好习惯,数学能够使人变得更加深刻,更加富有智慧。

所有的学校都要求学生从小学到中学学数学、练数学,通过大量的数学知识的学习与数学题目的练习,来培养学生思维的逻辑性与严密性。

数学本身的逻辑性与严密性可以训练人的科学的思维方式,而科学的思维方法是现代人生存与发展所必备的。

有人将数学文化对数学课堂教学所产生的作用做了总结:即利用数学文化培养学生的理性精神,利用数学文化培养学生的科学精神,利用数学文化培养学生的创新精神,利用数学文化培养学生的应用意识[6]。

随着社会的发展与科学技术的进步,在选拔人才的时候,越来越多的用人单位意识到,一个人的能力,即分析问题、解决问题的能力以及创新能力,对于用人单位来说是非常重要的。

在中小学里学数学时要求的数学证明的严密推理,数学问题求解的有理有据,这种概念定理证明的准确无误与严谨的推理训练是必要的和有意义的,是数学教育中数学文化与数学意义的体现,也是良好数学素养养成的必经过程。

这些数学的训练能够提升、开发青少年的心智与潜能,对青少年一生的影响是深刻的、长远的,这种作用也是任何其他学科难以取代的。

参考文献:

[1]ICMI Study 14:Applications and Modeling in Mathematics Education-Discussion Document.ZDM 2002,34(5),229-239.

[2][德]埃德蒙德.胡塞尔.欧洲科学危机和超验现象学[M].张庆熊,译.上海译文出版社,2005:57.

[3]朱正.字纸篓[M].广州:广东人民出版社,2000.

[4]王蒙.我的人生哲学[M].北京:人民文学出版社,2003.

[5]张楚廷.数学文化[M].北京:高等教育出版社,2006.

[6]张敬书.数学文化与数学课程改革[J].重庆师范学院学报(自然科学版),2002,(3):59-62.

数学论文范文参考

数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

( 一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

( 二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

( 一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

( 二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

( 三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:

〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.

〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.

〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.

浅谈高中数学文化的传播途径

一、结合数学史,举办文化讲座

数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、

二、结合教学内容,穿插数学故事

数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、

三、结合生活实际,例解数学问题

作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、

四、结合其他学科,共享文化精华

科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、

五、结合课外活动,小组合作探究

由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、

六、结合教学评价,纳入数学考试

虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。

小学数学思想方法论文范文

小学数学教学理念和教学方式的转变论文

数学是研究数量、结构、变化、空间以及信息等概念的一门学科。下面是我整理的小学数学教学理念和教学方式的转变论文,希望能够帮助到大家。

一、在生活情境中“找”数学

所谓情境,就是把那些不知与已知、浅知与深知之类的需要,学生解决的矛盾问题带到一定情境中去。创设生活情境,能激发学生探索规律的兴趣,新课程标准中很重要的改革是注重学生的情感与态度的培养。有效的课堂教学可以激发学习的兴趣,营造良好的学习情感,学生能积极主动、全身心地投入到学习中。数学来源于生活,生活中处处有数学,数学知识与教学活动离不开学生的生活实践。引导学生在生活实例中发现数学问题,构建数学模型都是生活问题数学化的具体表现。给予学生充分的自由空间,让学生用自己喜欢的方式大胆地探索、创新、寻求解决问题的方式方法,能增强学生的合作意识,学生在不知不觉中主动参与到数学活动中去,在互动学习中培养了学生的问题意识和能力,体验着学习的成功与乐趣。

二、动脑、动口、动手中“思”数学

在新教材的使用中,需要教师转变教学思想,摆正自己的位置,还学生主人的地位;充分发扬教学民主,处理好师生间主导与主体的关系,多给学生创造动脑、动口、动手的时空。在《三角形的认识》一课的教学中,我先让大家看看自己脖子上的红领巾是什么形状?(三角形)日常生活中还有哪些物体的形状是三角形?是的,生活中形状是三角形的物体有很多,除了大家刚才说到的,还有三角小旗、马路上的标志牌等。数学来源于生活。联系学生身边的实物认识三角形,动脑、动口说三角形,让学生感受到数学就在身边,生活中处处有数学,并激发他们热爱生活的情感。再让学生用准备好的几根小棒摆成一个三角形,动手画三角形,同桌合作拉一拉自己准备的学具长方形框架,看看会不会有变化。让学生在摆一摆、画一画的过程中,获得对三角形的感性认识,再通过议一议将感性认识上升到理性认识,进而在老师的引导下主动地探究、思考,使学生认识到数学的价值。

三、在不同的玩中“学”数学

《数学课程标准》指出:教学中,要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境。学生对感兴趣的事物必然会想方设法去认识它,研究它,占有它,从而获得与此有关的知识与技能。教师要抓住低年级学生好玩的心理,设计不同层次的“玩”,由开始的跟着老师玩,到最后的合作玩,自己玩,让他们在玩中不停地思考、探索。

四、游戏中“悟”数学

在低年级数学教学中,把游戏引入课堂,可以把教学内容寓于游戏之中,变静态的课堂教学为动态的教学活动,进而使学生在玩中学,在玩中获取知识。儿童注意的特点主要是无意注意,有意注意不可能持久。因此,学生学习一段时间后,注意力就容易分散,精神不集中,思维不活跃。这时侯,用游戏的形式来完成剩下的教学任务,会收到事半功倍的效果。在游戏中“悟”数学,可使学生体会到数学与自然、数学与身边世界的联系,这样的教学方式,适合儿童的心理特点,遵循儿童的学习规律,取得了较好的教学效果。

五、实际生活中“感受”数学

数学来源于生活,生活中处处有数学。对小学生而言,在生活中形成的常识、经验是他们学习数学的基础。在教学中,我努力拓展学生认识数学、发现数学的空间,重视学生对数学经验的积累,这种做法在课堂教学中收到了事半功倍的效果。随着新课程教学实验的不断深入,通过家庭、学校的有效沟通和一系列的实验作业,既培养了学生学习数学的兴趣,又激发了学生热爱数学的情感,让学生在生活中感受数学,在不知不觉中学习数学。

六、开放的课堂氛围中“做”数学

活泼好动是孩子的天性,课堂教学应顺应孩子的天性,依据孩子的爱好和兴趣设计教学,在学生喜爱的找朋友、送信、小鱼吐泡泡、送小动物回家等游戏中展示活动内容,让他们在这样的学习氛围中,激发学习的积极性,使情感得以交流,为学生提供更多表现自己和充分交流的机会,使他们有更多的自由支配的时间和空间。在活动中相互启发,相互交流,相互影响,共同寻找、探究、体验,掌握数学的知识、思想与方法,充分感受数学的魅力和乐趣。

