首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

高等代数论文格式

发布时间:

高等代数论文格式

数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将自己工作经验加以总结转而写一些数学教研论文。 数学教研论文是对课程论,教学法,教育思想,教材及教育对象心理加以研究。但无论哪一种数学论文都要遵从论文格式及写作规律。1撰写数学论文应具有原则1.1创新性作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。1.2科学性科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。1.3规范性规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。2撰写数学论文忌讳2.1大题小作论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。2.2关门写稿一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的 论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。2.3形式思维混乱科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。3关于数学论文选题 数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:(1)需要性 选题应从社会需要和科学发展的需要出发。(2)创新性 选题应是国内外还没有人研究过或是没有充分研究过的问题。(3)科学性 选题应有最基本的科学事实作依据。(4)可行性 选题应充分考虑从事研究的主客观条件,研究方案切实可行。4关于数学论文文风4.1语言表达确切从选词,造句,段落,篇章,标点符号都应正确无误。4.2语言表达清晰简洁语句通顺,脉络清楚,行文流畅,语言简洁。4.3语言朴实语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。

高等代数行列式论文范文

按第1列展开,得到Dn=-1*1*1*Dn-2=-Dn-2=Dn-4=...=(-1)^[(n-2)/2]D2 当n是偶数时 =(-1)^[(n-2)/2](-1)=(-1)^(n/2)或=(-1)^[(n-1)/2]D1 当n是奇数时=(-1)^[(n-1)/2]×0=0

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

高代代数小论文格式

论文格式与论文参考文献格式科学技术报告、学位论文、学术论文以及其它类似文件是主要的科技信息源,是记录科学技术进步的历史性文件.为了统一这些文件的撰写、编辑、印刷、出版、发行,便于处理、储存、检索、利用、交流、传播.现将中华人民共和国国家标准GB 7713-87中有关论文格式、参考文献著录格式摘录如下:

论文格式1.论文格式——题目:题目应当简明、具体、确切地反映出本文的特定内容,一般不宜超过20字,如果题目语意未尽,用副题补充说明。2.论文格式——作者:署名的作者只限于那些选定研究课题和制订研究方案、直接参加全部或主要研究工作、做出主要贡献,并了解论文报告的全部内容,能对全部内容负责解答的人。其他参加工作的人员,可列入附注或致谢部分。3.论文格式——摘要:摘要应具有独立性和自含性,有数据结论,是一篇完整的短文。摘要一般200-300字.摘要中不用图、表、化学结构式、非公知公用的符号和术语。4.论文格式——正文:论文中的图、表、附注、参考文献、公式等一律采用阿拉伯数字编码,其标注形式应便于互相区别,如图1,图2-1;表2,表3-2;附注:1);文献[4];式(5),式(3-5)等.具体要求如下;4.1论文格式——图:曲线图的纵.横坐标必须标注量、标准规定符号、单位(无量纲可以省略),坐标上采用的缩略词或符号必须与正文中一致。4.2论文格式——表:表应有表题,表内附注序号标注于右上角,如“XXX1)”(读者注意:前面“”引号中的实际排版表示方式应该是“1)”在“XXX”的右上角),不用“*”号作附注序码,表内数据,空白代表未测,“一”代表无此项或未发现,"0"代表实测结果确为零

