实证分析论文写法如下:
1、阅读教材。
首先要具备一定的计量经济学基础。计量理论的学习推荐阅读《计量经济学导论》,计量经济学的一些基本理论要掌握,如果觉得《计量经济学导论》有难度,可以通过这本书先学习一些基础的计量知识,比如什么是内生性,稳健性等等。
在模型实现时,stata代码的撰写可直接参考陈强老师的书,这本书非常具有实用性,可以自学,随用随查即可。计量经济学中经济学才是核心,计量只是方法,不要把重心放错。
2、前沿文献。
阅读教材的同时可以多看一些实证类的文章加深理解,同时多多学习实证的套路,在阅读教材和前沿文献中不断积累,形成自己的想法,也就是论文的核心——创新点。
文献可以从知网进行查找,国内顶级的期刊有经济研究、中国工业经济、管理世界等(进入知网首页,搜索栏右侧点期刊,即可查看整个期刊中的文章)。
3、搜集数据。
在打好基础后,接下来要找做实证的数据了,根据自己的论文选题去查找数据。数据是实证论文重要的部分,如果数据找不到或者数据质量差,那么论文选题即使再创新,实证部分也无法完成。
因此不妨在找数据的过程中确定自己的选题。至于数据来源,可以从中国统计年鉴、中国城市统计年鉴以及一些数据库进行查找。
关于我国城镇居民储蓄存款模型的计量经济分析 (我的姓名等信息就省略了啊 呵呵) 内容摘要:本文利用我国1978年以来的统计数字建立了可以通过各种检验的城镇居民储蓄率的模型,对我国城镇居民储蓄存款情况进行实证分析。通过对该模型的经济含义分析得出各种主要因素对我国城镇居民储蓄存款数量的影响程度,并针对我国城镇居民存款储蓄现状提出自己的一些建议。 关键词:居民储蓄存款 实证分析 主要因素 一、问题的提出 1978年以来,随着我国国民经济的飞速发展,我国的居民储蓄也出现高速增长的态势。进入90年代以后.我国居民储蓄存款余额始终保持在两位数的增长速度。我国居民储蓄存款持续增长这一经济现象引起国内理论界的广泛关注。这对我国经济的进一步增长有着有利的一面,但也会带来一定程度的负面影响。所以国家相继出台了一系列积极的财政和货币政策,以刺激国内消费和投资需求,分流储蓄,但是居民储蓄依然持续增加。由于居民的储蓄存款直接影响着居民的消费行为,影响着货币的供给量,进而间接影响着国家经济的发展,宏观调控的力度和效果,因此,对我国居民存款储蓄问题的深入研究就显得尤为重要,这有助于帮助大家认清现状,做出合理的决策。虽然我们作为本科阶段的学生对这个问题的理解和研究还不够深入和透彻,但对此问题的探索有利于我们更好的掌握专业知识,了解国情,提高实际操作水平和理论联系实际、发现问题、分析问题、解决问题的能力。 二、文献综述 我国有很多学者建立了许多的储蓄模型来分析各因素对居民储蓄的影响程度,但分析结论的差异很大。整理以前的研究成果,一个社会的储蓄总量受很多因数的影响,根据经典西方宏观经济学理论,储蓄水平主要受收入因数、利息率、物价水平、收入分配等因数的影响: 1.收入因数 收入是决定储蓄的重要因数,收入的变化会直接决定着储蓄的变化。在其他条件不变的情况下,储蓄与可支配收入之间存在着正方向的变化关系,即居民的可支配收入增加,储蓄量增加;个人可支配收入减少,储蓄量减少。可支配收入是指居民户在支付个人所得税之后,余下的全部实际现金收入。 2.利息率 传统经济学认为,在收入即定的条件下,较高的利息率会使储蓄增加。在本文中,我们选用的利息率是根据当年变动月份加权平均后的一年期储蓄存款加权利率。 3.物价水平 物价水平会导致居民户的消费倾向的改变,从而也就会改变居民户的储蓄倾向。本文用通货膨胀率来考察物价水平对储蓄率的影响。 4.收入分配 凯恩斯认为,收入分配的均等化程度越高,社会的平均消费倾向就会越高,社会的储蓄倾向就会越低。在国际上,衡量收入分配平均状况最常用的指数是基尼系数。 三、变量的选取及分析 目前我国正处于改革时期,各种不确定性因素很多。因而,要分析各种因素对中国居民储蓄行为的影响,必须立足于中国的国情。1998年后,中国经济运行进入了一种新的体制约束状态,出现了明显的供给过剩,需求对经济增长的约束与拉动作用明显增强,投资、消费膨胀的内在动力明显不足;同时,由于我国市场机制尚不健全,市场经济发育不成熟,市场体制的控制力还有限,从而不能形成一种有效地传导机制。市场化的改革对人们的经济行为、心理行为带来了很大影响,银行开始考虑贷款风险,投资者开始考虑投资回报,而消费者也开始考虑最佳的消费时机和预期收入。这说明,我们的微观经济层面已生长出一种内在的约束机制,然而社会各个方面对这些积极的因素还很不适应,微观主体内在约束机制较强与宏观经济市场传导机制不畅之间的矛盾,导致了投资行为受阻、消费行为审慎和储蓄持续稳定增长。当前影响我国居民储蓄的因素有很多,概括起来有以下几点:居民对社会经济形势的预期、可选择的投资渠道、信贷消费的发展、利率因素的影响、"假性"存款的影响、消费领域的信用等级、高收入阶层消费状况、就业形势压力、体制改革、居民收入水平等。 由于我现在的时间和能力有限,只能综合考虑,选取一部分变量进行研究,而且为了方便查找数据,只建立我国城镇居民储蓄存款模型进行研究。本文选用当年的收入增长率来考察收入因数对储蓄率的影响。用城镇居民的储蓄率作为被解释变量。另外还选取了中国1979年到2002年的各年的城镇居民收入的基尼系数、一年期储蓄利率和通货膨胀率作为解释变量。 四、数据及处理 本文模型数据样本为从1979-2002年。 年份 城镇居民储蓄率 城镇居民收入增长率 一年期储蓄利率 通货膨胀率 城镇居民基尼系数 1979 0.06368087 0.264869934 3.78 0.02 0.16 1980 0.08740586 0.220385089 5.04 0.059804 0.15 1981 0.07093626 0.104176446 5.4 0.024052 0.15 1982 0.08105586 0.139165412 5.67 0.01897 0.15 1983 0.09963501 0.093723563 5.76 0.015071 0.16 1984 0.13025584 0.245357008 5.76 0.027948 0.19 1985 0.15161502 0.184241122 6.72 0.08836 0.19 1986 0.17454542 0.280700971 7.2 0.060109 0.2 1987 0.2175453 0.167515864 7.2 0.072901 0.23 1988 0.17862152 0.219728929 7.68 0.185312 0.23 1989 0.2721202 0.199827095 11.12 0.177765 0.23 1990 0.32760614 0.123579703 9.92 0.021141 0.24 1991 0.31032443 0.163667824 7.92 0.028888 0.25 1992 0.3016907 0.228819425 7.56 0.053814 0.27 1993 0.3199061 0.311233327 9.26 0.131883 0.3 1994 0.42486435 0.397210898 10.98 0.216948 0.28 1995 0.44898036 0.261076104 10.98 0.147969 0.28 1996 0.40903477 0.198208003 9.21 0.060938 0.29 1997 0.30935015 0.127739779 7.17 0.007941 0.3 1998 0.25777978 0.108852141 5.02 -0.026 0.295 1999 0.21234608 0.134557035 2.89 -0.02993 0.3 2000 0.1239205 0.125688358 2.25 -0.01501 0.32 2001 0.24155306 0.14364071 2.25 -0.0079 0.33 2002 0.29897822 0.173106495 2.03 -0.01308 0.319 数据来源:各年份的《中国统计年鉴》 注:Y代表城镇居民储蓄率 X1代表城镇居民收入增长率 X2代表一年期储蓄利率 X3代表通货膨胀率 X4代表城镇居民基尼系数 五、模型及处理 基于以上数据,建立的模型是: Y=β1+β2X1+β3X2+β4X3+β5X4+u β1度量了截距项,它表示在没有收入的时候人们也要花钱消费,储蓄率为负。 β2度量了当城镇个人可支配收入率变动1%时,储蓄增长率的变动。 β3度量了当利率变动一个单位,其实也就是1%时,储蓄的增量的变动。 β4度量了当通货膨胀率变动一个单位,储蓄增量的变动。 β5度量了基尼系数对储蓄率的影响。这也是本文的重点变量。 u是随机误差项。 对Y做回归 利用eviews最小二乘估计结果如下 Variable Coefficient Std. Error t-Statistic Prob. C -0.264646 0.045525 -5.813154 0.0000 X1 0.317426 0.175678 1.806864 0.0875 X2 0.024054 0.003688 6.523093 0.0000 X3 0.024476 0.205508 0.119099 0.9065 X4 1.127523 0.149318 7.551127 0.0000 R-squared 0.897971 Mean dependent var 0.234065 Adjusted R-squared 0.875298 S.D. dependent var 0.116109 S.E. of regression 0.041002 Akaike info criterion -3.360748 Sum squared resid 0.030260 Schwarz criterion -3.113901 Log likelihood 43.64860 F-statistic 39.60525 Durbin-Watson stat 1.541473 Prob(F-statistic) 0.000000 根据以上结果,初步得出的模型为 Y=-0.264646+0.317426X1+0.024054X2 +0.024476X3+1.127523X4. 