如下:
【摘要】:综述了分子氧氧化环己烷制取环己酮的催化剂的研究进展,重点介绍了光催化剂、纳米催化剂、仿生催化剂、分子筛催化剂和复合催化剂在环己烷催化氧化方面的应用,其中,负载在分子筛上的纳米金催化剂具有较高的催化活性、选择性及稳定性。
【关键词】:环己烷氧化,环己酮,催化剂的认识。
环己酮是重要的有机化工原料和工业溶剂,广泛应用于医药、油漆、涂料、橡胶、农药行业、印刷和塑料回收方面。目前,工业上制取环己醇和环己酮的方法主要为苯酚加氢法、苯部分加氢法和环己烷液相氧化法,环己烷氧化法的应用最为普遍,占90%以上。
由于环己醇和环己酮比环己烷更易于被氧化,为获得适宜的环已醇和环已酮的选择性,工业上环己烷氧化转化率通常控制在3.5%~5.0%,氧化选择性为90%左右。
但环己烷的大量循环造成能耗上的巨大浪费。目前,环己烷氧化工艺研究的热点主要集中在对传统工艺的改造优化、氧化剂的选择及高效催化剂的开发。开发高性能和环境友好的催化剂成为研究热点,近年来开发的一些氧化催化剂在改善环己烷转化率和产物选择性方面表现出较好的性能。
本文主要综述分子氧氧化环己烷制环己酮催化剂的研究进展。
这不是闺房记乐,这是闲情记趣中的。绝 是说 花多,不断绝。你自己参照百度吧属 是一类的意思 。联系上下文,是寻觅昆虫善 这一句翻译为,岂不是很好吗行 试验,或者说做了 。何妨而效之 , 何不仿效一下。或抱花梗,或踏草叶,栩栩如生,宛然动人。上文说以针刺死,做了标本,所以有这句。浮生六记记得是芸这个人,表现的是一个知己与伴侣的妻子,你从这方面来回答吧。既然是闲情,也何必计较呢,应试教育真是糟蹋东西。我闲居在家的时候,案头上的插花盆景长续不断。芸说,你的插花啊,能表现出雨露风晴中的各种自然韵味,可谓精妙入神。然后画法中有一种草木与昆虫共同相处的方法,你为何不效仿一下呢。我说,虫儿会爬会乱动,怎么可能像作画一般呢?芸说,我有一种办法,不过恐怕会被(后人)作为始作俑者而引起罪过呢。我说,那你说说看。芸说,虫儿死后,它的颜色神态并不会有多大改变,(我们)找到螳螂产蝉蝶之类用针刺死,然后用细丝捆在它们的脖子上,系在草木间,再整理它们的脚足,或抱花梗,或踏草叶,栩栩如生,(这样)岂不是很好吗?我很高兴,按她的办法去试了,看见的人没有不赞美称绝的。求于闺中的意见,当今世上恐怕未必再有这样会心的人了吧。
催化剂定义:又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化剂(catalyst)会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行化学反应。催化剂在工业上也称为触媒。初中书上定义:在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫做催化剂,又叫触媒。催化剂在化学反应中所起的作用叫催化作用。我们可在波兹曼分布(Boltzmann distribution)与能量关系图(energy profile diagram)中观察到,催化剂可使化学反应物在不改变的情形下,经由只需较少活化能(activation energy)的路径来进行化学反应。而通常在这种能量下,分子不是无法完成化学反应,不然就是需要较长时间来完成化学反应。但在有催化剂的环境下,分子只需较少的能量即可完成化学反应。催化剂有三种类型,它们是:均相催化剂、多相催化剂和生物催化剂。均相催化剂和它们催化的反应物处于同一种物态(固态、液态、或者气态)。