社会在不断进步,旧的教育理念已经不适应社会的需求,要求我们的教育理念要进一步更新。《数学课程标准》是新形势下数学教学的.行为目标,对教师的课堂教学提出了新的要求。大部分教师正处在从原有的教学理念转变到新的教学理念的一个过渡时期。我们要真正领会《数学课程标准》的精髓,既要突出新课标下的先进教学理念,又要发展传统教学中优秀的教学思想方法。新课改理念下的小学数学课堂教学,要启发学生学习数学的兴趣,培养学生的情感,使学生建立学好数学的自信心,给学生充分提供动手操作、自主探索和合作交流的机会,学生还可以用自己的方法学习数学,使学生在获取数学知识的同时,思维能力、情感态度和价值观等多方面也能有所进步。实践结果证明,课堂教学的变化,学生思维活跃,敢于质疑,愿意与同学、老师交流,勇于发表不同见解,乐于表现自己。下面就自己对数学课堂教学理念和教学方式转变浅谈一点自己的做法。

(一)建构新型学生观。

学生观是教师教学理念的具体表现,也是教师教学行为的出发点。新课程体系充分肯定学生的内在价值,将个性发展作为课程的根本目标。要实现这一理念,首先要求教师改变陈旧的学生观,将学习的主动权交给学生;其次,要着力改变学生由来已久的自我认识和学习方法,通过自身教学方式的改变去唤醒学生的主体意识,把学生从被动的世界中解放出来,使学生真正意识到自己的学习的主体,要自己思索、自己动手、独立学习。具体说,教师应赋予全体学生比传统教学中多得多的参与学习的机会和权利,用动态的、发展的观点评价学生的学习,重视学生的参与程度和学习体验,善待学生生命过程中的各种表现,给学生创造进行独立思考、辨析的空间,主动进行知识的建构。

(二)建立新型师生关系。

在新课程实施过程中,师生之间的交往应是一种对话式的,平等式的“我——你”关系,在这种关系下,师生双方以知识作为对话的文本,尊重彼此视界的差异,敞开精神,相互接纳,无拘无束的自由交流,最终实现视界的融合及知识的生成。对话式教学要求师生双方都作为有思想、有感情、有个性的丰富的人彼此真诚交流,每一方都把另一方看作可与之对话的“你”,双方都作为完整的人在完整的精神世界深处投入到对话中,互相接纳、敞开、理解。即教师不是作为权威将预先组织好的知识体系传授给学生,而是与学生共同探究、创生知识;学生也不再作为知识的容器被动听从教师的指令,而是带着各自的兴趣、需要和观点直接通过与教师的对话而与知识对话,并从中获得生活的意义。对话双方通过彼此心灵的互动与沟通,共同创生和开发课程,并探录、体验、感受知识之中、之外的世界或存在的意义。

(三)在快乐中“学”数学

学生对感兴趣的事物就必然会想方设法去认识它,从而获得与此有关的知识与技能。教师就要抓住学生好玩的心理,设计不同层次的“玩”,由开始的跟着老师玩,到最后的合作玩,自己玩,在玩中不停的思考、探索。在教《0的认识》一课时,先出示一幅空教室图引导学生观察,讨论,说说自己的看法。在我们的周围找一找什么地方有0?再让学生玩一玩、变一变?并说一说自己的发现,怎样的情况下,0表示起点。怎样的情况下,0表示没有。整个教学,学生在快乐中学会了“0”的有关知识。

(四)实际生活中“感受”数学

数学来源于生活,生活中处处有数学。对小学生而言,在生活中形成的常识、经验是他们学习数学的基础。在教学中,我努力拓展学生认识数学、发现数学的空间,重视学生对数学经验的积累,这种做法在课堂教学中收到了事半功倍的效果。随着新课程教学实验的不断深入,通过家庭、学校的有效沟通和一系列的实验作业,既培养了学生学习数学的兴趣,又激发了学生热爱数学的情感,让学生在生活中感受数学,在不知不觉中学习数学。

总之,教与学的方式的改变,要求教师不断地形成新的基本技能,不再以知识形态来呈现,而是以行为的方式来呈现;不断地更新观念,不断探索,以适应课程改革地需要。

在小学数学教学中,要想使学生的创新能力得到培养和提高,其前提和基础是要充分发挥学生的 发散思维 ,鼓励他们从不同的角度进行观察和实践,探索多种解题思路,激发他们的 创新思维 。下文是我为大家整理的小学 四年级数学 教学论文 范文 ,欢迎阅读!

一、人教版小学数学实验教材的分析

人教版小学数学实验教材是秉持“以人为本”的基本设计思想来设计编排的,其实现了将数学知识点由难到易的排版,让学生有一个循序渐进的学习过程。教材在教学内容上与生活实践相联系,让学生学会在生活中运用数学知识。比如,在三年级下册的教材中,就有“制作年历”和“校园设计”这两个实践活动,这两个实践活动能够锻炼学生在实际生活中运用数学知识来解决问题的能力,而在数学算法的要求上更是多样化,这样能够帮助学生培养多方面思考问题的能力,避免学生学得的知识范围过于狭隘。

二、教学实践的具体要求

1.结合教材要求,站在学生的立场进行教学安排

教师对教材的使用也是影响学生学习效果的一个主要因素。教师在教学中,应当更多地与学生进行沟通与交流,了解学生的学习动向,结合本班学生学习的实际情况,制订有效的实践教学方案。在实际教学中发现学生学习的薄弱点,然后进行针对性的训练,帮助学生完成小学数学学习。比如,在第二册数学实验教材中,要求学生学会认识时间,而一些学生在对时间的学习上存在着一定的困难。在进行时间认识的教学前,教师可以先问学生:“同学们知道现在是第几节课吗?”树立起学生的时间观念,在接下来的课堂教学时,可以先讲解时针的转动规律,接着介绍分针与秒针,由难及易,步步深入。

2.将课堂作为教学实践基地,激发学生的学习热情

小学数学的教学形式主要是课堂教学,教师应当充分地利用课堂教学的时间,指导学生学习数学知识,而激发学生的学习热情是学生学好小学数学的关键,教师可以进行教学方式多元化的教学,结合教材要求,开展一些与数学学习相关的实践活动,激发学生的学习兴趣。激趣的最好 方法 就是进行游戏教学,比如,在进行10以内的加减教学时,教师可以结合实际生活,设置一个让学生买菜的情境,让学生在买菜的过程中体会到数学加减法在实际生活中的运用情况,帮助学生进行算术练习。

3.课后进行教学 反思 ,优化教学方式

每次的实践教学结束后,教师应该及时地对教学进行反思,找到教学中存在的不足,并且在今后的教学中不断地优化。在教学工作中,不断地吸取先进的教学理念,结合实际情况进行教学。小学数学实践教学是一个漫长的探索过程,教师应当很好地结合小学数学实验教材,在新课标的要求下进行教学,让学生更加全面地学好小学数学知识,为学生今后的数学学习打下坚实的基础。