数学论文的格式和其他论文格式差不多。这是我获广东中山市三等奖的数学论文,供参考。保障一年级数学学业成绩经验点滴 [论文摘要]:近年来,中山市古镇镇小学阶段年度的期末考试成绩出现了这样的一个怪现象:一年级的数学成绩与其他年级相比,平均分一直居于下游,学困生占的比例也不小。本人通过提问学生及亲身教学经历从数学能力、数学习惯、心理因素三方面来分析导致成绩不理想的原因,并提出几点经验。[关键词]:数学能力 因素 经验近年来,中山市古镇镇小学阶段年度的期末考试成绩出现了这样的一个怪现象:一年级的数学成绩与其他年级相比,平均分一直居于下游,学困生占的比例也不小。按理说,试卷难度、题量与其他年级相比,差别并不大,试题的编排也不会超“课程标准”,导致成绩不理想的原因根源在哪?我们对一年级两个班的学生进行研究,具体做法是:在单元测试结束后,每班将学生分为优生、中等生、学困生三类,面批试卷,采取个别谈话形式,让他们自己根据错题分析出错原因,结果大致是:优生的原因分析 没细致审题,忘记检验,考试时间长中等生的原因分析 不理解题意,时间不够,计算出错学困生的原因分析 不识字,不会做通过上面的调查、提问和我们平时在实践教学中的观察、了解,我从数学能力、数学习惯、心理因素三方面来分析导致成绩不理想的原因:(一) 数学能力方面1、 认字能力不强 不理解题意, 《语文课程标准》中提到:认识常用汉字1600—1800字,其中800—1000字会写。对于刚刚入学的一年级学生来说,学生识字量不大,认字能力与理解能力还处于成长阶段,并且同年级的学生,认字与理解题意能力也因人而异。当数学试卷中出现了不认识的字时,部分学生做题的心理与思维会受到影响,有的学生还会“误解”题意,导致将题做错。比如,一年级下册期末练习测试卷中有这样一道题: 部分学生不认识“原”“卖掉”“剩”这几个字,导致有学生将本子算式列成“60—28=32”又比如:一年级下册中段测试卷中有这样一道题“和50相邻的数是( )和( )”如果学生不理解“相邻”的意思,或者把“相邻”误解成“相近”或“相似”等意思,那就很难把正确的数写出来。2、形成固定思维《数学课程标准》中提到:学生能根据观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据,给出证明,举出反例。但在解决数学问题时,学生很容易对例题进行简单的模仿,忽略对题目数学信息的梳理和对数学过程及意义的理解,导致做错题目。如:女孩买了一个 ,找回17元,女孩付给售货员多少元?关于“人民币找钱”问题,教材例题运用的是减法,而这道题灵活地将数学信息调换。但是,有部分学生不能“举一反三”,依旧参照例题形式,用减法来解决,将算式列成:63—17=46(元)3、 应试技巧没掌握应试技巧主要指在应对考试时,考生为更好的解答各类题而采取的一些特殊的方法。应试技巧在考试中起了极大的作用。比如,在做题时,有的同学因为一道难题苦苦思索,坚持到底,最后时间不够,后面“一片空白”,导致失分惨重;也有的同学在面对选择题、连线题等类型题时,因为不能确定答案,就“留下空白”,类似这样的情况而失分的同学比比皆是,令人遗憾。(二) 数学习惯方面审题不细致,检验习惯没养成由于一年级学生的年龄以及心理特点具有特殊性,,他们还没有完全形成细致审题与再次细心检查的习惯。即使老师苦口婆心地一次次强调“认真审题,做完检查”,但大多数学生在真正测试时往往粗略地看了一遍题目后就开始答题,甚至有的学生根本没看题目就答题。比如:“把下面的数按从小到大的顺序排列”,有部分学生没审题,会把数按“从大到小”的顺序排列。在检查阶段,大部分学生虽然从头至尾地看了自己的答案与题目,但也没能比较好地发现错误。(三)心理因素1、态度 健康 注意力因素影响 一年级学生入学不久,学习态度还没有完全端正,学习责任心还不够强。遇到难题时,部分学生“知难而退”,不愿意动脑筋;还有的学生在考试时身体不舒服,如:肚子痛、想上厕所。这也会对他的成绩造成影响;有的学生在规定的一小时内,注意力不能较长时间集中,在测试过程中会发现学生会玩手指、玩橡皮而忘记答卷。2、依赖心理强对于一年级学生来说,他们的分析、思考、解决问题的能力,才刚起步。心理学研究表明,一年级学生学习的依赖心理强。而部分家长辅导时“坚守阵地”, “陪坐”身旁,只要发现孩子不会做题,就“义不容辞”,再三教导。家长的做法更加促进孩子的依赖性,导致学生在做试卷时,产生惧怕或抵抗心理。有一年级的孩子到我面前反映:“老师,我不喜欢考试。”我问其原因,孩子天真地回答:“考试的时候,我不会,没人教我;但在家里,父母会教我。”针对以上的种种问题,教师要想保障学生的期末学业成绩,根据我三年低年段的亲身教学实践经验和日常的观察,总结出了以下几点经验:(一)阅读的日常训练 数学同样离不开阅读,教师可以利用晨读、午读时间鼓励孩子多阅读,让孩子学会“置身于其境”。通过多阅读,增加学生识字量,提高想象能力。平时鼓励一年级学生通过绘声绘色地阅读,让自己“入情入境”,从而帮助孩子理解文章意思,进而更好地理解数学题意。(二)审题与检验习惯的日常训练 一年级的孩子就像一张白纸,你在上面画什么就收获什么。好习惯容易形成,不好的习惯也容易形成。因此,教师要把握一年级这关键期,把审题与检验习惯植根于孩子脑中,好习惯受用一生。在日常练习中,要与孩子一起读题,读到学生理解为止。教师读题时要注意语调的变化、声音高低、停顿,关注到后进学生。而且每次读题时都要强调:“认真读题,读到明白为止。” 计算时,告诉孩子“检验”就是计算的一部分,没有“检验”的计算是不完整的。教师还要采用奖励制度,激励能够检验的孩子。(三)应试技巧的日常训练在日常练习训练中,强调学生做题先易后难,合理分配时间,注意“抓大放小”,把握分值大和不费时的题。在单元测试过程中,老师要观察学生答题过程,特别关注后进生的答题情况。当发现哪个孩子不懂得技巧时,课后,老师要单独找他谈心,并通过多次训练,用各种机制表扬他,激发他的应试意识。(四)学习责任心的培养学生的学习态度决定学习状态及学习效果。责任,是一个人应该而且必须承担的义务;而责任心则是强制自己去承担这些义务的心理意识。对于一年级学生来说,培养责任心是当务之急。教师要利用班会,讲故事,家校联合,培养对孩子对自己对他人负责等办法,促进孩子的责任心进一步加强。(五)发散思维的培养为了培养学生的思维能力,扎实基础知识,提高学生解决问题的能力,不少教师采用题海战术,通过反复练习,使学生熟练掌握各种题型的答题技巧,这样的做法显然不符合新课改的要求。教师在日常教学中要注重知识的形成过程,以“生”为主体,多给学生表达的机会;还要针对不同层次学生“因材施教”,注意“培优扶差”,促使优生更优,后进生不掉队。(六)独立作业的培养在处理家庭作业时,家长应培养孩子独立作业的习惯。在遇到孩子不懂的问题时,我认为家长应做到以下几点:先鼓励孩子继续读题,理解题意,给孩子足够多的时间,让孩子进行多方位的思考。如果还不会做,要让孩子表达出哪一方面弄不懂,家长在这一方面进行一点点地暗示或启发,点到为止,然后继续让孩子再思考,当孩子解决出问题时就会收获成功的喜悦感,以后就会更加积极地动脑。总之,想要保障一年级学生的学业成绩,需要教师把工作落实在日常教学中的点点滴滴,这样学生才能养成良好的答题习惯。