例如:如果反应物是气体,那么催化剂也会是一种气体。笑气(一氧化二氮)是一种惰性气体,被用来作为麻醉剂。然而,当它与氯气和日光发生反应时,就会分解成氮气和氧气。这时,氯气就是一种均相催化剂,它把本来很稳定的笑气分解成了组成元素。多相催化剂和它们催化的反应物处于不同的状态。例如:在生产人造黄油时,通过固态镍(催化剂),能够把不饱和的植物油和氢气转变成饱和的脂肪。固态镍是一种多相催化剂,被它催化的反应物则是液态(植物油)和气态(氢气)。酶是生物催化剂。活的生物体利用它们来加速体内的化学反应。如果没有酶,生物体内的许多化学反应就会进行得很慢,难以维持生命。大约在37℃的温度中(人体的温度),酶的工作状态是最佳的。如果温度高于50℃或60℃,酶就会被破坏掉而不能再发生作用。因此,利用酶来分解衣物上的污渍的生物洗涤剂,在低温下使用最有效。催化剂分均相催化剂与非均相催化剂。非均相催化剂呈现在不同相(Phase)的反应中(例如:固态催化剂在液态混合反应),而均相催化剂则是呈现在同一相的反应(例如:液态催化剂在液态混合反应)。一个简易的非均相催化反应包含了反应物(或zh-ch:底物;zh-tw:受质)吸附在催化剂的表面,反应物内的键因十分的脆弱而导致新的键产生,但又因产物与催化剂间的键并不牢固,而使产物出现。目前已知许多表反应发生吸附反应的不同可能性的结构位置。仅仅由于本身的存在就能加快或减慢化学反应速率,而本身的组成和质量并不改变的物质就叫催化剂。催化剂跟反应物同处于均匀的气相或液相时,叫做单相催化作用;催化剂跟反应物属不同相时,叫做多相催化作用。人们利用催化剂,可以提高化学反应的速度,这被称为催化反应。大多数催化剂都只能加速某一种化学反应,或者某一类化学反应,而不能被用来加速所有的化学反应。催化剂并不会在化学反应中被消耗掉。不管是反应前还是反应后,它们都能够从反应物中被分离出来。不过,它们有可能会在反应的某一个阶段中被消耗,然后在整个反应结束之前又重新产生。使化学反应加快的催化剂,叫做正催化剂;使化学反应减慢的催化剂,叫做负催化剂。例如,酯和多糖的水解,常用无机酸作正催化剂;二氧化硫氧化为三氧化硫,常用五氧化二钒作正催化剂,这种催化剂是固体,反应物为气体,形成多相的催化作用,因此,五氧化二钒也叫做触媒或接触剂;食用油脂里加入0.01%~0.02%没食子酸正丙酯,就可以有效地防止酸败,在这里,没食子酸正丙酯是一种负催化剂(也叫做缓化剂或抑制剂)。
你这个问题太泛泛了。催化剂可以有理论研究分子结构,什么样的催化剂催化效果好。也可以是研究一种催化剂物质是怎么合成,或是怎么用实验的方法,工业生产的方法制造出来。或是研究一种特定的催化剂在某个应用中的催化效果,这种应该比较多,也比较常见。或是研究一种催化剂怎样改进,怎样更耐用,怎样更有效率。具体到写一个论文,可以先查查这方面的文献,了解这个研究的研究状况,写个综述或是开题报告。再下来就是设计实验,或是确定理论研究的逻辑。实验做完后就是,把收集到的数据进行分析,看是不是预期的效果,不是的话写明原因。最后就是写出结论。具体的你可以到网上随便搜一篇化学催化剂这方面的论文,看一看格式。
看文章 情感 笑话 恐怖 新闻资讯 搜 惜缘文章系统 挺不错了
