1.一般在兼顾乳液稳定的前提下,控制亲水基团的含量尽可能低,或提高聚酯本身的耐水性,以长链二元酸及二元醇为原料(如己二酸等),有支链的二元醇或新戊二醇为原料也可提高聚酯的耐水性,聚醚的耐水解性好,有时也可以与聚酯并用。另外,向聚氨酯分子链中引入表面能低的硅氧烷链段或功能性氟单体,以增强水性聚氨酯的疏水性. 2.内交联的缺点是产生高粘度的预聚体,导致乳化困难,有可能得不到粒径细微的稳定乳液。因此,必须控制支化和交联度,找到合适配比,否则在乳化预聚体时可能产生凝胶。外交联所得乳液性能好,并且可根据不同交联剂品种及用量,调节胶膜的性能,缺点是操作不方便。 3.热处理可使可交联型聚氨酯基团之间发生化学反应,形成交联结构,从而提高耐水性、耐热性。有的水性聚氨酯含可反应的官能团,如在聚氨酯分子结构中通过含环氧基多元醇组分引入环氧基团,经热处理形成交联的胶膜。 4。最好是成膜得时候想办法把COOH给反应掉,哈哈
与环氧树脂胶在放一起的话起凝固的作用一般都起的是辅助作用
环氧固化剂中乙二胺、三乙醇胺或者三乙烯四胺与水混溶,双氰胺、间苯二胺、n,n-二甲基苯胺等芳香胺微溶于水耐溶解较好。
1 水性丙烯酸涂料目前很少研究单组分纯丙体系,一般通过不同功能单体对纯丙体系进行改性,如采用苯乙烯改性,制得的丙烯酸/苯乙烯聚合物体系可配制坚硬的防腐蚀涂料。YanaiHidenor等人采用含环氧基和羟基的丙烯酸酯类单体先聚合,制得聚丙烯酸酯中间体,再与含缩水甘油基和可水解硅烷基的低聚硅氧烷缩合反应,制得涂膜致密的单组分低温固化硅丙涂料,其耐水性、耐候性、耐高温性、拉伸强度都有显著提高。美国Rohm&Hass公司开发的水性双组分环氧/丙烯酸涂料系列MAINCOTEAE-58,以环氧树脂E-12为基料,过氧化苯甲酰(BPO)作为引发剂,在丙烯酸聚合中将环氧树脂接枝到丙烯酸酯分子链中,且环氧基不开环,固化反应为双键加成反应,所得双组分乳液稳定性好,贮存时间长,涂膜致密,耐水性佳、耐磨性和耐候性好,光泽度高。德国不久前也开发出一种新型性能优异的防锈漆,是一种环氧改性的丙烯酸防腐蚀涂料。我国的学者、研发工作者对丙烯酸酯的研究也从未间断。潘祖仁等人研究了某些含氨基的高聚物作为交联剂的聚合物乳液,如氨基树脂、环氧树脂、聚氨酯等,涂膜具有优异的致密性、耐水性、耐候性、保色性和保光性。杨新革选用丙烯酸和丙烯酸正丁酯自由基聚合,制得丙烯酸酯乳液,并加入纳米TiO2,制得水性纳米丙烯酸抗菌涂料,具有优异的防腐蚀性、耐候性、耐菌性和耐溶剂性,抗污能力强。2 水性环氧涂料水性环氧防腐蚀涂料的研究经历了几个阶段:第一代水性环氧体系直接用乳化剂进行乳化,主要以聚乙烯醇为乳化剂,并开始研究用多酰多胺与环氧化合物的加成物、聚乙氧撑醚等作为乳化剂。第二代水性环氧体系是采用含环氧基的水溶性固化剂乳化油溶性环氧树脂,并出现自乳化型环氧树脂。第三代水性环氧体系是由美国壳牌公司经多年研发成功的,这一体系的环氧树脂和固化剂都接上了非离子型表面活性剂,由其配制涂料的性能指标可达到或超过溶剂型涂料。