作者:邵小洁 工作单位:江西省上饶市实验小学

一、创新情境数学教学模式

在小学数学教学中引入情境式的教学模式对于培养小学生的创新思维具有积极的促进作用。在课堂教学活动中通过不同的情境来讲授知识能够激发和培养小学生的创造性的思维,由情境可认启发学生对解题思路的独特的想法与思路,这一过程既是形成数学构思的过程,也是展开合理解题思路的思维过程。在情境教学模式中,教师要鼓励学生展开创新思维,并积极主动地发表对解题思路的见解,从积极参与教学的实践中,学生的创新思维也就培养起来了。此外,在小学数学教学中,教师还要注意数学语言的使用要与课程内容以及学生的理解能力相适应,循序渐进地提高学生学习数学的积极性,更加积极地参与到情境教学模式中,不断提高学生的创新意识。例如,在教学“圆柱和圆锥的体积”这一章节时,教师可以准备各种圆柱形的实验品,如圆柱的玻璃器皿、圆柱木块等,分发给学生要求其动手量出长、宽、高等所需数据,并通过实践来求得体积。通过实验启发学生自己 总结 出计算圆柱体的体积公式,并引导学生是否可以用切割、计算体积差等方式求得体积。

二、提高学生学习数学的兴趣

小学生具有活泼好动,稳定性差的特点,在数学教学中提高学生学习数学的兴趣是非常重要的。“兴趣是最好的老师”,只有在兴趣的驱使下,小学生才能积极主动地学习数学课程,才能在兴趣的驱使下展开更多的创造性思维。数学教学本身具有理论性强的特点,理论的讲解枯燥乏味,难以吸引小学生的兴趣,也有很多小学生对数学课程有着厌学情绪,这时教师就要注意采用新鲜多样的方式来吸引小学生的兴趣。例如,利用多媒体、幻灯片等形式,以形象生动的方式展现数学的乐趣,提高学生在学习数学上的兴趣。数学课上教师还要注重将数学与实践紧密结合起来,拉近数学与小学生之间的距离,激发他们学习数学、应用数学的兴趣,从而提高小学数学的教学效率。例如,在学习“认识左右、上下、前后”这一内容时,教师可以通过座位编号的方式,利用学生的座位编号并进行确认练习,学生在相互认识的互动中对左右、前后、上下形成认识,这样能够有效提高他们对学习数学的兴趣。

三、通过交互合作的方式来培养小学生的创新意识

在小学数学课程教学中开展学生之间的交互式合作能够形成学生之间思想的交流,对其创新意识培养具有很好的促进作用。在交互式的合作中学生通过交流可以对所讨论的问题产生不同角度的认识和思考,有利于拓展学生的思维,激发其创新意识。通过交互式的合作,在学生之间能够对问题进行广泛讨论,也能找到更多的解决问题的方法。例如,在实践活动中教师带领学生走曲径小路,观赏美景时就可以假设问题:对于曲折的小路,如何计算出它的长度?并号召学生展开讨论,学生有的说用尺子,有的说用步测……通过学生之间交互式的合作讨论的方式,能够对学生的思维产生启发,这对创新思维的培养是非常重要的。创新型的 思维方式 对于创新意识的培养是至关重要的,在创新思维的引导下,小学生对学习数学的兴趣势必会增强。在小学数学教学中创新思维的培养可以通过一些有效的训练方法来实现,例如 逆向思维 的训练,有时会对数学问题的解答产生更为简便高效的作用;联想思维的训练,能够帮助学生从多角度来思考问题,对全面思考问题具有很好的效果,联想能够拓展思维的广度和深度,是创新意识培养的基础。

四、通过实践活动的方式培养小学生的创新意识

小学数学课程中要更多地加入实践课,让学生在实践中形成对数学知识的认识,在实践中创造并感知,从而激发小学生创新意识的养成。实践能够在小学生的头脑中形成更为稳定的知识,因为从具体形象的事中才能强化人们对知识内容的感知和记忆。例如,“100以内数的认识”这一章节的教学,教师就可以组织学生通过数一些玩具木棒、数花生等方式来加强学生学习的兴趣和强化知识内容。实践活动的方式还包括课下练习内容,安排练习题时可以设计一些具有乐趣的实践活动,让学生通过自身的探索活动加强对知识的感知和认识,小学生在自己的实践探索过程中不但会加强知识的认识,还会形成自己动手的成就感,也会提高对数学学习的兴趣。

五、结语

创新意识对个人发展具有极其重要的意义,因此要从小学阶段就着重培养学生的创新意识,这也是当前 教育 教学改革的一项重要内容,对此本文结合小学数学教学对如何培养小学生的创新意识进行了研究探讨。笔者针对小学数学教学的特点提出了四个方面的建议,包括情境时教学模式的采用、提高小学生学习数学的兴趣、交互式合作的方式以及实践活动的方式。小学数学教师要积极地探索多样化的教学方式来不断提高小学生的创新意识,为其今后的人生发展奠定良好的基础,为国家的人才培养奠定基础。