1.经济意义的检验 该模型可以通过初步的经济意义的检验,系数的符号符合经济理论。 2.统计检验 从表中可以看出,显然通货膨胀率的系数通不过T检验,R2=0.897971, 2值为0.875298,模型的拟合情况较好。F检验的值为39.60525,整个模型对储蓄率的增长影响是显著的。 3.多重共线性的检验 从F值可知此模型整体显著,但是分析各个变量后发现X1和X3不显著,可能存在多重共线性,运用消除多重共线性的逐步回归方法我们可以得到要放弃X3 这个变量,重新做回归分析得到: Y=β1+β2X1+β3X2+β5X4+u Variable Coefficient Std. Error t-Statistic Prob. C -0.271487 0.041322 -6.570056 0.0000 X1 0.314787 0.113799 2.766177 0.0119 X2 0.024487 0.003178 7.704986 0.0000 X4 1.145280 0.137886 8.305987 0.0000 R-squared 0.897094 Mean dependent var 0.229740 Adjusted R-squared 0.881658 S.D. dependent var 0.115517 S.E. of regression 0.039739 Akaike info criterion -3.461967 Sum squared resid 0.031583 Schwarz criterion -3.265624 Log likelihood 45.54360 F-statistic 58.11739 Durbin-Watson stat 1.556309 Prob(F-statistic) 0.000000 从新模型的整体效果来看,R值和F值都很好,而且各个变量的t统计量也表明各个变量对储蓄率的增长都有显著影响。 因此模型可设为Y= -0.271487+0.314787X1+0.024487X2+1.145280X4 4.异方差性检验 对新模型进行异方差性的检验,运用white检验,得到如下结果: White Heteroskedasticity Test: F-statistic 2.669433 Probability 0.054505 Obs*R-squared 11.50596 Probability 0.073942 Obs*R-squared的计算结果是11.50596,,由于选用的没有交叉乘积项的方式,所以自由度为7,在0.05的显著水平下,查表得 (7)=12.59〉11.50596,所以接受原假设,即该模型不存在异方差性。 5.自相关性的检验 从上表可知DW值为1.556309,且样本容量n=24,有三个解释变量的条件下,给定显著性水平 =0.01,查D-W表得,d =0.882,d =1.407,这时有d 希望以上网站内容能帮到你 计量经济学是用定量 方法 研究经济活动规律的一门科学,在经济学科中居于最重要的地位。下面是我为大家推荐的计量经济学论文,供大家参考。计量经济学论文 范文 篇一:《形成性评价计量经济学》 1形成性评价的可行性及必要性 我国医学类院校最早成立统计学本科专业的是第四军医大学,随后中山大学、潍坊医学院、滨州医学院等院校也相继成立了统计学本科专业。该专业培养目标是培养适应未来经济社会与科技发展需要,德、智、体、美等全面和i皆发展,掌握统计学的基本理论和方法,可熟练运用计算机分析数据,能在卫生行政机关、卫生防疫及医药相关部门从事统计调査、统计分析工作,或在医药卫生、 教育 机构从事科研与教学等工作的应用型专门人才。 我院统计学专业本科(卫生统计方向)自2006年开始招生,其培养友案涉及的主干课程可分为医学类(含基础医学_、临床医学和预防医学)、统计类、数学类、经济管理类、计算机类、外语及人文社会科学7类课程。其中计量经济学课程作为经济管理类的核心课程之一,属于统计学专业的必修课程。 本课程的学习使学生在已经学习的统计学和经济学的基础上进一步理解、掌握计量经济分析的方法和基础理论,通过模型研究经济问题的数量规律,对经济问题的前景做出正确的预测,提高学生发现问题、分析问题、解决问题的能力以及运用统计学理论与方法分析、解决相关领域实际问题的能力。传统的计量经济学课程评价采用的是终结性评价,即学生成绩由期末考试卷面成绩和平时成绩(含考勤、作业)组成。 多年的教学实践表明,终结性评价存在重视结果而忽略过程、评价主体单一化、评价内容缺乏全面性等诸多缺陷,而“一考定乾坤“的不公平评价方式也给学生带来了负面的影响,造成一定的考前突击、考试作弊现象ra,不利于教学质量和学生素质的提高。迄今为止,尚没有形成性评价在计量经济学课程中应用的文献,但形成性评价在其他学科教学中的广泛应用表明,它对学生成绩的提高具有明显效果,使学生的学习动机和学习自信心得到增强M。因此,有必要对计量经济学课程应用形成性评价的具体方案进行探讨。 2调查结果分析 自制“计量经济学课程形成性评价调查问卷”调查学生对形成性评价的认识、态度等,以便改进。在2011级开设计量经济学课程的本科学生中,抽取两个班级进行整群调査。发放调査问卷80份,收回有效问卷80份,有效问卷回收率100%。调i。 问卷调査结果显示,首先是认识方面,91.25%的学生认为形成性评价的主体应该是教师与学生相结合;其次是态度方面,90.00%的学生对计量经济学这门课程感兴趣,98.75%的学生认为计量经济学考核实行形成性评价有必要和很有必要;再次是授课效果评价方面,87.50%的学生对教师授课的总体评价是优;最后从结果来看,95.00%的学生认为通过本学期的学习,对计量经济学的掌握有进步,87.50%的 学生 自我评价 分数达80分及以上。 由此可见,在计量经济学考核中实施形成性评价得到了绝大多数学生的支持,收到了良好的效果。在保证教师评价与学生自我评价相结合的基础上,充分贯彻了“以学生为中心”的教育理念,可提高学生的学习兴趣和信心,增强学习效果,促进教学质量和学生素质的提高。 3结语 综上所述,形成性评价在计量经济学考核中具有广阔的应用前景,是顺应教学改革潮流的现代化考核方式。在实际应用中,需要优化计量经济学教学内容,改革 教学方法 和教学手段,可先通过构建和完善形成性评价结合终结性评价的课程评价体系,然后逐步过渡到形成性评价。同时,形成性评价在计量经济学课程考核中应用的成功 经验 对医学类院校统计学专业其他课程考核方面的改革有很强的借鉴意义。 计量经济学论文范文篇二:《试谈独立学院计量经济学》 1独立学院计量经济学课程的阈限概念分析 计量经济学是一门运用回归模型分析数据的方法论学科,本科阶段的初级层次计量经济学课程的主要内容涵盖计量经济学数据、一元线性回归模型、多元线性回归模型、回归估计量的理论,异方差、序列相关等。根据计量经济学理论和方法的发展,将计量经济学的阈限概念具体可归结为以下3组概念:第一,回归假设。回归假设是为分析回归结果引入的合情合理的假设,在不同数量的假设下能够得到回归系数估计量的不同性质。回归假设是整个回归方法的基础,一切回归有关的参数估计和假设检验都和回归假设紧密相关,同时违反回归假设的情形也是计量经济学理论发展的重点,因此回归假设是计量经济学的阈限概念之一。第二,回归系数估计量的无偏性、有效性和一致性。无偏性、有效性和一致性是评价估计量的基本标准,回归系数估计量的无偏性、有效性和一致性是回归理论的核心,整个初级计量经济学的理论最终都归结为回归系数估计量的这3个性质,同时,这3个性质又与回归假设紧密相关,故回归系数估计量的无偏性、有效性和一致性是计量经济学的阈限概念之二。第三,异方差。异方差是违背回归同方差假设时的回归结果表现,无论对于横截面数据还是时间序列数据,异方差的出现是回归分析的常态,因此对于异方差的检验和修正是初级计量经济学的重要内容,也是经济金融实证研究中需要关注的基本问题,故异方差是计量经济学的阈限概念之三。以上三个阈限概念是学生掌握计量经济学理论的关键,同时在概念上具有紧密的联系,下文将基于此探讨计量经济学课程的教学方式。 2基于阈限概念的独立学院计量经济学教学注意事项 由于独立学院的教学方式主要强调理论与方法的应用和实践,因此基于阈限概念的独立学院计量经济学教学的总体原则仍立足于阈限概念的理解与实际运用,具体地,需要注意以下三个方面:第一,合理安排教学内容。为了突出3大阈限概念,在首节导论课即向大家提出3大阈限概念,在介绍回归分析的原理和方法时,详细的说明每个假设的用途,使学生理解每个假设的目的和本质,进而在回归估计量三个性质的教学中把握无偏性、有效性和一致性的具体条件,并明确理解异方差这一违反假设的情况。在具体教学过程中,以充分的时间介绍三大阈限概念及其联系,从而建构整个计量经济学的知识和方法体系。第二,运用软件展示阈限概念的具体应用。独立学院的计量经济学教学应完全从应用性角度出发,运用软件展示计量经济学概念、原理和方法。对于3大阈限概念,可用40%左右的时间解释概念产生的原因与本质,而60%左右的时间结合典型例题讲解如何运用计量经济学软件如Eviews解决具体的回归分析建模和假设检验问题。第三,通过尝试撰写学术论文强化阈限概念的综合运用。撰写实证性的学术论文是进行计量经济学方法综合训练的较好途径之一,可以通过让学生从选择题目开始,通过收集数据,建立回归模型,参数估计,假设检验以及进行可能的异方差和序列相关检验和修正等等来感受计量经济学解决综合问题的方法和程序,通过写作论文的方式加以体现,然后交流讨论,以深化对计量经济学阈限概念的理解。