每个学校都有他规定的格式的,你最好问下你们学校的领导吧。来源:金鼎论文

高等数学论文格式模板

数学论文范文参考

数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

( 一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

( 二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

( 一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

( 二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

( 三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:

〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.

〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.

〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.

浅谈高中数学文化的传播途径

一、结合数学史,举办文化讲座

数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、

二、结合教学内容,穿插数学故事

数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、

三、结合生活实际,例解数学问题

作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、

四、结合其他学科,共享文化精华

科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、

五、结合课外活动,小组合作探究

由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、

六、结合教学评价,纳入数学考试

虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。

每个学校都有他规定的格式的,你最好问下你们学校的领导吧。来源:金鼎论文

在一篇论文写作中,要写好的论文,就要有格式。这是我为大家整理的手写小论文格式,仅供参考!手写小论文格式篇一 《浅谈数学 教育 的数学价值及数学意义》 摘要:本文从数学的实用价值中分析数学教育对人的作用,然后分析了数学教育中数学 文化 的作用及对人的发展的意义。 关键词:数学教育;教育价值;数学文化;数学意义 数学,从小学到初中、高中,都是必须要学的一门重要的课程。甚至到了大学,很多专业依然要开设高等数学。为什么我们要学这么多的数学呢?数学在一个人的教育经历中究竟扮演者怎样的角色呢?数学对于一个人的发展又有怎样的意义呢?先进技术对社会生活带来的好处,一般我们是很容易看到的,但是在其背后,基础科学所起到的作用却常常被忽略,尤其是数学的作用。关于数学的意义,我们很难找到一个既正确又简明易懂的解释。在数学教育中,数学意义的认识在不断深入和完善。在数学教学中,部分师生常思考“数学有没有用?”这个问题。对于数学,我们应该在考虑实用意义的同时考虑它对人的发展的意义。下面我们将从数学的实用价值,数学的文化价值,及数学教育的数学意义方面来进行分析。 一、数学的实用价值 在每个人从小到大的求知过程中,数学总是占据着非常大的比例,也起着非常重要的作用。那么,人究竟为什么要学习数学呢?对于这个问题有这样的一个回答,“数学告诉我们如何理解周围的世界,如何处理日常生活中的问题,如何为将来的职业作准备”。[1]数学有一个非常重要的特征,就是它的研究对象具有抽象性。数学研究对象的抽象性使得数学的应用非常广泛。