从20世纪70年代开始,国外已经不断有新的合成技术及防腐蚀涂料产品推出,如德国Henkel公司的水性环氧树脂系列WATERPOXYl401、1455等,水性环氧固化剂WATERPOXY751、755等;美国Shell公司的EPIREZ3510-W-60及EPI-REZW-5l等;美国DEVOEMAREN涂料公司的Devran230、240QC和Devchem252和Devran188都是卓有成效的无溶剂环氧树脂的代表。我国很多高校和科研院所对水性环氧防腐蚀涂料进行了研究,华南理工大学宋蓓蓓等人用超支化树枝状聚酯BoltornTMH20(B-OH)与乙酰乙酸叔丁酯(t-BAA)进行酯交换反应,制备成乙酰乙酸封端的B-OH,使得BBA的乙酰乙酸基的亚甲基发生接枝共聚反应,合成了以BBA为核的超支化聚合物,使涂膜具有更高的交联度、更高的玻璃化温度、更好的热稳定性,从而使涂料具有优异的防腐性。燕山大学任宇红等人用自乳化法制备了丙烯酸酯改性水性环氧树脂,漆膜的致密性好,防腐蚀性、耐候性、耐水性和拉伸强度都比未改性的有显著提高,并已经开始用于石油化工、冶金、五金交电、汽车、船舶等领域的防腐。3 水性无机富锌涂料水性无机富锌防腐涂料经历了70余年的发展历程,主要有3个阶段:第一阶段,热固化无机富锌涂料。无机富锌涂料最早诞生于20世纪30年代的澳大利亚,其发明人是工程师VictoeNightingale。第二阶段,后固化无机富锌涂料。无机富锌涂层的处理工艺于1949年被介绍到美国,并于1952年开发成功后固化无机富锌涂料。第三阶段,自固化无机富锌涂料。随着对锌/硅酸盐化学研究的深入,开发了具有自固化特性的水性富锌涂料,即不必喷洒后固化液,固化后也不必另行清除涂层表面固化反应产物,而自固化后的涂层硬度又与后固化的涂层硬度相当。JohnBSchutt从20世纪90年代开始进行了一系列的研究工作,制备成可商业化使用的水性无机富锌涂料。澳大利亚Morgan-Wyalla油管,长达250km,采用水性无机富锌防腐涂料,效果很好。以色列、韩国采用环氧富锌底漆代替热喷漆用于地下管道防腐,也取得了良好效果。在我国,天津化工研究院自20世纪80年代初开始对水性硅酸锂富锌涂料进行研发并使之工业化,成为我国最早生产、推广、应用该产品的单位之一。90年代起,我国自行研制的水性无机富锌涂料得到了长足发展,如上海高科推出的LW-I型无机富锌涂料、天津灯塔的E53851、重庆三峡的E06-1、武汉现代的E777-1、台湾的TC-799等。目前,我国对水性无机富锌涂料的研究主要是在其改性研究上,华南理工大学彭刚阳等人采用低模数硅酸钾溶液、碱性硅溶胶为主要原料,以有机硅氧烷作为改性剂,制备成稳定的高模数硅酸钾溶液,配制成粒径均匀、贮存稳定、耐水性和耐候性优异的高性能无机富锌涂料。天津大学研发的水溶性硅酸锂富锌涂料具有耐高温、耐候、导静电、长效防腐蚀等特性。山东大学吴波以水溶性硅酸锂-硅酸钠、硅酸锂-硅酸钾、硅酸锂-甲基硅酸钠、硅酸锂-甲基硅酸钾4种硅酸盐复合物作为基料,通过分析和研究,开发出一条新的制备硅酸锂富锌涂料的工艺路线,制成耐高温、附着力好、耐盐雾性优异的无机富锌涂料。扬州市金陵特种涂料厂研制的ET-98无机磷酸盐富锌涂料属国内首创,制备的涂层坚牢,耐磨性、耐油性、耐水性和耐热性优良,对黑色金属表面具有优异的隔热和阴极保护作用。