计量经济学教学经过以上三个方面的具体设计,帮助学生牢固掌握计量经济学的阈限概念,提升解决实际问题的能力。 3基于阈限概念的独立学院计量经济学教学实践 以浙江大学城市学院为例浙江大学城市学院是一所以培养应用型人才为导向的独立学院,也是我国建立最早、最有名的独立学院之一。计量经济学课程是浙江大学城市学院金融学专业的必修课程,在大三上学期开设。浙江大学城市学院的计量经济学课程以提高学生建立回归模型能力为教学目标,基于Eviews软件进行教学,每周教学学时为理论(教师讲授)与上级实验(学生练习)各2学时,特别注重学生对计量经济学阈限概念的理解与掌握。因此,研究浙江大学城市学院的计量经济学教学对研究独立学院计量经济学课程的教学具有借鉴意义。浙江大学城市学院的计量经济学教学内容为传统的初级计量经济学教学内容。教师在讲授回归假设时着重解释回归假设的设立目的与合理性,并通过软件讲解回归假设的验证,使学生理解并掌握回归假设。在回归系数估计量的无偏性、有效性和一致性教学中,通过详细分析三个性质所依据的不同假设,使学生理解三个性质所应具备的条件从而掌握线性回归估计量理论。特别地,专门安排约10学时左右的实验课进行计量经济学论文撰写与分析的交流,要求学生自选题目,收集数据,建立回归模型,进行估计并检验异方差、序列相关以及模型设定问题,写作小论文并在课堂上展示交流。为评价教学效果,选取2010级学生1个教学班共24人进行满分为5分的教学满意度打分,学生对计量经济学课程全部项目的满意度均达到97%以上,总体平均满意度超过99%。由此可见,浙江大学城市学院应用统计课程的教学效果非常成功。 4结论 回归假设、回归系数估计量的无偏性、有效性和一致性和异方差是计量经济学课程的三大阈限概念。基于阈限概念的计量经济学教学在于合理安排教学内容,运用软件展示阈限概念的具体应用以及通过尝试撰写学术论文强化阈限概念的综合运用。浙江大学城市学院计量经济学课程的教学实践分析表明本文提出的基于阈限概念的计量经济学教学方式对独立学院的计量经济学课程教学具有很好的适用性及学生满意度。 计量经济学论文范文篇三:《高校经济类专业计量经济学课程研究性教学路径》 一、引言 2世纪美国伟大的教育家、以倡导研究性教学闻名全球的博耶(Ernest L. Boyer)教授认为,“最好的大学教育意味着积极主动的学习和训练有素的探索,使学生具有推理及思考能力。所有的教师都应不断改进教学内容和教学方法,通过创造性的教学鼓励学生积极主动地学习”。 2005年,教育部在《关于进一步加强高等学校本科教学工作的若干意见》中首次明确提出要“积极推动研究性教学,提高大学生的创新能力”,“大力加强实践教学,切实提高大学生的实践能力”,“要让大学生通过参与教师科学研究项目或自主确定选题开展研究等多种形式,进行初步的探索性研究工作”。 二、文献综述 近年来,国内已经有一批高校从整体上推进实施“研究性教学”,已被证明是“创新人才培养的成功模式”之一。众多高校老师、学者已将“研究性教学”理念融入教学改革中,积极探索适合“研究性教学”相配套的课程结构体系、教师教学激励机制、创新学分制度等制度,为之有效开展提供了制度保证。 刘赞英等(2007)对国外大学研究性教学的经验进行了全面的 总结 对比,为我国大学开展研究性教学提供了启示与借鉴[1]。刘智运(2006)认为,研究性“教”与“学”反映的是一种互动式师生关系。教师不仅仅是传授现有知识,更重要的是要创设有利于学生参与研究和主动探索的情境,鼓励、引导和帮助学生学习、思考和研究。同时学生也不是被动接受式学习,而是积极主动的求知过程,同时需要与教师展开及时的互动交流[2]。王岚等(2007)认为,研究性教学既是一种教学理念,又是一种教学模式,还是一种教学方法。 它是一种将教师研究性教学与学生研究性学习、课内讲授与课外实践、依靠教材与广泛阅读、教师引导与学生自学有机结合并达到完整、和谐、统一的教学[3]。龙慧灵等(2010)通过研究发现,研究性“学”要求学生在“学”中“研究”,在“研究”中“学”,学生的研究与教师的研究有所不同,学生的研究更多的是强调研究和探索的过程,通过这一过程实现知识的学习,问题发现与解决能力的培养[4]。王锋等(2014)认为,研究性“学”与研究性“教”是相辅相成、不可分割的统一体,其内在联系通过“研究”这一纽带得以体现,并从平等合作的师生关系、研究性 学习方法 激励、教师团队建设、过程管理以及体系评价配套等方面提出有效实施研究性教学的策略[5]。 此外,关于研究性教学模式,肖萍等(2005)、刘茂军(2005)、蒋乃华(2010)和李胜清等(2009)分别提出了“以课题为中心的模式”、“溯源法模式”、“‘一体两翼’模式”和“‘四位一体’模式”[6][7][8][9]。 三、计量经济学的课程性质 计量经济学的重要性不言而喻。诺贝尔经济学奖获得者R?Clein说过:“计量经济学已经在经济学科中居于最重要的地位。”著名经济学家P?Samuelson也曾经指出,第二次世界大战后的经济学是计量经济学的时代。从1969年第一届诺贝尔经济学奖授予计量经济奠基人R?Frisch和计量经济建模之父J?Tinbergen以来,95%以上的获奖成果都与计量经济学有着密切的联系。 我国教育部高等学校经济学学科教学指导委员会也将“计量经济学”列为经济学类各专业的八门核心课程之一。计量经济学是一门理论性、应用性、实践性、体验性很强、难度较大的综合性课程,跟高等数学、概率论、数理统计和宏微观经济学联系密切,Kennedy认为“理论计量经济学家和应用计量经济学家缺乏充分交流会导致理论与实践的严重脱节,甚至不知所措[10] ”。Guy Orcutt曾说过,“做计量经济学就像试图通过播放收音机来研究电的规律”,足见其难度。因此,本科阶段的学习会更侧重于计量经济实证研究,其对统计数据的质量要求很高,否则计量模型再完美,也只能是“垃圾进去,垃圾出来”,而收集数据本身在一定程度上又是一门艺术。 四、研究性教学的路径选择 1.强化大学新生研究性训练,为高年级研究性学习做好铺垫。 《计量经济学》是经济类专业学生的必修课,如果前期没有一定的研究训练,突然实施研究性教学会让学生无法适应,手足无措。因此建议一入学就给学生灌输研究性学习的理念,让学生从传统教育模式的“被动接受者”向“主动参与者”转变。具体做法就是在大一阶段设立“新生讨论课”项目,由相关专业有经验的教师主持研讨课,课程围绕学科专业引导、开拓学生视野、激发科研兴趣的目的展开,重在让学生了解科研对于专业学习的意义。同时,也可以尝试在学科基础课如微观经济学、宏观经济学、应用统计学等课程中适当介入研究性学习训练,使基础学习阶段的学生对研究性学习有所启蒙。用麻省理工学院校长查尔斯?韦斯特的话说,就是“尽可能尽早把年轻人引导到科研领域”。 2.合理的时间安排和针对性的内容计划是实施研究性教学的关键。 欧美高校在计量经济学的课程设置上普遍具有多样性、层次性特征,如耶鲁大学、哈佛大学、剑桥大学、芝加哥大学、麻省理工学院等基本上都会将计量经济学分解成几门更细的课程或者分成基础、进阶、高级等不同的层次。而国内大学普遍只单一开设计量经济学这门课程,和国外相比我国各高校计量经济学课时安排相对较少。笔者调查了北京大学、清华大学、浙江大学、南京大学、复旦大学、武汉大学、吉林大学、人民大学、厦门大学、南开大学等10所具有代表性的综合性大学和西南财大、东北财大、上海财大、中南 财经 政法大学等5所财经类大学以及中国矿业大学、石油大学、中国地质大学、中国农业大学、武汉理工大学、华中农业大学等6所地矿类、农林类专业特色突出的院校,发现该门课程的学时设置大体分为48学时和64学时,学分在3~4个之间。即便是一学期64学时的安排,要让学生充分掌握计量经济学理论、方法及应用依然是非常困难的。从学期安排来看,除了个别学校安排在第四或者第六学期外,绝大多数高校安排在第五学期较为合理,一方面大二刚刚学完微观、宏观经济学和统计学原理,可以趁热打铁,有效降低遗忘效应,另一方面也可以为大学中后段的 社会实践 乃至 毕业 论文(设计)打下模型和方法的基础。 教学内容的甄选也会很大程度上影响该课程研究性教学的开展。根据教育部高教司制定的经济类本科专业课程教学基本要求,计量经济学应包括概述、经典单方程的简单线性回归及多元线性回归模型、放宽经典假定的单方程模型(包括多重共线性、异方差性、自相关性和模型设定偏误)、联立方程组模型以及应用计量经济模型等板块。 在概述部分,通过1~2篇尽可能涵盖全书主要内容的经典计量经济学学术论文介绍开始,让学生对计量经济学有一个轮廓性的认识,并初步引导学生进入研究性学习的体系中来。经典单方程线性回归模块,鉴于在统计学原理课程中已基本掌握OLS的基本方法,应侧重于剖析偏相关以及几大经典假定的阐述,这一部分以课内讲授、原理学习为主。研究性学习的重点放在后面三大模块,尤其是放宽经典假定的单方程模型篇章中的多重共线性、异方差性、自相关性部分以及应用时间序列计量经济模型篇章。 3.选择适当的配套教材,为实施研究性教学奠定基础。计量经济学的国内外教材非常多,笔者认为选取合适的教材和配套的参考书对研究性教学的效果有着相当关键的影响。教材在提供给学生系统知识的同时,也应给学生一定的面向经济实践的问题思考。因此,对该课程而言,最好能采取主、辅教材同步配套的策略,主教材以提供给学生基本理论与知识为主,在注意系统性的同时,要吸收前沿成果。辅助教材则尽可能囊括可以实时更新数据的案例为主,对经典案例的分析解读是本科生“模仿研究”的起点。 经过多年的教学实践,我校的计量经济学教学模式从最初教师主导的“理论模型方法阐述”到后来的师生交互的“计量模型+案例实践”,再到目前尝试探索学生主导的“研究性教学”,使用的教材也经历了反复的尝试和总结。建议主教材选择清华大学李子奈教授的《计量经济学》或者西南财经大学庞皓教授的《计量经济学》,配套参考书选择古扎拉蒂的《计量经济学基础》或者伍德里奇的《计量经济学导论:现代观点》以及EVIEWS软件自带的《用户手册(User Guider I、II)》,这样的组合可以很好地满足研究性教学的教材需要。 