作者:林维旭 工作单位:山东省莱西市望城冯北小学

关于数学思想论文范文资料

初中数学学习是学习者在原有数学认知结构基础上,通过新旧知识之间的“同化”或“顺应”,形成新的数学认知结构的过程。那2000字的初中数学论文怎么写呢?下面我给大家分享一些2000字的初中数学论文 范文 ,大家快来跟我一起欣赏吧。 2000字的初中数学论文范文篇一 浅谈初中数学 学习 方法 指导 在新课程背景下,如何让初一新生感到数学好学,把学数学当成一种乐趣,真正做初中数学的小主人。在此,笔者就初中 数学学习方法 的指导提出一些自己的见解,于同行共勉。 一、指导学生读 目前初中新生学习数学存在一个严重的问题就是不善于读数学书,他们往往是死记硬背。比如在学平方根概念时,同学们都知道“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根。”“一个正数有正、负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。”可是在做判断题时,4是16的平方根( );16的平方根是4( )。这两道判断题前面一道总是做不对,后面一道倒是都能做全对。因为他们更熟悉“一个正数有两个平方根,却不能很好的理解平方根的概念,就因为没好好读懂平方根概念,这使初一新生自学能力和实际应用能力得不到很好的训练。因此,重视读法指导对提高初中新生的学习能力是至关重要的。在教学过程中,教师应指导学生学会读书的方法,做到眼到、口到、心到、手到。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细的读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读“懂”,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。 二、指导学生听 初中新生往往对课程增多、课堂学习容量加大不适应,顾此失彼、精力分散,使听课效率下降,因此,重视听法指导,使他们学会听,是提高学习效率的关键。 数学教学中,首先应培养学生学习思想专注、专心听讲,激活其原认识结构,并使学生的信息接受与教师的信息输出协调一致,从而获得最佳学习效果。其次,要培养学生会听,注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,让学生抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能使其由“听会”转变为“会听”。 三、指导学生思考 数学学习是学习者在原有数学认知结构基础上,通过新旧知识之间的“同化”或“顺应”,形成新的数学认知结构的过程。由于这种“同化”或“顺应”的工作最终必须由每个学习者相对独立地完成。因此,在教学过程中老师对学生要进行思法指导,教师应着力于以下几点:①从学生思维的“最近发展区”入手来开展启发式教学,培养学生积极主动思考,使学生会思考。②从创设问题情境来开展探索式教学,培养学生追根究底的思考习惯,使学生学会深思;③从挖掘“问题链”来开展变式训练,培养学生观察、比较、分析、归纳、推理、概括的能力,使学生学会善思;④从回顾解题策略、方法的优劣来开展评价,培养学生去分析,使学生学会 反思 。 四、指导学生写 初一新生在解题书写上往往存在着条理不清,逻辑混乱等问题。比如在学习乘、除、乘方的混合运算的运算顺序时,下列这些错误学生很容易犯,(-3)2=-32,(2×3)2=2×32,(3\4)2=32\4等等。还有在学习有理数的混合运算时会出现这样的情况,8-8×(3\2)2=0×9\4=1,这主要是我们在教学中不大重视对学生进行写法指导。在教学中老师要及时纠正学生易犯的错误。比如:①要教会学生将文字语言转化为数学符号语言,还要注意数学符号中数学演算的前提条件;②要将学生在推理的同时学会书写表达,让学生在反复训练中熟练掌握常用的书写格式;③要训练学生根据已知条件来分析作图,正确地将文字语言转化为直观图形,以便更好的利用数形结合解决问题。 五、指导学生记 教学生如何克服遗忘,以科学的方法记忆数学知识,对学生来说是很有益处的。初中新生由于正处在初级的 逻辑思维 阶段,识记知识时机械记忆的成分较多,理解记忆的成分较少,这就不能适应初中学生的新要求。因此,重视对学生进行 记忆方法 指导,这是初中数学教学的必然要求。教学中,首先要重视改革 教学方法 ,抛弃满堂灌,以避免学生“消化不良”,其次要善于结合数学实际,教给学生相应的方法。比如:①理解记忆法,因为理解的东西才能记得准,记得牢,所以必须“先懂后记”。② 简化记忆法,简化记忆方法分两类,一类是把文字“浓缩”之后记忆,另一类是用字母符号表达抽象记忆。③形象记忆法,内容形象、直观、记忆就深刻、难忘,把知识形象化能帮助记忆。④对比记忆法,“有对比才有鉴别”把相类似的问题放在一起找出区别与联系,分清异同,增强记忆效果。⑤口诀记忆法,将数学知识编成“ 顺口溜 ”,生动有趣,印象深刻,不易遗忘。⑥系统记忆法,建立一个完整的知识体系,便于整体上掌握知识,可用关系图来帮助记忆。 总之,对初中新生数学学习方法的指导,必须与教学改革同步进行,协调开展,持之以恒。要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法,同时要理论联系实际,因人而异,因材施教,充分调动学生的学习积极性。 2000字的初中数学论文范文篇二 浅析初中数学学习方法 新的课改要求学生掌握一定的学习方法,才能让学生在数学探究活动中,进一步得到获取数学知识的能力,这样的数学课堂教学活动,真正体现出“以学生为主体,教师为主导”的课堂教学模式,这是改革的关键之一。长期从事初中数学教学工作的我,从以下几个方面来谈谈自己的认识,仅供参考! 当前,初中学生学习数学这门科的方法方面的情况:许多学生已进入初中,对初中数学教师的上课的方法,不适应,由小学阶段的“手把式”教学,转变为自主学习式,教师的作用是一个编导,由于学生的依赖性尚未完全脱离,因此,小学阶段“顶呱呱”的学生,就要小学时的轻松了。其次,学生对数学课本的内容,没有一定的阅读习惯与方式方法,习惯于“哇啦哇啦”地读一通,就了事,抓不住重点,对课本的公式、定理,习惯“死记硬背”,导致对概念、公式的理解能力较差,实际运用能力相应的也较差。再次,学生进入初中,对课堂四十分钟,不能有效利用,许多学生对老师的讲解时,东张西望,精力不集中,开小差,更谈不上做笔记,因此,学生的学习效果极差。也有部分学生在小学阶段受老师的影响,对待问题不善于分析、理解,只是一味地模仿老师的做法。去解答习题。也有部分学生一遇到难题,不是自动去思考,查找有关资料,或对手探究,而是“翘首”望着老师,等待老师的解答。由于学生学习数学的方法欠缺,顾此失彼的现象严重,部分学生不善于言谈,口头表达能力较差,也有学生“滔滔不绝”,而做题的格式混乱,模糊不清;在识记理解知识方面,死记的东西多,理解消化的知识较少;也学生对老师批改的作业,弃之不过目,对错了的习题,没有去找到错误的原因??等等。 作为数学教师,要引导学生的学法,从以下几个方面去进行: 一、初中数学教师要按照《九年义务 教育 阶段数学课程标准》中,指出“数学教学活动是师生积极参与、交往互动、共同发展的过程 数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流也是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。教师教学应该以学生的认知发展水平和已有的 经验 为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,通过有效的 措施 ,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学 思维训练 ,获得基本的数学活动经验。”要达到这个标准,需要初中数学教师较好第引导学生学习数学这门科的学习方法,让学生在愉快、轻松的数学课题教学活动中,获得知识,训练能力。 二、初中数学教师要指导学生有效阅读数学课本 学生阅读数学课本后,应该对数学课本上的知识有一定的了解或做到了心中有数,以便教师在讲解或组织学生分组探究、学生自主学习,有一定的基础。比如,组织学生学习“垂线”知识时,先指导学生自己阅读数学课本,找到“垂线的定义”、“ 垂线的画法”、“ 垂线的性质”、“ 点到直线的距离”。通过学生阅读,将老师提出的问题,在课本中找到了,就达到了预习的目的,这些预习提问是本课的重要内容,学生通过认真阅读课文,有些问题可以自己解决,难点问题在课堂上进行突破。其次,在课题教学活动中,教师引导学生阅读课本,将实行分段阅读,如“点到直线的距离”所在段,提出“如何正确了解点到直线的距离?”,学生通过作图与概念对比起来进行分析、理解,就能很容易掌握“点到直线的距离”概念。这样,学生带着问题去阅读,在解决问题的过程中不仅可以很快理解点与线关系,而且在概念的抽象过程中意识到类比和归纳方法的存在。课堂阅读在例、习题的教学中有更多的应用,引导学生边看、边想、边讨论、边解书中的例、习题,先自己想一下怎么做,再对照例题,这样学生就积极思考、探索、质疑,从而加强学生自我检查学习效果的能力。最后,数学教师要引导学生进行课后阅读数学课本。结合每章节所学内容,进一步认真阅读教材,做到概念清晰明了、理解熟记。通过复习使知识系统化、条理化,让学生学会自我整理知识。引导学生自我 总结 ,比如“垂线”这节课的小结为:要掌握好垂线、垂线段、点到直线的距离这几个概念;要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;垂线的性质为今后知识的学习奠定了基础,应 该熟练掌握。这样学生学会并掌握学习数学的方法,讲是学生终身受用。学会学习不仅要靠老师的指导,尤其要靠学生不断积累方法,并在自己的实践中得以有效运用。 三、初中数学教师盐善于引导学生总结学习规律,让学生掌握切实可行的学习方法 比如,在组织学生学习“一元一次方程”时,归纳为:什么是已知数,什么是未知数,什么是方程,什么是方程的解,什么是解方程;会判别一个式子是否是方程;会列一元一次方程;会检验一个数是否是某一个方程的解。数学教师在教材处理、教法选择、教学设计中,要注意去揭示知识的形成过程、概念的概括过程、展现思维过程;注意由此及彼、由表及里,让学生从中观察、比较、归纳、领悟一系列的学习规律,通法通理,总结学习的方式方法。 四、初中数学教师要耐心指导学生的学习方法 任何一种学习方法都不是每一个学生都能适合的,这就需要初中数学教师,要充分了解学生的基础上,针对不同的学生,分别加以指导。比如对于差生的指导,要讲求一定的方式方法,可以对他们采取个别辅导,既辅导知识也辅导学法。因材施教,帮助每一个学生真正地去学习,真正地会学习,真正地学习好,这是面向全体学生,全面提高学生素质,全面提高教学质量的关键。 总之,初中数学教师要以系统整体的观点进行学法指导,对学生进行学习方法的传授、诱导、渗透,帮助学生掌握科学的有的放矢的学习方法,指导学生学会读书、学会听课、学会讨论、学会复习、学会提问、学会总结,以指导学生加强自身修养,激发学习动机,指导学生掌握和形成具有自己个性特点的科学的学习方法,指导学生养成良好的学习习惯,提高学习能力。