水性无机富锌涂料广泛适用于海洋大气、高温等各种环境下的钢结构,如海洋平台、船舶、集装箱、大型钢铁构件、输油管线、各种化学贮槽内衬的长效防腐。4 水性聚氨酯涂料在聚氨酯树脂中,除了含有大量的氨酯键外,还有脲键、酯键、醚键、酰胺键等,这些特殊的键结构赋予涂层优异的黏结性、耐磨性、柔韧性、回弹性、耐化学腐蚀性、耐溶剂性、光泽等,从而集装饰性与防腐性于一体。20世纪90年代,Jacobs成功开发出能分散于水中的多异氰酸酯固化剂,从而使双组分水性聚氨酯防腐蚀涂料进入实用研究阶段。美国ARCO化学技术公司,采用含重复的烯丙基醇或烷氧化烯丙基醇单元的水分散聚合物、TDI、HDI等多异氰酸酯开发了双组分聚氨酯涂料,具有卓越的柔韧性、机械强度、耐磨性、耐化学品性和耐久性。S.S.Pathak等人用有机硅MTMS(甲基三甲氧基硅烷)和GPTMS(γ-缩水甘油醚氧丙基三甲氧基硅烷)改性水性聚氨酯涂料,增强了水性聚氨酯涂料的弹性和机械应力,其降解温度升高到约206℃,热稳定性得到较大的提高,使其适用于航天、海洋、汽车等领域的防腐。在我国,华东理工大学借助DSC、FTIR等方法讨论了扩链剂对聚氨酯脲-聚甲基丙烯酸甲酯水分散液的分子链结构和性能的影响。孙道兴等人以环氧树脂与含硅的聚氨酯树脂接枝共聚制得水性聚氨酯,再以其来改性环氧丙烯酸树脂作为防腐蚀涂料的基料,钛铁粉为防锈颜料,制得综合性能优异的水性防腐蚀涂料。吴校彬等人通过原位乳液聚合制备了用环氧丙烯酸树脂双重改性的水性聚氨酯乳液,乳液贮存期超过10个月,耐冻融循环超过5次,涂膜摆杆硬度超过0.7,拉伸强度大于10MPa,耐水性、耐酸碱性、耐溶剂性和防腐性都比未改性的有明显提高。合肥工业大学的吕建平教授采用低聚聚酯多元醇和甲苯二异氰酸酯(TDI)反应,用新戊二醇(NPG)和三羟甲基丙烷(TMP)等小分子扩链,采用二羟甲基丙酸(DMPA)引入亲水基团,最后采用TEA(三乙醇胺)中和,在快速搅拌下分散,制得具有良好贮存稳定性、耐水性和物理性能的聚酯型水性聚氨酯,并已经用于室外场地铺装的防腐蚀涂料。目前水性聚氨酯涂料已经广泛应用于飞机、船舶、车辆、建筑物的表面防腐涂装,以及其他一些要求较高的表面防腐涂装领域。5·存在的问题和技术动向经过研发工作者们多年的努力,水性防腐蚀涂料已经取得了很大进步和发展,目前水性防腐蚀涂料存在问题和今后的技术走向,主要有以下几个方面:(1)目前水性防腐蚀涂料普遍存在固含量低的缺点,固含量低将使生产厂家的成本加大,因此,开发高固含量的防腐蚀涂料是科研工作者的重点。(2)单一体系的防腐蚀涂料功能比较单一,在应用上存在一些缺点,研发两种或者两种以上体系的复配防腐蚀涂料,可以增加涂料的多功能性,并可弥补单一体系防腐蚀涂料的缺点。(3)涂料性能有待提高。通过研究水性涂料成膜交联机理,寻找新型交联剂、添加剂,使树脂具有更好的致密性,从而提高涂料的机械性能;研究乳液聚合原理,寻找新型乳化剂,使乳液聚合更加均匀,单体转化率更高,减少传统乳化剂用量,提高涂料的耐水性。(4)不断更新和改进生产工艺流程及生产设备,对生产人员进行专业培训。(5)施工性能有待提高。水性涂料对底材表面清洁度和施工过程的要求较高,因水的表面张力大,所以污物易使涂膜产生缩孔。