煤直接液化需要在大约450℃高温、15—20MPa氢气压下进行加氢反应。煤直接液化的主要原料是煤和氢气,加氢反应是在催化剂和循环溶剂的作用下实现的。 此项技术在二战期间一度在德国实现了工业化生产。到了20世纪80年代,美国、德国和日本等西方国家又相继开发出新一代的煤直接液化的工艺,并完成了日处理百吨级煤的煤直接液化中试厂的设计、建设和成功运转,有的国家已完成了日处理5000吨煤的液化示范厂的设计。 "但是目前世界上还没有一个国家拥有工业化的煤直接液化工程的经验,我国正在进行世界上首座煤直接液化示范厂的建设,一些工程化的技术问题将在我国煤直接液化示范厂项目中得以突破和解决。" 方法二:间接液化法 煤的间接液化是先将煤气化,生产出原料气,经净化后再进行合成反应,生成油的过程。它是德国化学家于1923年首先提出的,可以分三大步。 第一步:制取合成气。 把经过适当处理的煤送入反应器,在一定温度和压力下通过气化剂(空气或氧气+蒸汽),使煤不完全燃烧,这样就能以一定的流动方式将煤转化成一氧化碳和氢气混合的合成气,灰分形成残渣排出。 第二步:进行催化反应。 把这些合成气净化,在催化剂作用下,让合成气发生化合反应,合成烃类或液态的烃类的类似石油和其他化工产品。这个过程催化剂起着关键的作用。 很早时候,国外有一家公司曾经研制出成分为铁、硅、钾、铜的催化剂,所得产物组成为:汽油32%、柴油21%、石蜡烃47%。 第三步:需要对产物进行进一步的提质加工。 因为经过催化反应出来的油可能有很多指标不合格,如十六烷值含量、硫含量、水分,以及黏度、酸度等,所以还需要把产物进行处理,使其达到合格标准,满足市场需要。
煤可以通过化学手段转化为石油。煤直接液化,即煤高压加氢液化,可以生产人造石油和化学产品。在石油短缺时,煤的液化产品将替代目前的天然石油。煤的气化在煤化工中占有重要地位,用于生产各种气体燃料,是洁净的能源,有利于提高人民生活水平和环境保护;煤气化生产的合成气是合成液体燃料等多种产品的原料。煤直接液化,即煤高压加氢液化,可以生产人造石油和化学产品。在石油短缺时,煤的液化产品将替代目前的天然石油。) `! o# ?/ k( i5 i' j y 经化学方法将煤炭转换为气体、液体和固体产品或半产品,而后进一步加工成化工、能源产品的工业。 包括焦化、电石化学、煤气化等。随着世界石油资源不断减少,煤化工有着广阔的前景。 * j6 s( j k7 y4 \6 }" f0 b2 m( h 以煤为原料,经化学加工使煤转化为气体、液体和固体燃料以及化学品的过程。; e* ~7 d& g& o5 r 主要包括煤的气化 、液化 、干馏,以及焦油加工和电石乙炔化工等。
煤炭的主要成分是碳,石油的主要成分是烃类(碳氢化合物)。许多勘探资料都表明,全世界煤的可开采资源是巨大的,其能量值相当于石油资源的10倍。煤和石油的形态、形成历史、地质条件虽然不同,但是它们的化学组成却大同小异。煤中约含碳80%~85%,含氢4%~5%,平均分子量在2000以上。石油含碳85%,含氢13%,平均分子量在600以内。从组成上看,它们的主要差异是含氢量和分子量的不同,因此,只要人为地改变压力和温度,设法使煤中的氢含量不断提高,就可以使煤的结构发行变异,由大分子变成小分子。当其碳氢比降低到和石油相近时,则煤就可以液化成汽油、柴油、液化石油气、喷气燃料等石油产品了。同时还可以开发出附加值很高的上百种产品,如乙烯、丙烯、蜡、醇、酮、化肥等,综合经济效益十分可观。国际上经典的煤变石油工艺是把褐煤或年轻烟煤粉与过量的重油调成糊状(称为煤糊),加入一种能防止硫对催化剂中毒的特殊催化剂,在高压釜里加压到20266~70931千帕并加热到380~500摄氏度的温度,在隔绝空气的条件下通入氢气,使氢气不断进入煤大分子结构的内部,从而使煤的高聚合环状结构逐步分解破坏,生成一系列芳香烃类的液体燃料和烷烃类的气体燃料。