在数学中,我们要确定一个定理或者一条规律必须靠严格的逻辑推理,仅仅靠一些实验数据或者平常的 经验 总结 是远远不够的,更别提依靠直觉或想象了,这是数学具有的一种严谨的精神。从历史上来看数学是非常重要的,回顾一下科学发展的历史,我们就会发现,数学的进步影响着天文学、物理学、生物学的很多重大发展。比如黎曼几何是爱因斯坦的相对论发展的基础,而微积分的创立,则促进了物理学的发展,特别是牛顿力学中万有引力定律的发现,诸多名人的话语也让我们感受到数学在科学发展历史上起到的重要作用。恩格斯说:数学是研究现实世界中的数量关系和空间形式的科学。这句话告诉我们,数学为我们探索未知的科学提供了一种分析问题、处理问题的工具。在现代化的今天,数学看似已经没那么重要了。其实,数学仍然是迅速发展的高科技的重要基础,而且高科技的发展也使得数学的应用领域越来越广泛。电子计算机的发明与应用使人类进入了信息时代,而电子计算机的发明应归功于数学家图灵和冯诺依曼。在计算机出现之前,数理逻辑中就有一种图灵机,图灵机是计算机的一种简单的数学模型,它诱发了电子计算机的产生。在计算机技术的迅速发展及其在其他领域越来越广泛的应用中,数学都起到了基础性的作用。还有很多例子,如医学上的CT技术、网络 系统安全 技术、指纹的识别、网络系统安全等,在这些技术的背后,数学都起着十分重要的作用。在这些领域中,数学常常是解决实际问题时用到的关键的基础工具。数学的实用价值还表现在我们现代社会生活的各个方面,数学己经成为我们生活的基本工具,比如表示空气污染程度的百分数,天气预报中用到的降雨概率,买房、卖车、购买股票等投资活动中所采用的具体方案策略,购物过程中的各种打折方式的换算,房屋装修设计和装修费用的估算,对媒体中各种信息的统计分析,都需要数学知识。没有数学,现代人几乎不能生活,至少不能更好地生活。人们一旦掌握了公式,就能对具体的、实际的、直观的生活世界中的事件作出实践上所需要的,具有经验的确定性的预言。……因此数学化及其所建立的公式对我们的生活来说具有决定性的意义[2]。 二、数学文化及其对人的发展的意义 “为什么教”的问题,是数学文化在中小学数学教育中需要阐述的主要问题。就其作用来说,数学文化能够对学生进行能力训练,培养学生的学习兴趣,促进德育教育的开展,并且在学生综合素质培养等各方面都起着非常重要的作用。数学文化教学可以改造学生的数学观念,提升学生的数学素养;学生良好的数学素养能够提高学生的整体素质,帮助他们更好地适应未来社会的发展。数学教育可以培养人的思维,而这种思维习惯会影响人的一生。朱正先生提到:“我在学术研究方面所做的工作,凭仗的也就是当年数学“ 体操 ”所训练出来的思维能力。我的一本《1957年的夏季:从百家争鸣到两家争鸣》,……其实是得益于数学的。”[3]王蒙先生在著作《我的人生哲学》里有一段话,“回想童年时代花的时间一大部分用在做数学题上,这些数学知识此后直接用到的很少,但是数学的学习对于我的思维的训练却是极其有益的。”[4]两位文学家的话,是对“为什么学数学”这个问题给出的一个完美的回答。它使我们明白了一个道理:一个人工作以后所从事的职业即使是和数学没有多少关系,原来他学过的数学的定义定理也几乎全忘光了,然而那时数学的学习对他思维的训练依然是有用的,对他后来的工作也一直会起到潜移默化的作用。数学能够使人养成说话、做事严密的好习惯,数学能够使人变得更加深刻,更加富有智慧。所有的学校都要求学生从小学到中学学数学、练数学,通过大量的数学知识的学习与数学题目的练习,来培养学生思维的逻辑性与严密性。数学本身的逻辑性与严密性可以训练人的科学的 思维方式 ,而科学的思维 方法 是现代人生存与发展所必备的。有人将数学文化对数学课堂教学所产生的作用做了总结:即利用数学文化培养学生的理性精神,利用数学文化培养学生的科学精神,利用数学文化培养学生的创新精神,利用数学文化培养学生的应用意识[6]。随着社会的发展与科学技术的进步,在选拔人才的时候,越来越多的用人单位意识到,一个人的能力,即分析问题、解决问题的能力以及创新能力,对于用人单位来说是非常重要的。