水性涂料对抗强机械作用力的分散稳定性差,输送管道内的流速急剧变化时,分散微粒被压缩成固态微粒,使涂膜产生麻点。(6)水性防腐蚀涂料从根本上说是借助于成膜树脂的亲水化。树脂亲水化途径有自乳化与外乳化两种。无论哪种途径都必须引进含亲水性官能团的物质,在自交联体系中,涂料成膜一般亲水官能团依然游离,并没有交联转化成疏水链段,这样不可避免会影响涂膜的耐介质性、耐腐蚀性等性能。如何将这些亲水官能团在成膜后转化为疏水基团是当前研究工作需要高度关注的问题之一。(7)环保方面有待提高。由于水性体系中使用了乳化剂和其他小分子助剂,可能对环境存在一定的影响,有待寻找新型高性能乳化剂和其他助剂使涂料在使用过程中更加环保。
水解氯也称活性氯,是生产工艺中未闭环完全的不纯物,易被微量的水水解。
可水解氯也称活性氯,是生产工艺中未闭环完全的不纯物,易被微量的水水解。它水解产生HCl,并生成羟基(-OH)。HCl的存在对环氧树脂固化物的耐腐蚀性,电气绝缘性和高温电性能产生负效应;羟基的存在影响固化物的耐水性,受潮后固化物机械强度下降。可水解氯的存在还会影响树脂的固化速度。
环氧树脂因具有优异的加工性能,高耐热性能,优良的电气性能及高性价比在电子电器领域有着广泛的应用。尤其在电子封装材料中,环氧树脂以其性能优势成为多种电子封装产品的首选原材料。环氧树脂作为覆铜板和PCB板,环氧塑封料,环氧包封料,导电胶,贴片胶,填充胶等产品的基础原材料,为保证终端产品的性能,通常都会要求环氧树脂的氯含量尽可能的低。
环氧树脂:
环氧树脂(Phenolic epoxy resin),分子式为(C11H12O3)n,又称人造树脂,是一类分子结构中含有两个以上环氧基团的有机高分子聚合物,一种热固性塑料。它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物,具有优良的绝缘性能、力学性能及化学稳定性等。被广泛用于粘合剂、涂料等领域。
环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。
由环氧氯丙烷与双酚A或多元醇的浓缩聚集而来。根据查询环氧树脂性质得知,氯是由环氧树脂中的环氧氯丙烷与双酚A或多元醇的浓缩聚集而来,是一种热固性树脂。环氧树脂是一种高分子聚合物,分子式为(C11H12O3)n,是指分子中含有两个以上环氧基团的一类聚合物的总称。
耐高温的环氧树脂胶粘剂主要应用在:电子、模具、机械、汽车、、领域、
特点:双组份、透明、环保、易操作、
常见的一般都是树脂、和固化剂双组份组成的一种常温固化胶粘剂、也有单组份环氧树脂胶粘剂、不过是加温固化的、
操使用操作:树脂和固化剂的配比:1:1的量混合搅拌均匀后就会产生反应、并开始固化
1小时左右表干初固、24小时后才能100%固化、如景大QIS-5011就是此类型的环氧树脂、奈高温胶粘剂、
1.耐高温的环氧树脂胶粘剂主要应用在:电子、模具、机械、汽车、、领域、2.特点:双组份、透明、环保、易操作、3.常见的一般都是树脂、和固化剂双组份组成的一种常温固化胶粘剂、也有单组份环氧树脂胶粘剂、不过是加温固化的、4.操使用操作:树脂和固化剂的配比:1:1的量混合搅拌均匀后就会产生反应、并开始固化,1小时左右表干初固、24小时后才能100%固化、如景大QIS-5011就是此类型的环氧树脂、奈高温胶粘剂、