4.多方配合和资源共享为实施研究性教学提供保障。突破传统教学模式,实施研究性教学对学校、学院以及课程教学团队都提出了很高的要求。学校要制定实施研究性教学的指导意见,专门组织开展全校范围内的研究性教学研讨与交流活动,因为实施研究性教学的过程不是一两个学院、一两个专业或者一两门课程能形成氛围的,它不仅仅是教学方法与教学模式转变的过程,更是教育思想观念与教育理念革新的过程。在全校范围内推行研究性教学模式下的教学管理制度,用研究性的视野重新认识教学管理活动的目标、途径和方法,积极开展管理创新,为研究性教学的开展创造自由、开放、宽容、友好的服务软环境。学院层面也尽可能结合精品课程的建设,为开展研究性教学提供优质的教学资源,积极争取实现课程教学资源的网络化,支持并构建以精品教材为主干的教材体系建设,教育学生树立“研究为新常态”的学习观,激励学生主动探究和亲身体验以及基于真实任务的研究问题的解决[11]。课程教学团队除了依托自身的科研项目,广泛吸纳本科生参与研究外,更要结合经济现实,鼓励学生自主立项,建立系统的课程项目库。 计量经济学的研究性教学对全校范围的资源共享的要求也很高。数据共享、软件共享、图书资料共享要求完善健全的校园网络建设和管理,除了教室和实验室以外,老师学生可以随时随地访问数据库,下载更新数据,调用专业统计软件。加强改善教室、实验室、研讨间等研究性学习场所的建设力度,争取实现“小班教学”和“小组实验”,为研究性教学提供软件和硬件的保障。 5.以点串线、由线及面共同构建研究性教学的一体化架构。开设计量经济学课程的经济学学科有各种不同的本科专业,以我校为例有经济学、统计学、金融学和国际经济贸易等专业,不同专业学生的性别比例、生源类别、学科基础和专业侧重均有所不同,相同专业的班风学风也不尽一致,因此可以选择有一定的科研基础和研究能力的任课老师选择相关专业学风优良的班级进行试点。在计量经济学教学大纲范围内选择相对容易理解的知识点和相对“规范(或者标准)”的经济问题作为该课程研究性教学的起点。通过模仿标准案例,然后引导学生以小组的形式各自选择一个研究项目,要求小组(项目组)成员统一拟定立项计划书,阐明研究背景、立项意义,梳理综述文献,设定研究方法和技术路线,合理进行人员分工,最后进行研究成果展示,互相交流心得,教师在学生立项研究的过程中随时答疑解惑。 这样,多个研究项目组合串联起来,就可以形成较为完美的“4线”:前因后果线、教研反馈互动线、理论实践融合线和课内课外互补线。这种教师引导、学生自主立项研究学习的方式能够充分激发学生全方位选择研究主题、多途径收集资料,既可以为教师的科学研究提供补充信息,又可以使学生在研究过程中涉猎更多的学科领域,丰富他们的知识面;在项目负责人组织带领下,各成员分工合作,集思广益,既避免了搭便车现象,又可以极大程度上扩大学生的参与面;项目的研究过程和最终效果也可以作为整个课程考核的重要环节,从而拓展考核的内容面。 五、结语 计量经济学是一门跟现实经济社会密切相关的课程,涉及的计量方法和模型在微观领域可以和家庭(或个人)的经济行为(收入、储蓄、消费、投资等)以及企业的管理活动( 人力资源管理 、生产成本控制、营销策略制定等)等经济现象紧密结合,在经济增长、就业与通货膨胀、区域经济社会差异、财政政策与货币政策制定等宏观经济领域更是大有用武之地。既可以分析单一的横截面数据(或者时序数据),又可以研究混合数据(面板数据)。除了数值型数据,它还能对分类数据构建相应的计量模型。它不只研究经济社会的表面现象,还可以通过数据分析挖掘出现象背后的本质规律。计量经济学应用领域的广泛性为方便学生选题、开展研究性教学提供了强有力的可行性。 经济类专业的本科生学习计量经济学应侧重实证研究,在很多情况下经济理论并不能给出相关经济现象的确切答案,而唯一可行的途径便是“仔细收集数据,深入实证分析”。对于初学计量的学生来说,通过立项研究,与真实数据交手是加深理解的重要途径。因此,实施研究性教学,“弄脏学生的手,弄乱他们的桌”才能真正学会实证研究,领悟计量经济学的真谛。 猜你喜欢: 1. 关于经济发展的论文 2. 有关工程计量与计价论文 3. 有关金融计量的参考论文 4. 统计学论文范文 你收到的话麻烦发给我啊,急求啊 计量经济学实验报告参考格式: 一、介绍主题,提出感兴趣的主要问题 实验报告的前几段应该对主题进行有趣的描述。研究项目的介绍部分应该包括以下两个部分(按顺序排列): 1、主题说明; 2、对方法的描述。 二、回顾现有文献 其他研究人员可能已经研究了相关主题,所以报告的一个部分应该回顾关于这个主题的其他研究。 三、描述概念或理论框架 计量经济学的应用研究不同于统计分析,其特征之一是支持实证工作的理论结构。 四、解释计量经济学模型 开发了模型的理论结构之后,同学需要将其与经验、方法(也就是统计分析和观察方法)联系起来,这种方法在形式上被称为经济计量模型。 五、讨论估算方法 因为估计通常是假设某些统计条件成立,所以从计量经济学模型到估计可能并不完全简单。 六、详细描述数据 详细描述所使用的数据。要解决这些问题: 1、数据集是如何获得的及其来源; 2、数据的性质; 3、数据覆盖的时间范围; 4、数据收集的方式和频率; 5、观察到的结果; 6、计量经济学模型中使用的任何变量的汇总统计数据(平均值、标准差等)。 七、解释报告结果 读者可能不太了解计量经济学模型的规格、变量的规模以及其他相关信息,因此同学需要为读者提供相应的解释。 八、总结学到的东西 研究项目的结论应该综合结果,并解释其如何与报告的主要问题相关联。 一、 研究的目的要求 税收是我国财政收入的基本因素,也影响着我国经济的发展。取得财政收入的手段有多种多样,如税收、发行货币、发行国债、收费、罚没等等,而税收则由政府征收,取自于民、用之于民。经济是税收的源泉,经济决定税收,而税收又反作用于经济,这是税收与经济的一般原理。这几年来,中国税收收入的快速增长甚至“超速增长”引起了人们的广泛关注。科学地对税收增长进行因素分析和预测分析非常重要,对研究我国税收增长规律,制定经济政策有着重要意义。。 改革开放以来,中国经济高速增长,1978-2008年的31年间,国内生产总值从3645.2亿元增长到314045亿元,一跃成为世界第二大经济体。随着经济体制改革的深化和经济的快速增长,中国的财政收支状况也发生了很大的变化,中央和地方的税收收入1978年为519.28亿元,到2008年已增长到54223.79亿元,31年间平均每年增长16.76%。税收作为财政收入的重要组成部分,在国民经济发展中扮演着不可或缺的角色。为了研究影响中国税收增长的主要原因,分析中央和地方税收收入的增长规律,以及预测中国税收未来的增长趋势,我们需要建立计量经济模型进行实证分析。 影响税收收入的因素有很多,但据分析主要的因素可能有:①从宏观经济看,经济整体增长是税收增长的基本源泉,而国内生产总值是反映经济增长的一个重要指标。②公共财政的需求,税收收入是财政收入的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算支出所表现的公共财政的需求对当年的税收收入可能会有一定影响。③物价水平。我国的税制结构以流转税为主,以现行价格计算的GDP等指标和经营者的收入水平都与物价水平有关。④税收政策因素。我国自1978年以来经历了两次大的税制改革,一次是1984~1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。税制改革对税收增长速度的影响不是非常大。因此,可以从以上几个方面,分析各种因素对中国税收增长的具体影响。 为了全面反映中国税收增长的全貌,我们选用“国家财政收入”中的“各项税收”(即税收收入)作为被解释变量,反映税收的增长;选择“国内生产总值”(即GDP)作为经济整体增长水平的代表;选择“财政支出”作为公共财政需求的代表;选择“商品零售价格指数”作为物价水平的代表。另外,由于财税体制的改革难以量化,而且从数据上看,1985年以后财税体制改革对税收增长影响不是很大,在此暂不考虑税制改革对税收增长的影响摘之文库,你可以去看下。 优点:它首先把经济理论表示为可计量的数学模型即经济计量模型,然后用统计推论方法加工实际资料,使这种数学模型数值化。这种分析方法有两个特点:①理论与观察资料相结合,赋予理论以经验的内容;②将随机因素对经济关系的影响纳入分析之中,得出的结论具有概率性。缺点:1、简单地用数学公式描述经济运行规律,对社会经济问题中难以量化的因素无法表现和处理2、忽视运用计量经济模型进行实证分析的理论基础,直接将模型应用于经济分析之中3、建立计量经济模型的数据有限或数据质量不高4、对当前与未来条件的一般假设不切实际 1.数理实证研究数理实证研究比较适合研究较为复杂的问题。社会经济制度之间存在着极为复杂的相互作用机制,而运用数学计量工具可以将有关影响因素予以固定,从而把握复杂现象之间的内在联系,消除变量内生性、异方差和多重共线性问题。但数理实证研究对于数据质量相对要求较高,数据录入和操作错误往往会导致错误的分析结果。这就需要研究者在数据录入中保持高度警觉,有意识地避免操作失误。不仅如此,在数理统计意义上的相关关系在现实中有可能未必存在。比如太阳黑子在过去20年间逐年增长,中国经济在过去20年间逐年增长,但如果有人从中得出中国经济增长导致了太阳黑子增多或者太阳黑子增多导致了中国的经济增长的之类的结论,大家也许感到可笑。这一结论只不过是把两个同样有时间趋势的事情联系在了一起,从趋势上两者确实是一起移动的,但实际上却没有什么关系。这种现象在计量经济学中被称作伪回归或者伪相关。在三农研究领域,如果不熟悉农业和农村相关状况,就很容易出现类似错误。2.案例实证研究案例研究可以分为单个案研究和多个案研究。个案研究不仅有助于积累不同广泛而深入的个案资料,形成对于问题的实感,也可以为调查者获得第一手资料,从现实获取灵感源泉。