在中小学里学数学时要求的数学证明的严密推理,数学问题求解的有理有据,这种概念定理证明的准确无误与严谨的推理训练是必要的和有意义的,是数学教育中数学文化与数学意义的体现,也是良好数学素养养成的必经过程。这些数学的训练能够提升、开发青少年的心智与潜能,对青少年一生的影响是深刻的、长远的,这种作用也是任何其他学科难以取代的。 参考文献: [1]ICMI Study 14:Applications and Modeling in Mathematics Education-Discussion Document.ZDM 2002,34(5),229-239. [2][德]埃德蒙德.胡塞尔.欧洲科学危机和超验现象学[M].张庆熊,译.上海译文出版社,2005:57. [3]朱正.字纸篓[M].广州:广东人民出版社,2000. [4]王蒙.我的人生哲学[M].北京:人民文学出版社,2003. [5]张楚廷.数学文化[M].北京:高等教育出版社,2006. [6]张敬书.数学文化与数学课程改革[J].重庆师范学院学报(自然科学版),2002,(3):59-62. 手写小论文格式篇二 《探讨高等数学在高职教学中的作用》 摘要:数学教育的相互配合,提高数学教育中的作用越来越受到高等教育工作者的关注。数学在高等教学中不仅可以增加学生对数学知识的深入了解,也有助于提高学生的数学思维修养,提高对数学学习的兴趣,激发学习热情,起到挖掘学习潜能、提高学习动力的作用。目前,高等数学虽然是大部分专业的必修课,但学生在学习数学方面还存在着一系列问题,是造成学习数学动力不足的原因。 关键词:数学,高等数学,学习动力 0.引言 数学教育的相互配合,提高数学教育中的作用越来越受到高等教育工作者的关注。数学在高等教学中不仅可以增加学生对数学知识的深入了解,也有助于提高学生的数学思维修养,提高对数学学习的兴趣,激发学习热情,起到挖掘学习潜能、提高学习动力的作用。 1.当前高职院校学生学习数学动力不足的原因 高校在深化教学改革中,面临着适应国家对大学生的培养提出的更新更高的要求,在培养大学生的过程中对学生学习潜能问题。目前,高等数学虽然是大部分专业的必修课,但学生在学习数学方面还存在着一系列问题,是造成学习数学动力不足的原因。其表现为学生学习目标不明确,仅仅为了考试合格而学习数学。还有部分学生认为对所学的知识无用,造成了不少大学生对学习数学的厌倦等负面情绪。再者多数学生在学习数学中意志力不坚强,难以适应课程难度,导致了学生不能投入到学习当中去。 2.高等数学学习中存在的意义 在近代数学发展的历史上,定义、定理基本都是以西方人的名字命名的,没有留下中国数学家的痕迹,这不能不说是一种遗憾。但是,我国古代数学发展史是有过无比的辉煌的。西汉时期的《九章算术》、南北朝时期数学家祖冲之的圆周率的近似值在世界上是独领风骚!同同时,我国古代还涌现出了刘徽、朱世杰、秦九韶等很多世人瞩目的数学专家,令炎黄子孙感到无比自豪。在近代,陈景润、华罗庚、吴文俊、等也是我国人民的骄傲。可见,在高等数学教学中,适时利用相关的数学历史,能极大地激发学生学好高等数学的历史使命感,又能增强学习高等数学的学习动力。学习高等数学有助于体现数学价值和使用价值,呈现高等数学的逻辑体系结构。要让学生认识到学习高等数学不是一门单调枯燥的基础学科,而是一种处处体现充满着简洁美、奇异美。对称美抽象美的美学,种种简介的公式,奇异的定理,都是用来活要气氛,激发兴趣的工具。从高等数学的发展中就能看出,实践是数学生产、发展的土壤,不断出现的没有解决的问题是维持数学成长发展的力量源泉。在科技发展的今天,高等数学的应用时无处不在,无论是军事、经济、金融,还是建筑、医疗等领域,都离不开高等数学的应用。。例如:我国的“神七”升空,奥运“鸟巢”的建筑等都处处体现出高等数学是科学之母的魅力。 3.学习高等数学的对策与作用 引导学生建立学习数学的正确目标,是提高学习数学兴趣的基本保障,一方面能帮助学生端正 学习态度 ,明白大学学习对于实现人生目标价值的所在,可从先辈的 事迹 中得到教育和鼓励,激发和明确学习数学的目的。另一方面,让学生认识到学习高等数学有助于提高大学生的个人素质,从而符合社会发展的需要。