耐高温环氧树脂胶粘剂应用面很广泛喔!粘接金属?陶瓷、玻璃都有很好的效果,甚至石材、木材
改性环氧树脂胶粘剂及制备方法,克服了一般环氧胶粘剂的脆性、耐温性差的缺点,其主要技术特征是以聚氨酯预聚物改性环氧树脂(A组分)与自制的固化剂(B组分)按10∶1~1∶1(重量比)的比例配制成耐高温、韧性好、反应活性大的固化体系。其中聚氨酯预聚物为端羟基聚硅氧烷和二异氰酸酯按一定比例在一定条件下反应制成异氰酸酯基团封端的聚硅氧烷聚氨酯预聚物,再采用此聚氨酯预聚物对环氧树脂进行改性处理。而自制的固化剂由二元胺、咪唑类化合物、硅烷偶联剂,无机填料以及催化剂组成。此改性环氧树脂胶粘剂可室温固化,在200℃下可长期使用,或-5℃固化耐温150℃;粘接强度达15-30MPa;T型剥离强度达35-65N/cm,具有优异的耐油、耐水、耐酸、碱、耐有机溶剂的性能,可粘接潮湿面,油面及金属、塑料、陶瓷、硬质橡皮、木材等。⑴涂料领域应用于汽车:底盘底漆、部件漆,槽车内壁涂料应用于容器:食品罐内、外壁涂料,贮槽内外壁防腐涂料,压力罐防腐应用于工厂设备:设备、管道防腐涂料,冰箱、洗衣机外层涂料,电器设备绝缘涂料应用于土建:桥梁防腐涂料,钢结构防腐涂料,水坭制品防渗涂料,地坪涂料,装饰涂料,功能涂料、钢丝网水泥闸门应用于船舶:底货仓内壁涂料,海上集装箱涂料,钢铁部件防腐涂料应用于其它:钢家具粉末涂料,电阻元件粉末涂料,钢制部件粉末涂料,阀体防腐、重防腐超耐磨陶瓷,屏蔽立式管道泵、太阳能热水器、太阳能电池板、武器⑵复合材料领域应用于汽车:玻璃钢车壳,玻璃钢地板,玻璃钢槽车,控制系统仪器仪表电器零部件,显示器,汽车干式点火线圈,玻璃钢部件、防滑粒方向盘套、环氧树脂局部加强材料、应用于工厂设备:玻璃钢氧气瓶,玻璃钢贮槽,玻璃钢容器、管道,模具,螺旋浆,织机箭杆,飞机蜂窝结构件,引擎盖,辊筒,轴,装机基础找平,自流平地坪、电磁线圈,先导阀、玻璃零部件、玻璃钢泵阀,电碳制品、建筑工程结构件、机用传动装置部件应用于绝缘材料:覆铜板,玻璃钢板、管、棒,变压器,继电器,高压开关,绝缘子,互感器,阻抗器,电缆头,电子器件、元件的密封或包封和塑封,报警器、固体电源、FBT回扫变压器、聚焦电位器、摩托车、汽车等机动车辆点火线圈、电子、电器零部件、发光二极管,信号灯,全封闭蓄电池,电机封装,温度变送器、录音机磁头、线路板封闭、集成电路、二、三极管分立器件、无源滤波器、LED的结构封装、封装太阳能电池板、电源组件、IC 调节器和固态继电器、煤矿安全巡查系统、本质安全型模块、自动重合器应用于体育用品:玻璃钢安全帽,球拍,高尔夫球杆,钓鱼杆,保龄球,雪撬,冲浪板,玻璃钢赛艇、帆船、赛车、躺椅、曲棍球杆应用于其它:飞机机身、直升机螺旋叶片,风力发电机叶片,医学仪器、手术刀柄,心脏起搏器、工艺品 珠宝、阀门密封件、水工建筑工程、场致发光屏、混凝土抗磨层、保温材料、动物模型、航天飞行器、船用尾轴、舵轴、化学木材、塔身加固、磁悬浮列车轨道、太阳能电池乐器、环氧装饰品、玻璃钢帐篷杆具、刀柄、窗户、家具、泵、拐杖、显卡、红外滤光器、数字显示器、矩阵辐射器、发光二极管与光电二极管、实验室台面、彷真树、预制磨石 道路桥梁路面⑶粘接剂领域应用于:室温快速固化韧性环氧树脂粘结剂,导电胶,常温固化静电植绒粘合剂、光学结构胶、沙狐球胶、化学锚固胶、真丝的高功能化、人工花、磁力书写板、汽车维修胶、石材胶等。