中国作为一个大国,全国各地差别很大,如果没有广泛而深入的个案调查经验,不可能对中国三农问题的状况有一个真实的判断。不仅如此,在许多个案调查的基础上,可以为构建三农理论框架提供坚实基础,在这一基础上提出的相关对策,就会既具有深度,又具有前瞻性和现实针对性。就我国三农研究来说,在个案的搜集和整理方面已经取得了相当成绩。但也存在着凭借个案研究试图推导出具有普遍性结论的问题。如何将个案研究获得的实感与理论构建结合起来,是当前三农研究必须解决的重大问题。由于个案研究容易犯以偏概全的错误,导致对于三农相关问题的判断失误。而通过多案例研究就有可能弥补单个案研究的不足,不仅可以有效扩展对于三农问题了解的全面性,而且可以在更大范围内验证个案研究的结论,防止以偏概全。在农村经济领域,上世纪80年代杜润生先生领导下的中央农村政策研究室针对农业和农村做了许多极具针对性的研究,不仅取得了许多重要研究成果,甚至直接推动了中国农村改革进程。近年来,赵树凯对于乡村治理、白南生对于农民工问题、于建嵘对于农村社会冲突、贺雪峰对于乡村治理、肖唐镖针对南方农村的宗族问题所做的一些深入研究,均堪称三农研究领域实证研究的典范。尽管实证研究方法在三农研究中得到了较为普遍的应用,但对于实证研究的错误理解导致了伪实证和形式实证在三农研究中大行其道。所谓伪实证,也就是研究者用理论预设或价值偏好来剪裁经验事实的做法,它本质上是以实证研究为标榜的非科学方法。研究者开展社会调查的目的不是去发现事实,研究结论是事先就有的。先有观点再找证据,而不是先寻找证据,再得出结果。研究者希望寻找到一些经验材料来证实自己已经形成的理论预设,甚至是是价值偏好。因此这种实地调查获取的事实就不是客观的事实,而是经过裁剪或过滤的事实,调查结果就往往与真实情况相差甚远。形式实证是指研究者通过形式主义的调查、走马观花式的调研,或者在资料的搜集和使用过程中对于有关数据和资料,特别是官方数据和资料缺乏甄别和处理的情况下直接应用于研究的做法。伪实证和形式实证都会使得实证研究停留在肤浅观察层次上,难以对现实做出更有价值的分析。就三农研究而言,无论是运用数理实证,还是运用案例实证,都需要对于三农问题具有相当程度的了解和理论层次的把握。不熟悉农业、农村和农民,不能够从理论层次上把握有关问题的逻辑关系,在运用数理实证就容易犯伪相关的错误,运用案例实证就容易犯伪实证或者形式实证的错误,而研究方法的错误必然导致分析错误,最终使得相关研究成果和结论没有价值。而错误研究方法所做出的研究对于社会科学的发展也不会有真正的贡献。 计量经济学模型的应用 计量经济学模型应用的四个主要方面:1.结构分析结构分析是对经济现象中变量之间相互关系的研究.它研究的是当一个变量或几个变量发生变化时会对其它变量以至经济系统产生什么样的影响.结构分析采用的主要方法是弹性分析,乘数分析和比较静力分析.(1)弹性,是经济学中的一个重要概念,是某一变量的相对变化引起另一变量的相对变化的度量,即变量的变化率之比.例题 Y=A ert Ka L 中, , 分别是资本和劳动力的产出弹性(作业题)(2)乘数,也是经济学中的一个重要概念,是某一变量的绝对变化引起另一变量的绝对变化的度量,即变量的变化量之比,也称倍数.△Y/△X(3)比较静力分析,是比较经济系统的不同平衡位置之间的联系,探索经济系统从一个平衡位置到另一个平衡位置时变量的变化,研究经济系统中某一个变量或参数的变化对另外变量或参数的影响.2.经济预测计量经济学模型,是从经济预测,特别是短期预测而发展起来的.50年代与60年代的成功应用.70年代以来人们对计量经济学模型预测功能的置疑.(没能对1973,1979年石油危机进行预测和分析.)计量经济学的预测功能被夸大了! 计量经济学模型与其它经济数学模型相结合,是一个发展方向.3.政策评价政策评价是指从许多不同的经济政策中选择较好的政策予以实行,或者说是研究不同的经济政策对经济目标所产生的影响的差异. 计量经济学模型与计算机技术相结合,可以建立"经济政策实验室".计量经济学模型用于政策评价,主要有三种方法:( 1).工具---目标法:给定目标变量的预期值,即我们希望达到的目标,通过求解模型,得到政策变量值.(2).政策模拟:即将不同的政策代入模型,计算各自的目标值,然后比较,决定政策的取舍.(3).最优控制方法:将计量经济学模型与最优化方法结合起来,选择使得目标最优的政策或政策组合.4.检验与发展经济理论(1).检验理论:按照某种理论去建立模型,然后用表现已经发生的经济活动的样本数据去拟合,如果拟合很好,则这种理论得到了检验.( 2).发现和发展理论:用表现已经发生的经济活动的样本数据去拟合各种模型,拟合得最好的模型所表现出来的数量关系,则是经济活动所遵循的经济规律,即理论,这就是发现和发展理论.问题:当实际与理论不一致时,您该怎么办 (作业)第五节 计量经济学是一门经济学科一,计量经济学是一门经济学科1.从计量经济学的定义看,计量经济学是一门经济学科;2.从计量经济学在西方国家经济学科中的地位看;(51位诺贝尔经济学奖获得者,17位与计量经济学有关)克莱因:"计量经济学已经在经济学科中居于最重要的地位","在大多数大学和学院中,计量经济学讲授已经成为经济学课程表中最有权威的一部分".萨谬尔森:"二战后的经济学是计量经济学的时代".3.计量经济学与数理统计学有严格的区别;数理统计学是一门数学学科,可以应用到许多方面;计量经济学是一门经济学科,主要应用于经济领域.4.从建立与应用计量经济学模型的全过程可以看出,理论模型的设计与建立,样本数据的收集,必须以对经济理论,对所研究的经济现象的深刻理解,透彻认识为基础;即使是涉及数学知识较多的模型参数估计,模型检验,单靠数学知识也是难以完成的. 综上所述,计量经济学是一门经济学科,而不是应用数学或其它.虽然从某种意义上讲,"模型参数的估计方法是计量经济学的核心内容",但是,离开了方法提出的经济背景,方法本身的经济学解释,方法应用的经济对象,计量经济学将是一堆无用的数学符号.二,计量经济学在经济学发展中的作用与现代经济学的特征1.计量经济学在经济学不断科学化的过程中起到了重要作用. 与其他国家相比,我国在经济学研究方法和经济分析方法方面落后许多. 2.西方经济学的特征:(从方法论的角度)第一,越来越多地从方法论的角度去定义和阐述经济学.认为经济学是一种思考社会问题的方法,经济学是社会科学的基础,类似物理学在自然科学中的地位.第二,愈来愈重视研究方法的科学性,重实证分析,轻规范分析. 西方经济学把自己定为一门实证的社会科学.第三,数学的广泛应用已成为一种趋势.3.许多大学的教学目标之一都是:"教会学生将数学作为经济分析的一个基本工具,去思考和描述经济问题和政策"(stanford大学教学要求).4.学习计量经济学是我们的一个重要任务.问题:经济学是否存在"世界先进水平 "为什么 (思考题)三,计量经济学模型成功的三要素 1.理论----经济理论,所研究经济现象的行为理论,这是计量经济学研究的基础;2.方法----模型方法和计算方法.这是计量经济学研究的工具和手段,是计量经济学不同与其它经济学科的主要特征.3.数据----"输入是垃圾,输出的也是垃圾" 是数学模型,可以检验。 计量经济学引入了自然科学的分析方法:用实际数据来论证其理论的正确性,使经济学的分析更加量化,科学化。计量经济学家是依靠对经济数据的研究来验证经济理论、分析经济现状、预测未来。经济数据在计量经济学中的作用是非常重要的。 计量经济学方法有十分重要的特点和意义: 研究对象发生了较大变化。即从研究确定性问题转向非确定性问题,其对象的性质和意义将发生巨大的变化。因此,在方法的思路上、方法的性质上和方法的结果上,都将出现全新的变化。 研究方法发生根本变化。计量经济学方法的基础是概率论和数理统计,是一种新的数学形式。学习中要十分注意其基本概念和方法思路的理解和把握,要充分认识其方法与其它数学方法的根本不同之处。 学术堂整理了十五个计量经济学论文题目供大家进行参考:1、中国货市需求函数实证研究.2、货币超发的实证研究3、存款准备金率变化的影响4、货币需求与通胀关联分析5、货币需求的弹性分析6、我国居民消费函数实证分析7、浙江省居民消费函数变化8、日元实际汇率长期利率的实证分析9、欧元实际汇率长期利率的实证分析10、瑞朗实际汇率长期利率的实证分析11、利率汇率与外商直接投资12、利率与通胀的关系实证分析13、利率与商业银行不良贷款率的波动实证分析14、利率、租金与房价15、货币政策、利率传导机制实证分析 出生活1978年, 我国旅游经济的因素分析我国旅游业发展状况分析我国居民消费增长模型我国经济增长与周期波动我国经济增长对能源消耗的依赖公共投资取向与经济增长分析三大产业的发展与城镇居民家庭消费支出餐饮业区域市场潜力的影响因素分析资本结构主要影响因素的再探析国债发行规模的计量经济分析工资收入差异分析城镇人均收入与人均通讯消费分析影响居民消费水平的因素分析影响就业人数的因素的计量分析影响大学生就业问题的因素分析影响股价指数的因素分析影响我国电力产量的因素分析影响中国汽车产量的多因素分析私家车拥有量的计量分析我国汽车需求的因素分析 计量经济学论文可以研究的问题有多种,期中比较简单的就是根据数据,建立方程,研究变量之间的关系,主要运用的工具就是计量经济学的初等知识和Eviews软件,思路、要求和注意事项我觉得这么说对你的帮助不大,所以给你一篇我的论文做参考,也许对你有帮助,如果你觉得看的不是很明白的话,可以再留言给我,我把什么思路等告诉你。计量经济学期末实验报告实验名称:大中城市城镇居民人均消费支出与其影响因素的分析姓 名:学 号:班 级: ()级统计学系()班指导教师:时 间:(上面是论文封皮)23个城市城镇居民人均消费支出与其影响因素的分析(题目)一、 经济理论背景近几年来,中国经济保持了快速发展势头,投资、出口、消费形成了拉动经济发展的“三架马车”,这已为各界所取得共识。