一般约有60%的煤能转化成液化燃料,30%转化成为气体燃料。具体来说,煤变石油的工艺可分为“直接液化”和“间接液化”两种,从世界范围来看,无论哪一类液化技术,都有成熟的范例。“直接液化”是对煤进行高压加氢直接转化成液体产品。早在第二次世界大战之前,纳粹德国就注意到了煤和石油的相似性,从战略需要出发,于1927年下令建立了世界上第一个煤炭直接液化厂,年产量达10万吨,到1944年达到423万吨,用来开动飞机和坦克。一些当时的生产技术,今天还在澳大利亚、德国、巴基斯坦和南非等地应用。“间接液化”是煤先气化,生产原料气,经净化后再行改质反应,调整氢气与一氧化碳的比例。此项技术主要源于南非,技术已非常成熟,煤变石油成本已低于国际油价,但技术一直严格保密。20世纪50年代,南非为了克服进口石油困难,成立了南非萨索尔公司,主要生产汽油、柴油、乙烯、醇等120多种产品,总产量达到700多万吨。目前,这家公司的3个液化厂,年耗煤4590万吨,年产合成油品1000万吨。该公司累计投资70亿美元,现在早已回收了全部设备投资。此外,俄罗斯、美国、日本等国也相继陆续完成了日处理150~600吨煤的大型工业试验,并进行了工业化生产的设计。
可以。煤转油是由煤炭气化生产合成气、再经费-托合成生产合成油称之为煤炭间接液化技术。“煤炭间接液化”法早在南非实现工业化生产。南非也是个多煤缺油的国家,其煤炭储藏量高达553.33亿吨,储采比为247年。煤炭占其一次能源比例为75.6%。南非1955年起就采用煤炭气化技术和费-托法合成技术,生产汽油、煤油、柴油、合成蜡、氨、乙烯、丙烯、α-烯烃等石油和化工产品。煤与石油都是由碳、氢、氧为主的元素组成的天然有机矿物燃料,这是煤能制成油最根本的基础。但它们在外观和化学组成上都有明显差别,其中最明显的差别就是氢、氧含量的不同。煤中氢含量低、氧含量高,氢/碳比低、氧/碳比高。煤的化学成分中氢含量为5%,碳含量较高,而成品油中氢含量为12%-15%,碳含量较低,且油品为不含氧的液体燃料。这主要是由于煤与石油的分子结构不同。因此,要将煤转化为液体产物,首先要将煤的大分子裂解为较小的分子。而要提高氢/碳比,就必须增加氢原子或减少碳原子。总之,煤液化的实质是在适当温度、氢压、溶剂和催化剂条件下,提高其氢/碳比,使固体的煤转化为液体的油。
导电胶 具有室温、高温或潮湿固化机理的单成分或双成分环氧树脂和硅酮粘合剂。 通用导电环氧树脂 双成分的银、铜镀银和玻璃镀银填充的粘合剂满足大多数严格的电气粘接要求,不需要通常获得有效的铅--锡固体连接所要求的高温、焊剂和昂贵的准备技术。它在室温或高温下固化成固体结构的粘接。 环氧树脂对铜、青铜、冷轨钢、铝、镁、镍基合金、镍、陶瓷、酚醛和塑料基底具有良好的粘合力。典型应用包括把EMI屏蔽通道、窗口或丝网衬料粘合在屏蔽的永久性接缝上。 柔性硅酮粘合剂 具有铜镀银、铝镀银或玻璃镀银填料颗粒, 这些导电的硅酮固化成为垫状的密封件。当用在现场粘合导电硅酮衬料时,它们必须在薄(0.2~0.25mm)粘合层中使用。技术表面应当要求用推荐的打底剂来预处理以改善粘合力。 导电填充剂 用单成分非硬化系统或双成分固化系统来填塞裂缝和较大的缝隙。 刚性环氧树脂 双成分导电环氧树脂填充剂对不同的基底提高良好的粘合力,并且能用在搭接或对接应用上。