数学在当今各学科中的用途急剧增加,重要的原因之一是数学能简明地表达和交流思想。下文是我为大家整理的关于高一数学论文的范文,欢迎大家阅读参考!

浅谈高中学生数学课堂笔记现状的调查与研究

高中学生已经普遍认识到,做好数学课堂笔记对学好数学的重要性. 学生们在实际的数学课堂笔记记录过程中采用了很多不同的笔记策略,在笔记使用的过程中也存在较大的区别. 国内外对笔记方面的研究多集中在笔记的功能方面和笔记的生成技术,对课堂笔记策略方面的研究涉及极少. 为研究高中数学课堂笔记记录和使用的有效策略,笔者于2015年4月对本校的高一80名学生进行课堂笔记的问卷调查和部分学生的访谈调查,现报道如下.

x研究对象与方法

1. 对象

2015年4月通过抽样的方法,选取高一80名学生作为研究对象,其中男生51人,女生49人. 80名学生分成三个层次,多次考试成绩基本稳定在班级前十名的作为学优生一层;多次考试成绩基本稳定在班级后十名作为学困生一层;其余作为中间一层.

2. 方法

研究主要采用问卷调查法和访谈调查法.问卷分为两个部分,第一部分包括课堂笔记的记录习惯和对课堂笔记重要性的认知;第二部分是不同课型学生课堂笔记的记录策略和课后笔记使用情况.发放问卷80份,收回有效问卷71份,其中男生35份,女生36份. 结合问卷调查结果,对其中的13名学生进行进一步的访谈调查.

3. 资料统计分析

采用SPSS19系统软件分析,对不同数学程度的学生进行各项的差异性比较.

问卷调查结果

1. 女学生更需要数学学习方法和策略上的指导

学优生中,男生比例占86.7%远高于女生的13.3%;反之,学困生中女生占73.3%,存在显著差异. 说明有更多比例女生在数学的学习过程中,学习方法和策略存在不足,需要教师对其在数学学习上的指导.

2. 数学概念课上,学优生和学困生在课堂笔记策略和课后笔记使用上没有显著区别

概念课上,学生的笔记策略基本都是采用在书中标注的方法,50%左右的学生会在课后再理解消化数学概念,这一比例学优生略高于学困生.

3. 数学命题课上,学优生更注重课后对所学的公式、定理进行再次推导

学优生与学困生在数学命题课上的笔记策略没有显著区别,但学优生更重视公式、定理的推导过程.在课后的笔记使用上,有更多比例的学优生课后会对所学的公式或定理进行再次推导.

4. 数学例题课上,学优生与学困生的笔记策略存在显著差异

学困生在数学例题课上,有较大比例的学生习惯于把上课老师写的全部都记下来,基本没有自己的选择和取舍;而学优生基本都是有选择地进行记录,特别是重点记录了老师总结的方法和知识.

从结果可以看出,学优生在课内更重视听讲与练习,有选择性地记录数学课堂上的内容. 而学困生在数学课堂笔记的记录过程中,缺少自主的选择,注意力主要集中在笔记的记录过程,影响了听课的效率.

5. 解题过程中,学困生更依赖数学课堂笔记

有73.3%学困生,在做数学作业过程中会经常翻看课堂笔记,这一比例要远高于学优生的20%,存在显著差异.说明学困生在做作业时非常依赖课堂笔记,课堂的有效掌握率低,若碰到笔记中没有的题目类型,学困生就很难自主解决.

6. 在复习使用课堂笔记时,学优生和学困生使用笔记的方式是不同的

大部分学困生习惯于把笔记内容进行阅读式的复习使用;而学优生,会根据自己的实际情况,对笔记中的内容进行有选择性的复习.

访谈调查结果

为了进一步研究学优生与学困生在数学课堂笔记的记录策略和使用情况的具体差异,笔者对部分学生进行访谈调查,访谈调查的结果如下.

1. 学优生与学困生对数学概念的重视程度不一样

学优生不仅在课堂内对概念的听讲较为重视,课后都会对新接触的概念进行再理解;学困生课后基本不再关注数学概念,认为数学概念对解题没有帮助.

2. 学优生与学困生选择数学命题的记忆方式不同

学优生为了达到有效理解和记忆数学公式和定理的目的,经常性地在课后把公式和定理进行重新推导,关注数学命题的前因后果;而程度差的学生,只关注公式和定理本身,课后解题过程中习惯于频繁地翻阅书本中的定理和公式,记忆效果较差,遗忘率较高.

3. 学优生在数学例题课上的笔记策略是有选择性的记录

学优生在数学例题课上,选择的笔记策略是先自己做题,对自己能够顺利解决的问题不做笔记;对解题方法比较新颖的或没有理解透彻的,自己解决比较困难的,会选择做笔记,在课后会对课堂上选择性记录的笔记进行再理解,并重新对笔记中的例题重新做一遍.