高等数学是相辅相成的,专业知识的学习需要历史知识帮助分析与思考,不仅有利于帮助加深高等数学概念的理解,还有利于帮助学生加深对高等数学的应用价值和文化价值的理解,从整体上把握数学知识。大学数学教育的目的不在于使大学生单纯地懂得一些数学知识 ,而在于让他们能够运用这些知识去解决所遇到的各种问题。。数学是思维的体操 ,通过学习数学,培养学生的思维。通过将素质教育渗透到数学教育之中 ,树立起适应时代发展需要的人才观、质量观和教学观 ,以先进的科学与文化知识成果教育学生 ,使大学生较早地参与科学研究和社会、生产实践 ,普遍提高大学生的人文素质、科学素质、创新精神和创业、实践能力。从而帮助学生真正理解高等数学,欣赏高等数学,发挥高等数学对社会建设的作用。高等数学这个词是从苏联引进的,欧洲作为高等数学的发源地,并没有这样的说法。这个高等是相对于几何(平面、立体,解析)与初等代数而言,从目前的一般高校教学,高等数学主要指微积分。一般理工科本科学生,还需要学习更多一些,包括概率论和数理统计,线性代数,复变函数,泛函分析等等,这些都可以放到高等数学范畴里面。当然,这些只是现代数学的最基本的基础,不过,即使是这个基础,就可以应付很多现实的任务。 这里只 说说 微积分,一言而蔽之,微积分是研究函数的一个数学分支。函数是现代数学最重要的概念之一,描述变量之间的关系,为什么研究函数很重要呢?还要从数学的起源说起。各个古文明都掌握一些数学的知识,数学的起源也很多很多,但是一般认为,现代数学直承古希腊。古希腊的很多数学家同时又是哲学家,例如毕达哥拉斯,芝诺,这样数学和哲学有很深的亲缘关系。古希腊的最有生命力的哲学观点就是世界是变化的(德谟克利特的河流)和亚里斯多德的因果观念,这两个观点一直被人广泛接受。前面谈到,函数描述变量之间的关系,浅显的理解就是一个变了,另一个或者几个怎么变,这样,用函数刻画复杂多变的世界就是顺理成章的了,数学成为理论和现实世界的一道桥梁。 微积分理论可以粗略的分为几个部分,微分学研究函数的一般性质,积分学解决微分的逆运算,微分方程(包括偏微分方程和积分方程)把函数和代数结合起来,级数和积分变换解决数值计算问题,另外还研究一些特殊函数,这些函数在实践中有很重要的作用。这些理论都能解决什么问题呢?下面先举两个实践中的例子。 举个最简单的例子,火力发电厂的冷却塔的外形为什么要做成弯曲的,而不是像烟囱一样直上直下的?其中的原因就是冷却塔体积大,自重非常大,如果直上直下,那么最下面的建筑材料将承受巨大的压力,以至于承受不了(我们知道,地球上的山峰最高只能达到3万米,否则最下面的岩石都要融化了)。现在,把冷却塔的边缘做成双曲线的性状,正好能够让每一截面的压力相等,这样,冷却塔就能做的很大了。为什么会是双曲线,用于微积分理论5分钟之内就能够解决。 我相信读者在看这篇 文章 的时候是在使用电脑,计算机内部指令需要通过硬件表达,把信号转换为能够让我们感知的信息。前几天这里有个探讨算法的帖子,很有代表性。Windows系统带了一个计算器,可以进行一些简单的计算,比如算对数。。计算机是计算是基于加法的,我们常说的多少亿次实际上就是指加法运算。那么,怎么把计算对数转换为加法呢?实际上就运用微积分的级数理论,可以把对数函数转换为一系列乘法和加法运算。这个两个例子牵扯的数学知识并不太多,但是已经显示出微积分非常大的力量。实际上,可以这么说,基本上现代科学如果没有微积分,就不能再称之为科学,这就是高等数学的作用 【参考文献】 [1]放丽娟.大学生学习动力不足的原因及对策.河南工业大学学报(社会科学版)2007,(6). [2]邓燕.浅析数学史在高等数学教学中的作用.高等理科教育,2006,(4). [3]顾明远.高等教育与人为精神.高等教育研究,2002,(1). 手写小论文格式篇三 《国际航运金融业务的发展与借鉴》 一、前言 在经济全球一体化趋势的影响下,各国之间不断加强彼此的来往和贸易交流,在国家与国家之间的贸易往来中,由于国家所处半球和方位的不同,采用国际航运进行贸易往来是尤为重要的,也是当前国际贸易中普遍采用的一种方式。