⑷增韧环氧树脂在胶粘剂中的应用以增韧环氧树脂为基础,配以功能性填料和固化剂而形成的高分子合金胶粘剂克服其性脆、冲击性、耐热性差等缺点。在机械、电子、电器、航天、航空、涂料、粘接等领域得到了广泛的应用,有万能结构胶之称。1、固化体系的选择环氧树脂的固化剂有胺类、酸酐等,通常固化以胺类为主,有电性能要求的以酸酐类为常用.以咪唑类为促进剂。伯胺和仲胺含有活泼的氢原子,很容易与环氧基发生亲核加成反应,使环氧树脂交联固化。固化过程可分为三个阶段:1)伯胺与环氧树脂反应,生成带仲胺基的大分子2)仲胺基再与另外的环氧基反应,生成含叔胺基的更大分子3)剩余的胺基、羟基与环氧基发生反应酸酐在环氧树脂的羟基、微量水和含羟基化合物的作用下开环,生成的羧基与环氧基加成得到酯基,酯化反应生成的羟基和环氧树脂的羟基在高温时催化环氧开环发生醚化反应,这样,开环一酯化一醚化不断反复进行,直至环氧树脂交联固化,这就是酸酐的固化机理。咪唑是含有两个氮原子的五元环,一个氮原子构成仲胺,另一个氮原子构成叔胺,既可用作环氧树脂的固化剂,又可用作环氧树脂固化的促进剂。可在中温固化环氧树脂,却有优良的耐热性和力学性能,能与芳胺固化剂相媲美,只是耐介质性和耐湿热老化性稍有逊色。咪唑类固化剂的分子含有一个仲胺基和一个叔胺基,对环氧树脂的固化可分为两步进行,首先是仲胺上的活泼氢同环氧基加成,然后是叔胺催化环氧树脂的均聚反应,固化反应有两个放热峰.分别是60℃和1110℃。为改善其耐湿热老化性.可加入少量的芳胺。2、填料的选择研究胶粘剂的耐热性能除了与体系的基础聚合物、硫化交联剂等组分的类型、品种和分子结构有关外,还与体系所选用的耐热性填料有密切关系。配方中合适地引入耐热性填料往往会使体系的耐热性获得明显的改进。常用的耐热填料有经表面改性的气相法Si02、表面处理的Zn0、Fe203和Al2O3等。经表面处理后的填料可明显地提高其耐热性,例如采用经(MeSi)2NH处理的白碳黑为填料的硅橡胶体系.即使经250℃表化48hr,其抗伸强度为9.3Mpa,伸长率为335%,如采用未经表面处理的同种白碳黑为填料的相同硅橡胶体系。经上述相同条件下热老化后,其拉伸强度和伸长率分别为6.6Mpa和228%。可见。耐热填料对硅橡胶的耐热性能的提高是非常显著的。各种炭黑、纳米级碳酸钙、钛白粉等。具有补强、改善各种物理性能、增稠、降低成本、着色等作用。填料对降低产品的收缩。减小内应力。提高综合性能具有重要意义。如石英粉能提高胶层硬度和灌封胶的流动性;硅微粉可提高粘接强度但储存期会变短:加入少量铬酸锌可提高耐湿热和耐盐雾性能:加入325目的玻璃鳞片具有优异的耐腐蚀和耐水性;加入硫酸钙晶须,有明显的增韧和增强作用,提高耐热、耐沸水作用,阻燃剂、三氧化二锑提高氧指数,264抗氧剂,延长固化物使用寿命。