通过建立计量模型,运用计量分析方法对影响城镇居民人均消费支出的各因素进行相关分析,找出其中关键影响因素,以为政策制定者提供一定参考,最终促使消费需求这架“马车”能成为引领中国经济健康、快速、持续发展的基石。二、 有关人均消费支出及其影响因素的理论我们主要从以下几个方面分析我国居民消费支出的影响因素:①、居民未来支出预期上升,影响了居民即期消费的增长居民的被动储蓄直接导致购买力的巨大分流, 从而减弱对消费品的即期需求,严重地影响了居民即期消费的增长,进而导致有效需求的不足,最终导致经济增长的乏力。90年代末期以来,我国的医疗、养老、失业保险、教育等一系列改革措施集中出台,原有的体制被打破,而新的体制尚未建立健全,因此目前的医疗、养老、失业保险、教育体制对居民个人支出的压力较大,而且基本上都是硬性支出,支出的不确定性也很大,导致居民目前对未来支出预期的上升。②、商品供求结构性矛盾依然突出从消费结构上看,我国消费品市场已发生了新的根本性变化:居民低层次消费已近饱和,而更高水平的消费又未达到。改革开放20多年来,城乡居民经过了一个中档耐用消费品的普及阶段后,目前老百姓的收入消费还不足以形成一个新的、以高档产品为内容的主导性消费热点,如轿车、住房等还远不能纳入大多数人的消费主流,居民现有的购买力不能形成推动主导消费品升级的动力。③、物价总水平持续在低水平运行,通货紧缩的压力较大,不利于消费的增长加入WTO之后,随着关税的降低和进口规模的扩大,国外产品对我国市场的冲击将进一步加大,国际价格紧缩对国内价格变化将产生负面影响。物价的持续下降,不利于居民的消费增长。因为从居民的消费心理上看,买涨不买降是居民购物的习惯心理。由于居民对物价有进一步下降的预期,因此往往推迟消费,不利于居民消费的增长。另外,从统计上分析,由于物价的下降,名义消费增长往往低于实际消费的增长,这在一定程度上也不利于消费增长幅度的提高。④、我国现阶段没有形成大的消费热点,难以带动消费的快速增长经过近几年的培育和发展,我国目前已经形成了住房消费、居民汽车消费、通信及电子产品的消费、节假日消费及旅游消费等一些消费亮点,可以促进消费的稳定增长,但始终未能形成大的消费热点,因此不能带动消费的高速增长。三、 相关数据收集相关数据均来源于2006年《中国统计年鉴》:23个大中城市城镇居民家庭基本情况(表格)地区 平均每户就业人口(人) 平均每一就业者负担人数(人) 平均每人实际月收入(元) 人均可支配收入(元) 人均消费支出(元)北京 1.6 1.8 1865.1 1633.2 1187.9天津 1.4 2.0 2010.6 1889.8 939.8石家庄 1.4 2.0 1061.3 1010.0 722.9太原 1.3 2.2 1256.9 1159.9 789.5呼和浩特 1.5 1.9 1354.2 1279.8 772.7沈阳 1.3 2.1 1148.5 1048.7 812.1大连 1.6 1.8 1269.8 1133.1 946.5长春 1.8 1.7 1156.1 1016.1 690.2哈尔滨 1.4 2.0 992.8 942.5 727.4上海 1.6 1.9 1884.0 1686.1 1505.3南京 1.4 2.0 1536.4 1394.0 920.6杭州 1.5 1.9 1695.0 1464.9 1264.2宁波 1.5 1.8 1759.4 1543.2 1271.4合肥 1.6 1.8 1042.5 950.1 686.9福州 1.7 1.9 1172.5 1059.4 942.8厦门 1.5 1.9 1631.7 1394.3 998.7南昌 1.4 1.8 1405.0 1321.1 665.4济南 1.7 1.7 1491.3 1356.8 1071.4青岛 1.6 1.8 1495.6 1378.5 1020.7郑州 1.4 2.1 1012.2 954.2 750.3武汉 1.5 2.0 1052.5 972.2 853.1长沙 1.4 2.1 1256.9 1148.9 986.8广州 1.7 1.8 1898.6 1591.1 1215.1四、 模型的建立根据数据,我们建立多元线性回归方程的一般模型为:其中:——人均消费支出——常数项——回归方程的参数——平均每户就业人口数——平均每一就业者负担人口数——平均每人实际月收入——人均可支配收入——随即误差项五、实验过程(一)回归模型参数估计根据数据建立多元线性回归方程:首先利用Eviews软件对模型进行OLS估计,得样本回归方程。利用Eviews输出结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:08Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C -1682.180 1311.506 -1.282633 0.2159X1 564.3490 395.2332 1.427889 0.1704X2 569.1209 379.7866 1.498528 0.1513X3 1.552510 0.629371 2.466766 0.0239X4 -1.180652 0.742107 -1.590947 0.1290R-squared 0.721234 Mean dependent var 945.2913Adjusted R-squared 0.659286 S.D. dependent var 224.1711S.E. of regression 130.8502 Akaike info criterion 12.77564Sum squared resid 308191.9 Schwarz criterion 13.02249Log likelihood -141.9199 F-statistic 11.64259Durbin-Watson stat 2.047936 Prob(F-statistic) 0.000076根据多元线性回归关于Eviews输出结果可以得到参数的估计值为: , , , ,从而初步得到的回归方程为:Se= (1311.506) (395.2332) (379.7866) (0.629371) (0.742107)T= (-1.282633) (1.427889) (1.498528) (2.466766) (-1.590947)F=11.64259 df=18模型检验:由于在 的水平下,解释变量 、 、 的检验的P值都大于0.05,所以变量不显著,说明模型中可能存在多重共线性等问题,进而对模型进行修正。(二)处理多重共线性我们采用逐步回归法对模型的多重共线性进行检验和处理:X1:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:28Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 153.8238 518.6688 0.296574 0.7697X1 523.0964 341.4840 1.531833 0.1405R-squared 0.100508 Mean dependent var 945.2913Adjusted R-squared 0.057675 S.D. dependent var 224.1711S.E. of regression 217.6105 Akaike info criterion 13.68623Sum squared resid 994441.2 Schwarz criterion 13.78497Log likelihood -155.3917 F-statistic 2.346511Durbin-Watson stat 1.770750 Prob(F-statistic) 0.140491X2:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 1756.641 667.2658 2.632596 0.0156X2 -424.1146 347.9597 -1.218861 0.2364R-squared 0.066070 Mean dependent var 945.2913Adjusted R-squared 0.021597 S.D. dependent var 224.1711S.E. of regression 221.7371 Akaike info criterion 13.72380Sum squared resid 1032515. Schwarz criterion 13.82254Log likelihood -155.8237 F-statistic 1.485623Durbin-Watson stat 1.887292 Prob(F-statistic) 0.236412X3:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 182.8827 137.8342 1.326831 0.1988X3 0.540400 0.095343 5.667960 0.0000R-squared 0.604712 Mean dependent var 945.2913Adjusted R-squared 0.585888 S.D. dependent var 224.1711S.E. of regression 144.2575 Akaike info criterion 12.86402Sum squared resid 437014.5 Schwarz criterion 12.96276Log likelihood -145.9362 F-statistic 32.12577Durbin-Watson stat 2.064743 Prob(F-statistic) 0.000013X4:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:30Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 