在数学例题课上,绝大部分学困生选择把课堂内所有例题的题目和解答过程都记录下来;也存在少部分学生选择自己能理解的进行记录;也存在极少部分男生基本没有课堂笔记.

4. 学优生与学困生课后对作业、试题讲评课笔记的使用上存在不同

学优生与学困生在作业、试题讲评课上的笔记策略没有显著差异. 学优生当天在课后对错题会选择重新做一遍,并整理错题,有选择的记录到错题本中.复习时特别关注错误的原因和正确的解题方法,对具体解题过程关注较少. 学困生,课后极少关注错题,基本没有重新做一做错题的习惯,对课堂笔记的利用不足.

讨论

1. 重视对数学概念、公式、定理的理解是学好数学的基础

“概念理解”、“技能习得”、“问题解决”是数学教学的三大基本任务,同样是学生学习数学的基本任务,理解数学概念是学好数学的起点. 学生只有正真理解了数学概念,才能提高数学能力,理解数学思想,掌握数学方法.

2. 有选择性的记录笔记是数学课堂笔记的有效策略之一

数学课堂笔记是一把双刃剑,好的课堂笔记策略能有效提高数学能力,不好的课堂笔记策略反而会影响数学的学习. 缺少自主选择的笔记策略往往是抄录教师的板书,学生的注意力主要集中在笔记的抄录过程中,思维处于停滞状态,影响对数学基本知识的理解、基本技能的掌握和数学思维能力的培养,降低了课堂效率.

数学课堂笔记不应成为数学课堂的简单重复,要利用课堂笔记促进自身数学能力的提高,笔记内容就必须要有更高的起点,包括方法知识的提炼、内容的概括和困难问题的解决等.

3. 合理利用笔记,是提高数学能力的有效途径

课堂笔记的价值在于利用,数学有其学科的特殊性,把数学的“概念理解”、“技能习得”与“问题解决”当作陈述性的知识来学习显然是不恰当的,也是学不好数学的. 过多地依赖模仿课堂笔记内容来解题,不仅影响对解题方法的理解,更阻碍数学基本技能的习得和解题能力的提高. 利用课堂笔记,课后有针对性地对自己课内未能有效掌握的内容进行再学习,再研究,对提高数学能力有显著效果.

浅析新课改下高中数学教学

一、高中数学教学理念在新课改下的变化

首先应该明确一个问题那就是教学方式的指导思想就是教学理念,有什么样的教学理念就会产生相应的教学方式,因此要想在新课改下掌握高中数学的教学方式就要对其教学理念进行研究.

(1)新课改的教学理念相对以往的教学理念更加强调高中数学的基础性.

在新课改下,相应的增加了高中数学的教学内容,高中数学分为必修和选修课程,必修课和选修课所涉及的内容都是高中的数学中的最基础的内容,而不同点是在选修课程中增加了圆锥曲线、参数方程、导数等相关内容.

(2)新课改教学理念更加重视数学的文化价值.

新课改下的数学教学理念更加注重数学的文化价值.在以往的数学教学理念下文化价值的培养主要是通过语文教学来达成的,新课改下数学选修课本3或4的课程里,增加了《数学史选讲》、《风险与决策》等新内容.其中《数学史选讲》的内容讲的是数学的来龙去脉,及其发展轨迹.从这方面我们可以看出新课改下对数学教学的文化价值更加重视,以期让同学们在数学的学习中培养正确的数学观.

(3)在新课改下对“以人文本”的教学理念更加关注.

新课改下的高中数学课程有了相应的调整,分为两个模块,第一个模块就是高中数学学习必须修学的5个基础知识模块.这体现了对高中数学基础性的重视,在这个模块之外新增加了选修模块,选修模块可以让同学们凭借个人兴趣,选择自己喜欢的科目,举例来说,如果有的同学喜欢数学的文化价值,那么它可以在选修模块,选修数学史的课程,以便更好地了解数学的起源及发展历史.如果有人喜欢研究数学,那么可以在选修课程中选择高中数学的延伸课程.同学们可以根据自己的兴趣爱好选择自己喜欢的课程,这样的教学模式更加体现了“以人为本”的教学理念.

(4)新课改的教学理念中更加关注教师自身素质的提高.

在传统的高中数学教学中,都是以教师为主体,教师们会按照教案以及课程安排来进行教学,教学模式很单一.当然这种教学模式下,教师们能很好地完成教学任务,但是教学质量倒不是很好.新课改下的教学理念提出,教学的主体应该是学生们,教师应该根据学生们的兴趣爱好,安排课程章节.不仅这些,新课标下高中数学增加了选修内容这些课程,要求教师们也得加强学习努力提高自身的专业水平,同时教师们应该不断地学习有关数学教学的其他学科,比如教学心理学等内容不断提高自身素质.

二、新课改下高中数学教学方法的初步探究

新课改的最终目的是,改善教学方法,提高教学质量.

1.建立教学情境,运用兴趣教学法

新课标下的教学方法要求教师改变以往以课本为落脚点填鸭式的教学模式,数学教学以解决实际问题为落脚点,要求教师总结教学经验,把数学问题尽可能地进行情景演化,从而提高同学们解决实际数学问题的能力.把对数学知识的学习,转变成运用数学知识解决实际问题的研究,进而提高同学们的数学学习兴趣,开发数学学习潜能.

2.新课改下要求对数学内容新增加的选修部分有清晰的理解和准确的定位

新课标下高中数学教学内容有所增加,这些新增加的内容是新形势下对数学教学提出的新要求,教师应对新增加的教学内容仔细的研究,充分的理解,给予高度的重视,要把这些新增加的内容与新课标下的教学理念,教学方式有机的结合起来,同时教师应该根据实际的情况对新增加的教学内容进行有效地把握,对新增加的数学内容进行精准的定位.以导数为例,要结合新课标下新的教学理念以及教学方法,对同学们进行教学,同时还要和生活中的实际问题结合起来.一定要谨记不要以记公式为数学的教学目的.

3.在数学教学中要注重对学生思维习惯的培养

在新课改理念的指导下要注重对学生思维方式的培养.传统的教学方式更多的关注教学成绩,数学教学更是强调对公式的死记硬背,不能够做到学以致用.其实教学的最终目的是要用学到的知识解决现实生活中的实际问题,要注重教学的实用性,数学教学更要注重数学的实际功能.因此在数学教学中教师要结合现实生活中的实际情况运用情景教学法,来展开数学知识的教授.要注重对学生数学应用意识的培养,让学生把在课堂上学到的知识运用到实际的生活中去,努力培养他们运用数学方法处理实际问题的思维和能力,要注重对数学学习思维的培养.