3、高分子合金修补材料美国Belzona Molecular公司l952年成立,针对工业设备腐蚀、磨损、老化等问题而最早致力于研究、开发并生产高分子修补材料的跨国机构,其生产的高分子合金修补剂首先应用于化工设备腐蚀后的修复。德国TipTop公司其产品在皮带维修方面应用始终处于世界领先地位,是全球最大的冷、热硫化橡胶材料的制造商。其产品有:橡胶粘接所需的冷硫化粘接材料和热硫化粘接材料、PvC粘接剂、滚筒包胶材料及工具设备、输送带修复材料等等。其它如Devcon,E—wood公司等均有类似产品.是指以高分子聚合物与特殊功能填料(如石墨、二硫化钼、金属粉末、陶瓷粉末和纤维)组成的复合胶粘剂材料(或称修补剂,也可称粘涂剂)。该新型材料可实现高的结合力、优良的耐腐蚀性、耐磨性和高抗压强度.同时还具有密封性能好、耐潮湿和绝缘等性能。故广泛应用于机械、建筑、电子、轻工、石油、化工、舰船、航空等工业部门装备维修领域,一方面可以直接作为铆接、焊接、螺纹连接以外的一种新型连接方法;另一方面可以对任何装备发生磨耗、破裂、划伤、腐蚀、侵蚀、尺寸超差、铸造缺陷等情形。在最短的时间内予以修复。高分子合金修补剂又被称为“冷焊”或“工业上的医生”,它可修补零件上的各种裂纹、划伤、尺寸超差、铸造缺陷等,也可用作零件磨损、腐蚀的尺寸恢复和预保护涂层。高分子合金的聚合物主要还是以增韧环氧树脂为主体配制而成的,其它诸如改性丙烯酸酯、聚氨酯等也可作为胶粘剂材料,也可对上述聚合物进行改性,赋予材料新的特性。而不同功能填料的加入。则赋予材料导电、导热、导磁、耐温、隔热等功能,对零件无热影响区和变形,使用方便,可以不加热、不加压。室温操作,不需要专用设备,修理快速简便,并可现场作业,有通用型、耐磨型、减摩型、耐腐蚀型、快速固化型、湿面修补型、耐高低温型、高强度型。导电与绝缘灌封型等多种修补剂,适用于修补金属、橡胶、陶瓷、混凝土等物质。用户可根据设备的材质、运行温度、压力、化学介质、停机时间、现场环境等因素,灵活的选用相应产品。它在船用轴类、泵类、管道类设备上应用广泛,具有操作简单、性能可靠、缩短坞修周期的特点。重点应用如下:1)船用主机、辅机的修复;2)换热器、油仓加热管的修复和密封;3)尾轴、舵销、舵销座孔的修复再生和防腐防磨处理;4)螺旋桨叶片的修复再生及抗气蚀腐蚀;5)甲板、罐体的防腐蚀保护4、改性环氧结构胶1)建筑用结构胶钢板加固胶。植筋胶,锚固胶,纤维增强胶2)航空航天用结构胶胶膜.糊状。室温固化,加温固化4)其它工业用胶耐环境,耐高低温,耐振动,耐老化等五、参考文献(略)
氧化镁主要用作阻燃剂。传统的阻燃材料被广泛用作由含卤聚合物或含卤阻燃剂组成的阻燃混合物。但一旦发生火灾,由于热分解和燃烧,会产生大量烟雾和有毒腐蚀性气体,阻碍灭火和疏散,腐蚀仪器设备。:氧化镁是一种碱性氧化物,具有碱性氧化物的性质,属于胶凝材料。白色或类白色粉末,无嗅、无味、无毒。它是一种典型的碱土金属氧化物,化学式为MgO。熔点为2852℃,沸点为3600℃,密度为3.58g/cm3(25℃)。氧化镁用于制造玻璃、染料纸浆、酚醛塑料等。重质氧化镁用于碾米工业的烧磨和半辊。该建筑用于制造人造化学地板、人造大理石保温板和隔音板。塑料工业作为填料,主要用于高级润滑油、高级制革及碱提级、食品级、医药、硅钢级、高级电磁级、高纯氧化镁等近十个品种。