航运业是资金密集型的产业,无论是在航运的基础设施建设、船舶的制造还是航运管理方面,都需要投入大量的资金,货物产品交流的背后实际上是国际资金流动的过程,因此国际航运在从贸易往来开始便有着十分密切的关系。针对当前国际航运金融业务的发展现状,本文展开了关于国际航运金融业务的发展与借鉴研究,具有重要的现实意义。 二、国际航运金融业务体系的发展现状 1.银行团体贷款的发展 伴随着信息网络化时代的来临,世界逐渐连成一个整体,各国之间的贸易往来日益密切,因此国际航运船舶也逐渐向大型化发展。现阶段国际航运金融业务体系在社会主义市场经济体制下得到明显的发展,而港口建设的投入资金也随之加大,因此港口建设也日趋完善,硬件设备不断齐全,在新的形势下船舶融资逐渐成为航运企业在发展进程中的主要需求。在港口建设不断完善的基础上,由于航运贸易的日益频繁以及航海业潜存的风险,航运贷款数量相对较大,由此航运金融业务中银行团体贷款逐渐成了船舶融资中的主流,通过不同的方式组织多家银行共同参加贷款的融资方式,使银行团体贷款在经济一体化的趋势下发展起来。 2.融资租赁的发展 在经济文化不断发展以及科学技术不断进步的基础上,融资租赁的方式也逐渐在航运金融业务中发展起来。航运庞大的流通市场,逐渐吸引国内外金融机构对航运业展开融资业务,从而达到提升自身经济效益的目的。就目前国际航运业船舶融资市场的发展现状,其融资市场逐渐呈现出成熟的发展趋势。近年来,在新建的船舶融资中,银行贷款以及融资租赁的形式比较多,船东仅提供小部分资金便可,国际上较为著名的银行也都设有专门化的航运融资部门,其中全球最大的航运船舶融资机构在德国。 三、国际航运金融业务的借鉴方法 1.加强对航运金融工具的完善 就目前我国航运金融业务的发展现状而言,航运金融体系在发展进程中逐渐呈现出单一的趋势,相关的银行承担了航运的主要融资功能,并且以投资模式,逐渐成为航运金融市场中的发展动力。因此估计航运金融业务在发展进程中,相关管理人员应认识到其重要性,利用我国航运金融市场的巨大流动性,有针对性的设立航运产业投融资管理机构,发行国际航运的投资基金,对大型的航运船舶进行股权式的投资,并以资金注入的方式,加强对航运金融工具的完善。 2.提高航运金融政策的扶持 在国际航运金融发展过程中,根据韩国和新加坡的航运金融业务发展情况,能够了解两国在航运金融业务发展过程中,得到了国内政府相关的扶持模式,并且取得了一定的成果,因此可知航运金融业务受国家的政策影响较大。所以,我国航运金融业务在发展进程中,国家相关政府有必要对航运金融业务进行相应的扶持,在航运融资方面,可以通过加大银行出口信贷的方式,拓宽航运金融业的投融资 渠道 ,从而降低航运金融的税收,优化航运船舶的登记程序。另外,政府还可以鼓励航运金融行业设立产业投资基金,从而降低航运金融企业上市交易费用。 3.拓展银行等国际航运金融功能 就目前我国银行在国际航运金融业务中发挥的作用情况而言,我国银行在航运金融业务中所发挥的作用并不大,不仅是由于我国银行自身专业性不强,同时也是由于航运金融业务的风险问题,其与航运船舶金融业务的机构合作不够密切。因此在借鉴其他国家的成功经验时,我国应不断扩展银行等国际航运金融功能,提高我国银行与航运金融业务的合作能力,并培养专业化的航运景荣人才,从而充分发挥银行在航运金融业务中的作用。 四、结语 航运金融主要是指航运企业在货物交流运作中,因发生的融资、货币保管和资金交易等经济活动,而产生的相关业务的总称,航运金融在国际航运金融业务中占有十分重要的地位,能够影响国际航运的发展情况,以及国际金融市场的稳定发展。本篇关于国际航运金融业务的发展与借鉴研究,主要从银行团体贷款的发展、融资租赁的发展两方面,对国际航运金融业务体系的发展现状进行分析,并从加强对航运金融工具的完善、提高航运金融政策的扶持、拓展银行等国际航运金融功能方面,着重对国际航运金融业务的借鉴方法进行研究,具有实际的参考价值。 猜你喜欢: 1. 手写小论文格式模板 2. 手写论文格式 3. 1500字手写小论文格式 4. 3000字手写论文格式模板 5. 2000字手写论文的基本格式的模板