4.在数学教学中要注重对学生思维创新意识的培养

在数学教学中要一改以往填鸭式的教学方式,要注重对学生创新意识的培养.教师在数学教学中应该转变教学观念,应该把学生视为课堂的主体,要培养同学们积极主动汲取知识的学习方式,要运用科学的教学方法提高同学们的学习兴趣,积极地引导他们主动地对数学问题进行思考,在数学学习中要侧重对数学知识规律的掌握.要把同学们学到的知识结合实际的问题进行创新式的演练与应用,要明确数学的学习是一个主动的工程而不是单纯地对数学公式的死记硬背,要注重同学们的创新意识的培养.

三、总结

新课改的教学理念下对高中数学教学方式的探索,是一个漫长的过程,探索过程中要依照新的教学理念的指导,需要依靠教师和广大同学们的共同努力,积极地创新探索,在不断地总结经验中找到正确的教学方式,提高教学质量。

小学数学思想方法小论文范文

数学归纳思想在各学段之特点和教学启示

第一章 导论

小学数学教与学过程需要实施研究性学习,基于研究性学习的小学数学教学需要小学数学教师在具体教学中创设一个类似于科学研究的情境。本文是我为大家整理的浅谈小学数学教学法论文,欢迎阅读! 浅谈小学数学教学法论文篇一 1、研究性学习内涵 小学数学教与学过程需要实施研究性学习,即在教学中,主张教师设定具体的课题,通过一系列活动,学生已掌握的知识与技巧及搜索的相关信息等进行综合,学生自主地建构与更新知识体系,培养学生探索能力及自主学习的精神。基于研究性学习的小学数学教学需要小学数学教师在具体教学中创设一个类似于科学研究的情境,引导同学们通过科研的 方法 搜集与获取大量知识信息,解决课题的疑问与问题,实现学生探索性的建构知识体系,实现学生的学习过程与科学研究过程相结合。 2、基于研究性学习的小学数学教学 措施 2.1营造研究性学习的学习环境 营造研究性学习的学习环境包括两方面,第一,宽松、愉快、平等的环境;第二,合作、探究的环境。前者的作用主要是调动学生研究性学习的兴趣,而后者是加强生生间、师生间的交流。例如,学习“立体图形的认识”章节时,可以通过演示课件“立体图形的认识”章节时,利用汇总的方式向学生展示不同的图形,使学生在动画中提升学习的兴趣。例如,学习“立体图形的认识”时,第一步:(1)教师可以引导同学以组为单位一起回忆:a援长方体的特征援b援想一想你是从那几方面对长方体的特征进行 总结 的。(点:有八个顶点;线:有十二条棱,相对的四条棱的长度相等;面:有六个面都是长方形,有时有相对的两个面都是正方形,每相对的两个面面积相等;)。(2)教师总结:我们通过点、线、面三个方面对长方体的特征进行总结。第二步:(1)教师可以引导同学以组为单位一起回忆:a援正方体的特征。b援想一想你是从那几方面对正方体的特征进行总结的。(点:有八个顶点;线:有十二条棱,每条棱的长度都相等;面:有六个面都是正方形,并且每个面的面积都相等;)。第三步,共同讨论:(1)长方体与正方体有什么共同特征呢(2)长方体与正方体有什么不同之处呢?相同点:长方体与正方体都有6个面,12条棱和8个顶点援不同点:a援“线”上的不同点:长方体的棱分别是相对的4条棱相等,分别叫做长方体的长、宽、高,而正方体的12条棱全部相等,叫做正方体的棱长。b援“面”上的不同点:长方体至少有4个面是长方形,而正方体的6个面都是正方形。(3)长方体与正方体有什么关系?正方体是特殊的长方体。通过这样的环境的研究性学习,使学生进一步认识学过的一些立体图形的特征,掌握不同立体图形之间的异同,使学生能够灵活运用所学过的立体图形的特征解决简单的实际问题,进一步发展学生的空间观念。 2.2列举与搜集与生活联系的例子 数学来源于生活,数学知识解决生活中的问题。列举与搜集与生活联系的例子引导学生进行探究性的学习与解决,从而不断的调动学生学习数学的兴趣和热情,不断的利用自己掌握的知识去积极的解决与探索生活中的相关问题,最终提升学生发现问题与解决问题的能力。例如,学习“量的计量”章节时,教师可以通过“同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能 说说 这是为什么吗”来导入新课程;利用自学的方式进行具体知识点的简单熟悉;并且利用如下例题来引导学生进行探究性的练习:一枝铅笔长176();一个 篮球 场占地420();一张课桌宽52();一个火柴盒的体积是21();一间教师的面积是48();一种保温瓶的容量是2()10麻袋大米约1();l个鸡蛋约6.5();1棵白菜约2.5();1名六年级学生体重是40();测量两件家具,记录各边的长度,算出表面积和体积;称出两件炊具的质量并记录下来;调查父母的出生年、月、日,算一算平年还是闰年;记录自己从家到学校所用的时间。 2.3创设与给予学生研究性学习的条件 如果教师不能创设与给予学生研究性学习的条件,就不能真正的调动学生探索与实践热情,也不能调动学生的创新能力,学生研究性学习的效果将不明显。所以,基于研究性学习的小学数学教学措施需要包括创设与给予学生研究性学习的条件。例如,学习“条形统计图”章节时,教师可以搜集条形、拆线和扇形统计图等统计图的具体表现形式,并让学生搜集各年级的学生数量且绘制条形统计图:一年级:一班40人,二班38人;二年级:一班40人,二班40人;三年级:一班41人,二班38人,三班36人;四年级:一班36人,二班38人;五年级:一班44人,二班39人;六年级:一班37人,二班42人。或者教师可以给出学生如下数据让学生根据表中的数据。通过此过程,可以使学生有机会主动地绘制条形统计图,掌握制条形统计图的一般步骤,能看图准确地回答问题。 2.4建构学生研究性学习的平台 小学数学研究性学习过程中,需要教师为学生建构学生研究性学习的平台,引领学生观察生活、关注身边数学问题。例如,学习“量的计量”章节时,教师可以专门设置研究性学习的课堂,使学生能够进一步理解采用法定计量单位的重要意义,系统的复习与掌握长度、面积、体积、质量、时间单位,以及具体换算,及各种计量单位间的进率。 3、结论 综合上述的内容我们可知,基于性研究性的学习教学可以使学生实现有效学习,并指导学生怎么运用知识与建立知识联系,有效地获取新知识,形成知识体系。基于性研究性的学习教学这种方法是一项被广泛宣传与运用的 学习方法 。 作者:周小如 工作单位:浙江省温州市龙湾区永昌第三小学 浅谈小学数学教学法论文篇二 一、创新教学法让学生自主学习 小孩子从小就要进入学校里面学习,但是没有人问过他们愿不愿意,换句话说,他们是在老师、家长的压力下才会“认真学习”的。