自1994年首次称氧化镁为绿色安全中和剂以来,氧化镁因为具有较强的缓冲性能(PH值最高不超过9),较高的活性和吸附能力,以及处理使用安全可靠不具腐蚀性等独特性能,作为一种环境友好型的第三种碱的弱碱,在环境领域得到了广泛的应用。
表面活性剂是一类加入很少量就能使表面张力降低的有机化合物,具有分散、润湿、渗透、增溶、乳化、起泡、润滑、杀菌等诸多性能,广泛应用到国民经济的各个领域,有“工业味精”之美称。作为一种重要的化工产品,表面活性剂的应用范围还在继续拓展,消耗量也日趋增大。在使用过程中,大量含表面活性剂的废水、废渣不可避免地排入了水体、土壤等环境,随之而来的环境污染问题也越来越严重,表面活性剂在环境中的大量存在会影响环境。当表面活性剂的浓度达到1 mg/L时,水体就可能出现持久性泡沫,这些大量不易消失的泡沫在水面形成隔离层,减弱了水体与大气之间的气体交换,致使水体发臭。当表面活性剂在水体中的浓度超过CMC后能使不溶或微溶于水的污染物在水中浓度增大或者把原来不具有吸附能力的物质带入吸附层,这种增溶作用会造成间接污染,改变水体性质,妨碍水体生物处理的净化效果。另外,当进入污水处理厂污水中的表面活性剂达到一定浓度时,会影响曝气、沉淀、污泥硝化等诸多过程,饮用水中含有过多表面活性剂时会有不良的嗅和味,有油腻感。含表面活性剂废水的大量排放,不仅直接危害水生环境,杀死环境中微生物,抑制了其它有毒物质的降解,同时还会导致水中溶解氧的减少,尤其含氮、磷的表面活性剂会造成水体富营养化。此外,有的表面活性剂在土壤中的吸附能力很弱会向下迁移,其污染地下水的潜在危害性也是不容忽视的。表面活性剂对水生植物的影响表面活性剂对水生植物的损伤程度与其浓度有关,当水体中表面活性剂含量稍高时就会影响水体中的藻类和其他微生物的生长,导致水体的初级生产力下降,从而破坏水体的水生生物的食物链。植物在表面活性剂污染环境中,POD(过氧化物酶)是起主导作用的保护酶,它通过增加植物组织的木质化程度,使细胞的通透性降低等方式来保护细胞,但当植物处于逆境中超过生物体内在的防御能力时,就会发生损伤。表面活性剂引起的急性毒性最终会导致植物细胞膜的通透性增加,胞内物质外渗,细胞结构逐渐解体,SOD(超氧化物歧化酶)、CAT(过氧化氢酶)、POD活性及叶绿素含量下降。表面活性剂对水生动物的影响人们对表面活性剂危害的最初认识就是来自其对河流湖泊中的水生生物的危害。表面活性剂主要通过动物取食、皮肤渗透等方式进入动物体内,当表面活性剂的浓度过高时,可以进入鳃、血液、肾、胆囊和肝胰腺,并对它们产生毒性影响,鱼类十分容易通过体表和鳃吸收表面活性剂,随着血液循环分布到体内各组织和器官,鱼类经表面活性剂染毒后,大多数的血清转氨酶和碱性酸磷酶活力均升高,表明表面活性剂对鱼类的胆囊和肝胰腺产生了不良影响。家用洗涤剂在远低于日常使用量的浓度下就会对鱼类有急性毒性,损伤程度与其受毒时间成正比,并且家用洗涤剂溶液存放一段时间后对鱼类的急性毒性作用无明显降低,因此很多学者认为含有大量家用洗涤剂的生活污水排放到自然水体中后将对水生动物产生持续的有害影响。遭受污染的鱼类通过食物链进入人体,对人体内各种酶产生抑制作用,影响肝脏和消化系统,降低人体对疾病的抵抗能力