184.7094 161.8178 1.141465 0.2665X4 0.596476 0.124231 4.801338 0.0001R-squared 0.523300 Mean dependent var 945.2913Adjusted R-squared 0.500600 S.D. dependent var 224.1711S.E. of regression 158.4178 Akaike info criterion 13.05129Sum squared resid 527020.1 Schwarz criterion 13.15003Log likelihood -148.0898 F-statistic 23.05284Durbin-Watson stat 2.037087 Prob(F-statistic) 0.000096由得出的数据可以看出, 的调整的判定系数最大,因此首先把 引入调整的方程中,然后在分别引入变量 、 、 进行OLS得:X1、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:32Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C -222.8991 345.9081 -0.644388 0.5266X1 289.8101 227.2070 1.275533 0.2167X3 0.517213 0.095693 5.404899 0.0000R-squared 0.634449 Mean dependent var 945.2913Adjusted R-squared 0.597894 S.D. dependent var 224.1711S.E. of regression 142.1510 Akaike info criterion 12.87276Sum squared resid 404138.2 Schwarz criterion 13.02087Log likelihood -145.0368 F-statistic 17.35596Durbin-Watson stat 2.032110 Prob(F-statistic) 0.000043X2、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:33Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 239.5536 531.1435 0.451015 0.6568X2 -27.00981 244.0392 -0.110678 0.9130X3 0.536856 0.102783 5.223221 0.0000R-squared 0.604954 Mean dependent var 945.2913Adjusted R-squared 0.565449 S.D. dependent var 224.1711S.E. of regression 147.7747 Akaike info criterion 12.95036Sum squared resid 436747.0 Schwarz criterion 13.09847Log likelihood -145.9292 F-statistic 15.31348Durbin-Watson stat 2.063247 Prob(F-statistic) 0.000093X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:34Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 331.7015 142.5882 2.326290 0.0306X3 1.766892 0.553402 3.192782 0.0046X4 -1.473721 0.656624 -2.244390 0.0363R-squared 0.684240 Mean dependent var 945.2913Adjusted R-squared 0.652664 S.D. dependent var 224.1711S.E. of regression 132.1157 Akaike info criterion 12.72634Sum squared resid 349091.0 Schwarz criterion 12.87445Log likelihood -143.3529 F-statistic 21.66965Durbin-Watson stat 2.111635 Prob(F-statistic) 0.000010由数据结果可以看出,引入X4时方程的调整判定系数最大,且解释变量均通过了显著性检验,再分别引入X1、X2进行分析。X1、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:37Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 193.6693 403.8464 0.479562 0.6370X1 89.29944 243.6512 0.366505 0.7180X3 1.652622 0.646003 2.558228 0.0192X4 -1.345001 0.757634 -1.775265 0.0919R-squared 0.686457 Mean dependent var 945.2913Adjusted R-squared 0.636950 S.D. dependent var 224.1711S.E. of regression 135.0712 Akaike info criterion 12.80625Sum squared resid 346640.3 Schwarz criterion 13.00373Log likelihood -143.2719 F-statistic 13.86591Durbin-Watson stat 2.082104 Prob(F-statistic) 0.000050X2、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:38Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 62.60939 489.2088 0.127981 0.8995X2 134.1557 232.9303 0.575948 0.5714X3 1.886588 0.600027 3.144175 0.0053X4 -1.596394 0.701018 -2.277251 0.0345R-squared 0.689658 Mean dependent var 945.2913Adjusted R-squared 0.640657 S.D. dependent var 224.1711S.E. of regression 134.3798 Akaike info criterion 12.79599Sum squared resid 343100.8 Schwarz criterion 12.99347Log likelihood -143.1539 F-statistic 14.07429Durbin-Watson stat 2.143110 Prob(F-statistic) 0.000046由输出结果可以看出,在 的水平下,解释变量 、 的检验的P值都大于0.05,解释变量不能通过显著性检验,因此可以得出结论模型中只能引入X3、X4两个变量。则调整后的多元线性回归方程为:Se= (142.5882) (0.553402) (0.656624)T= (2.326290) (3.192782) (-2.244390)F=21.66965 df=20(三).异方差性的检验对模型 进行怀特检验:White Heteroskedasticity Test:F-statistic 1.071659 Probability 0.399378Obs*R-squared 4.423847 Probability 0.351673Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/11/07 Time: 16:53Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 34247.50 128527.9 0.266460 0.7929X3 247.9623 628.1924 0.394723 0.6977X3^2 -0.071268 0.187278 -0.380548 0.7080X4 -333.6779 714.3390 -0.467114 0.6460X4^2 0.121138 0.229933 0.526841 0.6047R-squared 0.192341 Mean dependent var 15177.87Adjusted R-squared 0.012861 S.D. dependent var 23242.54S.E. of regression 23092.59 Akaike info criterion 23.12207Sum squared resid 9.60E+09 Schwarz criterion 23.36892Log likelihood -260.9038 F-statistic 1.071659Durbin-Watson stat 1.968939 Prob(F-statistic) 0.399378由检验结果可知, ,由White检验知,在 时,查 分布表,得临界值 (20)=30.1435,因为 < (5)= 30.1435,所以模型中不存在异方差。