这种学习过程叫做被动学习,学习的效果效率低,且浪费时间。传统的教学就是单纯的“灌输式”学习,没能充分发挥学生们的主动性。采用创新 教学方法 ,让学生成为课堂的主人。一位 教育 家曾经说,最好的教育是让被教育者不知道自己已经受教。数学老师要把问题摆在同学们的面前,让他们去思考解决这些问题。在解决问题的过程中,学生可以向老师寻求帮助,老师给予一定的指导。老师上课之前要给同学们设计好开课的问题,并将学生分为几个小组,让他们先自己选择题目解决,然后老师再做总结。这就要求老师所出题目要蕴含本节课的知识,或者是能够回顾上一节课的知识。小组成员的分配也要合理,不能够顾此失彼,要公平公正。这样能够让学生们进行自主的探索,从各个方面思考解决问题的方案,然后再讨论。这种过程能够增强学生们自主学习和合作学习的能力,还能够加强学生解决问题的能力。 二、创新教学法培养学生的创新能力 虽然说数学是一门严谨的科学,但是,那是对解题的答案或方法的正确性来说的。对于一个数学问题我们可以从多个方面思考,然后采用多种解决方法。但是传统的小学数学教育,严重禁锢了学生的 创新思维 。遇到一个问题,老师就会将标准方法告诉学生,然后同学们按照这个思路进行思考。等下次遇到类似的问题的时候,学生就可以“照葫芦画瓢”,按照之前的解题模式做出正确的答案。虽然这样的方法能够增加同学们做题的正确率,但是却减少了学生创新的机会。如果长此以往,数学问题解题方法永远不可能简单化。创新教学法不但是一种教学方法的创新,更是一种创新思想的传递。就像是“蝴蝶效应”一样,用老师的创新带动学生的创新。采用不同传统教学方法的创新教学法,将数学多维立体地展示在学生的面前,让他们自由地思考、自由地解题。比起传统的套模板式的做题方法,自己想出的方法可能既复杂又麻烦,但是这是敢于尝试的表现,这种精神才是学习所需要的精神,这种“不做对不放弃”的毅力才是学习所需的毅力。老师在教学时要将自己和学生摆在一样的高度,只有这样老师才会去认真听取学生的解题意见,才会采纳学生的解题方法,这样才能够促进创新。另外对于教学方法的创新,老师也可以听取学生的意见。不要认为学生不懂得教学,他们的观点缺乏实践性。但是毕竟教学的对象是学生,他们了解自己喜欢和能够接受怎样的教学方式,知道怎样的教学才能引起自己的兴趣。也许学生给老师提的建议比较“理想化”,但是只要老师稍加修改,或是将里面可行的元素融入自己的教学当中,那么就能够找到一套适合学生的教学新方法。对于别的老师的创新教学法也要合理利用,绝对不能照搬。因为使用的对象不一样,要根据自己的学生加以修改,因材施教。 作者:唐世明 工作单位:重庆市巫山县石碑小学 浅谈小学数学教学法论文篇三 1.合理分组 合作学习,是体现一个团体的合作能力,可让学生明白团结合作的重要性。合作学习首先一定要合理地分组。一般而言,合作学习小组4人最合适,最好遵循“就近原则”选择小组成员。如果是年纪较小的学生,则可两人一组,即同桌合作。合理建组便于成员合作,同时可以激发各组间的竞争,这样易于形成和谐的学习气氛,同学们之间可以强弱互补,共同进步。建组应注意优、中、差生之间的组合和学生之间的性格、 兴趣 爱好 、学习能力与身高等各种外在因素的互补,同时需遵循“组内异质,组间同质”的原则[1]。在小组分配完成后,要进行民主推荐,选出各个小组的组长,并依照性格特点分配组内其他成员的负责要点与任务,这样的分配保证每个成员都能发挥自己最佳状态,使任务快速圆满完成。在每个成员完成各自的任务后,应让他们尝试另一个角色中的工作,使他们能弥补自己的不足,得到更多的 经验 [2]。例如,在讲授“小小的商店”这一章节中,教师可以在班级内开起“小商店”,学生的各种小玩具、文具等均为商店里的物品,而学生则扮演顾客、店长、店员、收银员等各种用角色,此时教师需对学生进行合理分组,如分为顾客组、收银员组、店员组等。在这个教学活动中,如果不分组或分组不科学,则可易产生混乱的局面,降低合作学习效率。 2.科学开展小组合作 在小学数学教学中,不是每个学习内容都需要合作学习的方式,教师应从实际情况出发,比如学生的接受能力、教学的环境设备、适合的时机等因素,选择适合的方式让学生进行学习。如果教学内容在学生较容易接受的范围内,就让学生个人独立完成学习或进行集体授课;如果知识点多、学习复杂的内容,就可以小组合作完成,即合作学习[3]。学生是否能充分体会合作学习中的乐趣,主要取决教师是否采用了有效的引导方式。教师在展开活动的过程中,要尊重每位参与的学生,无论“差生”或优生,都要做到一视同仁,特别是在学习上成绩比较差的学生,更要尽心保护他们脆弱的心灵,尽量消除他们自卑感等。教师还应及时了解各组学习情况,并对每个小组作出评价、建议与鼓励。而能使合作学习有成效的重要条件之一是:充裕的学习时间。教师让小组进行操作、研究、探讨、交流思考的过程中,要使每个学生都能有发言和提问的机会,使学生能相互补充,互相进步,这需要教师留有充裕的时间让他们进行自主思考,在解决问题后才会豁然开朗,记忆深刻,合作学习才会有显著的成效[4]。例如在讲授“圆的认识”这一章节时,教师可将全班分为五组,让学生分组找出生活中是圆形的物体,看哪组找出的物体最多,在讲解关于“圆”的相关知识后,教师又可分组进行合作学习,即让学生分组进行练习,看哪一组能够较准确地画出圆形,准确地测量出所画的圆形的半径与直径。教师在这个过程中需要对学生进行积极引导。 3.重视个人与小组评价 在合作学习中,教师对学生的评价、建议与鼓励都是至关重要的,这对学生以后的学习起到很大的积极作用,所以教师应该重视对学生的评价,更应慎重考虑才可以说出每一句评语。教师要做到这样,首先要将个人评价与小组评价进行有机结合,既要注重个人评价,又要注重小组评价,肯定个人在小组合作中的重要性,对学生之间出现的合作互助关系给予表扬;其次要注重学习过程中和学习结果的评价,尤其要注重学习过程中的评价,肯定学生合作过程中的表现,并对合作过程中存在的问题给予相应的指导,使学生及时纠正错误[5]。综上所述,小组合作是小学数学课堂教学中有效教学的方法,其不仅可以让小学生学习到基础的数学知识,而且可以培养小学生的合作精神,同时可以活跃课堂氛围,提高学生的学习热情,有助于提高教学效率和质量。 作者:王景坤 工作单位:赤峰市巴林左旗杨家营子寄宿制学校

小学数学建模思想有关论文范文

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

相关百科

热门百科

首页
发表服务