高等代数论文外文文献

因为只有教材名,无法给出标准,您可以参考以下内容选择对应的格式。不同教材在参考文献中表示方式:1、连续出版物:主要负责者。文献题名[J]。刊名。出版年份,卷号(期号):起止页码。2、专著:主要负责者。文献题名[M]。出版地:出版者,出版年:起止页码。3、论文集:主要负责者。文献题名[C]。主编。论文集名。出版地:出版者,出版年:起止页码。4、学位论文:主要负责者。文献题名[D]。保存地:保存单位,年份。5、报告:主要负责者。文献题名[R]。报告地:报告会主办单位,年份。

[1] 北京大学数学系几何与代数教研代数小组 编《高等代数》(第二版)北京高等出版社,1988[2] 熊廷煌 主编《高等代数简明教程》武汉湖北教育出版社,1987[3] 霍元极 主编《高等代数》北京师范大学出版社,1988[4] 丘维声 主编《高等代数》(上册)高等教育出版社,1996[5] 关治,陈精良《数学计算方法》北京清华大学出版社,1990[6] 邓建中,刘之行 《计算方法》西安交通大学出版社,2001[7] 张元达 《线性代数原理》上海教育出版社,1980[8] 蒋尔雄,等《线性代数》人民教育出版社,1978

相关百科

热门百科

首页
发表服务