它们的特点是较大的铜镀银颗粒(>0.00127mm),非常适用于密封公差较差的表面。粘合层应当不薄于0.25mm。砂粒填料咬透薄的、非导电 表面,例如氧化层。应用包括粘合和屏蔽铸铝机壳、导管闷头、过滤器和加工好的技术机壳。 注意:这些复合剂应当仅在接缝将不会破裂时使用。 硅酮和柔性聚异乙烯 这些单成分非硬化密封胶配置用来屏蔽或密封那些很可能是错装或者承受振动、承受扭曲的接点和接缝。关键特点是这种材料能保持粘合处不干裂或者从表面脱开。 导电涂料 环氧树脂涂料 导电环氧树脂涂料在各种应用场合提供EMI屏蔽、防静电保护、电晕屏蔽和表面接地。聚丙乙烯涂料 导电聚丙乙烯风干涂料倾向于用在非导电基底上的EMI屏蔽。它们提供了选择填料系统,来满足不同的性能要求,含银的系统具有较低的电阻率,用于要求较好的屏蔽性能。含镍的系统相对较贵,用于在很宽的频率范围内提供中等等级的EMI屏蔽
固定床活性评价结果表明:温度300℃、空速10000h<-1>、CS<,2>浓度200mgS/m<3>、水蒸汽含量2%左右、 N<,2>气氛下负载单一及多种碱金属、过渡金属、稀土金属氧化物活性组分制备的的二硫化碳水解催化剂,在反应12h左右水解转化率趋于稳定。对于负载单一活性组分的催化剂来说,负载K<,2>O制备的催化剂上CS<,2>水解转化率最高;对于负载多活性组分的催化剂而言,负载ZrO<,2>-K<,2>O制备的催化剂上CS<,2>水解活性最高。温度300℃、空速10000h<-1>、CS<,2>浓度200mgS/m<3>、水蒸汽含量2%左右、高浓度35%CO气氛下改性制备的催化剂CS<,2>水解转化率有下降趋势,但改性制备的La<,2>O<,3>-ZrO<,2>-K<,2>O/Al<,2>O<,3>催化剂CS<,2>水解活性下降趋势最为缓慢。随着气体中CO含量的减少,制备的系列催化剂上CS<,2>水解活性下降趋势有所缓和,但也存在差异。CO气氛下,CS<,2>水解催化剂活性下降的原因主要是一方面由于CO与水解产物H<,2>S发生反应生成COS,导致中间产物COS量的增多,一定程度上抑制CS<,2>水解的进行,另一方面由于CO歧化反应积炭堵塞催化剂孔隙结构,导致催化剂中毒失活。碱金属及过渡金属氧化物的添加可以提高制备的催化剂上CS<,2>水解转化率,稀土金属氧化物的添加可以降低CO气氛对催化剂上CS<,2>水解转化率的影响。 CO<,2>-TPD结果表明:活性组分负载明显提高CO<,2>脱附所表征的碱性中心的数量。负载K<,2>O增加了CO<,2>脱附所表征的碱性中心数量近4倍,负载La<,2>O<,3>-ZrO<,2>-K<,2>O增加了近20倍。活性组分K<,2>O、La<,2>O<,3>-ZrO<,2>-K<,2>O的负载提高了低温脱附表征的碱性中心的强度,但随着活性组分种类的增加,碱性中心的强度有所下降。CO-TPD和XPS研究结果表明:CO能在催化剂上产生吸附,吸附的CO量随着吸附温度的升高而降低。活性组分负载能明显降低CO的吸附,其中负载La<,2>O<,3>-ZrO<,2>-K<,2>O催化剂上CO吸附量最低。吸附的CO在催化剂表面生成石墨碳,最终导致催化剂积炭中毒。BET分析结果表明:负载活性组分导致催化剂表面积下降,催化剂在CO气氛下CS<,2>水解后催化剂表面积也有轻微下降趋势。CO在催化剂上积炭机理是酸催化反应,由此减少催化剂表面酸性中心是抑制催化剂上CO积炭中毒的主要手段。