(四).自相关的检验由模型的输出结果可知,估计结果都比较满意,无论是回归方程检验,还是参数显著性检验的检验概率,都显著小于0.05,D-W值为2.111635,显著性水平 =0.05下查Durbin-Watson表,其中n=23,解释变量的个数为2,得到下限临界值 ,上限临界值 , =1.543 爱莫能助,我也是在寻求别人帮助的,呵呵,希望我们都有个好结果 计量工作与生产经营计量工作是生产和经营管理的重要技术基础,是提高企业素质;保证产品或工程质量,促进技术进步和管理现代化的重要条件,也是有效实行技术监督的必要手段。现代企业生产过程中,从原材料、燃料进厂验收,生产过程工艺与质量监控,最后到成品检验都需要做大量的各种物理量、几何量、化学基等计量测试。如果把企业生产活动过程看作是科学地组织生产过程中人流、物流和信息流三“流”相互作用的过程,那么,由计量测试仪器所提供的数据信息,是企业生产信息流的主体。就是说,可测量的信息量约占整个数据信息量的80%以上。没有准确、一致、可靠的计量工作;组织科学、有效的生产和质量管理也是不可能的。所以,计量工作(包括测试、化验、分析等工作)是企业生产的重要环节,是保证零部件具有互换性和产品质量的重要手段和方法。那末,计量在生产经啻过程中究竟有什么作用?计量如何为质量管理服务?怎样才能做好计量工作?一、计量在生产经营全过程中的作用1.对进厂原材料、国料进行计量测试,以消徐生产质沉的隐患原料、材料与燃料的质量是否符合产品设计和生产质量的规定要求,不仅直接关系到产品或工程质量,而且还影响到生产加工过程中的质量、安全和工艺性能。如生铁进厂必须化验铁、碳、硫、磷等元素的成分,施工所用水泥必须做抗压强度试验,以免造成屋毁人亡的恶果。2.外购元器件、零部件和备种工艺装备必须严格检到合格,以确保加工和装配的质量电视机、收录机产品的元器件有十万分之见的不合格、就会造成产品百分之几的不合格;航天飞机中一个小垫圈的失效就可造成机毁人亡的恶果;工装质量的误差,势必造成加工和装配质量中更大的误差。因此,外购元器件、零部件和各种工艺装备务必一一检验合格后,方可投入使用。3.计量测试是进行生产过程工艺多数监控最基本、最主要的技术手段现代工业生产多是连续的或自动化流程生产,要依靠生产流程中各项工艺参数的准确和控制。如石油化学工业中产品质量基本上取决于生产(反应):过程中温度、压力、流量等参数的控制;电压稳定度、输电疫率等电磁参数可影响到各工业部门的生产质量。因此,发电厂必须用各种计量仪器仪表对它们进行监控调整,以保证稳定送电。冶金工业中,成分分析和温度、压力、流量等计量参数的测量控制,更是保证钢铁与各种有色金属成品质量的关键。只有化学成分及原材料分析准、配料准。出炉温度准、合金成分控制准,一句话,计量准,才能保证钢铁或有色金属产品优。4.半成品和产品质量的最终评价,必须依赖完备科学的计量检测仪器零部件、半成品和产品质量如何?集中表现为对它们的技术特性和参数的测量数据是否符合标准。当前,许多企业产品质量差的主要原因,也是在计量问题上,如缺乏必备的计量检测仪器,计量检测方法落后以及计量管理不健全等。有个农机厂生产深井泵,应检项目326项中,却有116项因没有计量器具不能进行检测,这怎么保证深水泵的质量?5.计量工作是工业生产技术进步和管理现代化的基础及前提随着工业生产技术水平的进步和提高,高速、连续、自动的专业化自动化生产和现代化管理,都对计量技术和装备提出新的更高的要求。国外工业发达国家的冶金工业,生产效率高,产品质量好,并不在主体加工设备上,而是他们装备了现代化的计量仪器仪表和自动监控设备,能快速、精确地测量出生产过程中各项参数,并经计算机高速处理后反馈到生产中实行最优控制,使凭人工经验操作进入靠数据科学管理阶段。因此,人们已把计量检测技术和原材料、设备一起作为现代化工业生产的三大支柱。二、计量工作为质量管理服务的途径计量工作为质量管理服务的途径有三条。1.统一计量单位,统一量值,为质量管理提供准确可靠和一致的数据质量管理的重要特点之一,就是一切凭数据说话、数据是质量管理的重要基础,而数据的准确一致就要靠计量工作。我国计量工作的基本任务是统一国家的计量单位制度,保证各行各业所使用的计量器具和仪器仪表都是准确可靠的。我国已经统一实行了以国际单位制为基础的法定计量单位,各级计量部门正在积极主动地宣贯计量法,开展量值传递,即把国家计量基准、标准的量值准确地传递到各行业生产第一线的计量器具和仪器仪表。通过这些准确的计量器具、仪器仪表,保证被测工件、产品的质量数据准确一致。2.加强对计量器具和仪器仪表产品的质量监督做好量值传递工作只能对正在使用中的计量器具和仪器仪表实行定期校准和检定,保证使用中的计量仪器准确可靠。但这还不能解决计量仪器本身的质量问题。如果我们只抓使用中计量仪器的量值准确统一,不抓正在生产的计量仪器产品质量监督,就会使大量不合格的计量仪器流入市场。这不仅给量值传递工作造成越来越大的压力,而且对产品质量也构成一个极大的威胁。计量仪器是一种特殊的产品,随着工业化水平的提高,发展相当迅速,品种日益繁多。认真抓好对它们的质量监督和控制,就可防止“一家产品害千家”。各级计量部门正在通过“计量器具生产(修理)许可证”的发放和计量认证等工作强化监督管理。3.加强对生产过程的计量检测和监控,是加强质更自理,提高产品质量的中心环节计量检测和监控水平是衡量一个国家工业技术水平的重要尺度。目前,世界上工业发达国家,把原材料、设备和计量检测手段作为工业生产的三大支柱。计量检测技术发展相当迅速,随着质量管理从“事后检验”发展到“事前预防”,计量检测也由被动测量发展到主动测量,由静态测量发展到动态测量,由人工检测发展到自动检测,由成品检验发展到生产过程中检测和监控。从而强化了质量管理,并显著地提高了质量。可以说,没有先进的计量测试手段,就没有先进的产品,没有高质量。因此,如何研制、开发先进的计量检测仪器,已成为计量工作中一个十分重要的任务。三、建立计量确认体系,实行测量过程控制,为质量体系有效运行提供保证怎样做好计量工作?ISO10012《测量检测设备的质量保证要求》为做好计量工作指出了明确的方向,那就是要建立计量确认体系,实行测量过程控制。依据ISO10012,应对所有的测量设备进行认可和管理,并形成一个文件化的计量确认体系,确保所有计量检测设备的使用和运行符合质量要求,杜绝计量误差超出允差极限,并对每一个测量过程实行有效的控制,使其处于统计控制状态之下。具体地说,要求各类计量器具及化验、分析仪器必须配备齐全。完整无缺;保证量具及化验、分析仪器的质量稳定,示值准确一致;修复及时,根据不同情况、选择正确的计量检试方法。同时,应抓好以下几个主要环节。1.计量器具及仪器的正确与合理使用保证计量器具及仪器均正确与合理使用,是计量工作中的一个重要方面。为此应做到:①要经常对职工进行爱护计量器具及仪器的教育;②提高工人技术水平。熟练地掌握量具及仪器的使用技能;③要根据企业的生产过程和工艺特点,正确配备各种量具和仪器;④正确制定和严格贯彻执行有关规程和制度。例如最具及仪器的使用和维护制度,以及化验和分析方面的规章制度;⑤建立和健全量具及仪器使用的责任制度。2.计量器具的周期检定为了确保量具及仪器的质量,对企业所有的计量器具及仪器,无论是外购或自制的,都必须按照计量检定规程规定的检定项目和方式(或有关技术标准)进行检定。这些检定包括:(l)入库检定。外购或自制的计量器具在入库之前,由计量室,中央工具库检定站进行技术检定。检定合格的发入库合格证,送工具库保存备用。(2)入室检定。各车间工具室在从中央工具库领取计量器具及仪器时,应先由车间检查站进行入室前的检定。对入室检定合格的量具及仪器,检查站打上合格标志,送工具室保存备用。对于重要的量具及仪器,出借时必须进行校检。(3)周期检定。对使用中的计量器具及仪器,由检查站按照规定的周期和项目进行技术检定。实行周期检定的计量器具及仪器,必须按照检定周期日程表进行,并把检定结果记录下来,合格的换上新合格证,准予继续使用;不合格的由检定站进行修复,修复合格后,再发给合格证,提供使用。(4)返还检定。借用的量具及仪器用毕归还之前,由检查站作返还检定,合格的打上合格标志,送还工具室保存备用。所有计量器具及仪器必须经检定合格,具有合格证及标志,才准许投入使用或进行流传。3.计量器具及仪器的及时修理和报废对于因使用和其它原因而发生磨损的计量器具及仪器,要根据检定结果,按照损坏程度的不同而分别处理。凡是已经严重磨损或损坏无法修复的计量器具及仪器,该废的必须报废,该换的一定要换。对于那些经过检定发现不合格但可修复的计量器具及仪器,计量室(或站)应立即给予修复,修复后必须进行检定。使用单位或个人不能擅自对计量器具及仪器进行拆封或检修。4.计量器具及仪器的妥善保管为了保证计量器具及测试仪器质量稳定,示值准确一致,对于不在使用过程中的计量器具及仪器要妥善存放保管。5.改进计退器具和计量方法实现检验测试手段现代化。随着科学技术的发展,现代化技术设备在生产经营过程中大量采用,生产经营自动化程度不断提高,为了更好地控制产品质量,迫切要求实行计量工作的技术改革,广泛采用高效能的检验装置、专用的计量器具及仪器、现代化的测试技术设备及先进的检测方法。如采用多用途的、气动的、电动的、激光的检测技术,运用精密测量仪器仪表和电子计算机等等。为了做好计量工作,充分发挥它在企业生产和质量管理中的作用,企业必须设置专门的计量管理机构和理化试验室,负责组织和管理企业的计量和理化试验工作。这样,才能保证质量管理的有效实行。此外,开展企业计量水平定级和诊断活动,有力地促进企业计量基础工作的加强,也大大地促进了全面质量管理的深入开展。参考资料:计量工作与生产经营 用spss就可以啊!计量经济学实证研究的论文
计量经济学实证研究论文的特点
计量经济学论文实证论文题目
计量经济学期末小论文