K<,2>O、ZrO<,2>、La<,2>O<,3>都是碱性金属氧化物,负载它们可以用于中和催化剂表面酸性,提高催化剂表面碱性。同时合理组合的负载,得到碱性强度适宜的催化剂,使得催化剂具有抑制积炭和提高CS<,2>水解活性的特性。本征动力学实验研究得出La<,2>O<,3>-ZrO<,2>-K<,2>O催化剂上CS<,2>水解过程中,CS<,2>呈一级反应,水为零级反应。本征动力学方程如下:CS<,2>催化水解机理为:CS<,2>吸附在碱性中心上形成活性中间体,吸附的CS<,2>与吸附的水发生反应,水的吸附速率非常快,CS<,2>的吸附速率影响CS<,2>的水解反应速率。在300℃,进口CS<,2>浓度300mgS/m<3>,空速60000h<-1>,催化剂粒度60~80目条件下,H<,2>浓度由10%增加到35%,CS<,2>水解转化率提高,这可能是部分CS<,2>参与加氢转化反应;随着CO浓度由10%增大到35%,CS<,2>水解转化率出现下降
喜欢就 关注我们吧,订阅更多最新消息
第一作者及通讯作者:李伟(陕西 科技 大学(西安))
共同通讯作者:王传义(陕西 科技 大学(西安))
通讯单位:陕西 科技 大学
论文DOI:10.1016/j.apcatb.2021.121000
研究亮点
1. 通过简单可控的方法将单原子Pd成功修饰在了CdS NPs表面。
2. 单原子Pd与CdS NPs表面的S原子形成强配位作用,通过协同金属-半导体配位相互作用促进了光诱导载流子自体相向表面的迁移,抑制了CdS光腐蚀现象,提高了光诱导电子利用效率。
3. 单原子Pd修饰CdS NPs后降低了催化水分解产氢能垒,显著增强了其全分解水产氢活性。
研究背景
随着双碳目标的提出,国家对氢能源的发展做出了重要指导,有效推进氢能源的发展。传统产氢手段能耗高,且伴随有二次污染。由于太阳光能来源广泛、使用方便、绿色可持续性等优点,将太阳能转变为方便使用的高附加值化学能无疑是新能源开发的有效途径,具有潜在应用价值。日光诱导全分解水产氢是一种开发氢能源的潜在技术,然而较低的效率阻碍了该项技术的大规模应用推广。因此,开发高效稳定的全分解水产氢催化剂具有理论与实际研究意义。
硫化镉(CdS)是一种低功函且具有优异可见光响应的过渡金属硫化物,在光催化和电催化领域有着广泛的应用。被用于光催化材料时,长时间光诱导容易导致其结构发生严重光腐蚀,极大地影响其光催化性能。如何在提高CdS基光催化剂催化活性的同时,有效抑制其光腐蚀影响,增强其结构稳定性,是需要研究者不断 探索 和解决的关键科学问题。
拟解决的关键问题
本课题通过一步简单诱导还原策略,将单原子Pd修饰在CdNPs表面,实现了协同的金属-半导体配位相互作用,抑制了载流子复合,提高了催化剂量子产率。更为重要的是,高度缓解了CdS光腐蚀影响,赋予其以长时间光电流稳定性,一定程度上解决了光腐蚀导致其催化剂结构不稳定的科学问题。
成果简介
针对CdS光催化剂在光诱导下光腐蚀严重影响其催化性能的科学问题, 陕西 科技 大学(西安)李伟副教授及王传义教授 等人通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同的半导体-金属配位相互作用,其光响应性及界面电荷传导特性均显著增强,有效抑制了其光腐蚀,增强了催化剂结构稳定性。同时,CdS-Pd催化剂表面全分解水产氢过程能垒相较于纯CdS NPs明显降低,从而在模拟日光诱导下达到了纯CdS纳米催化剂110倍的全分解水产氢活性,且表现出良好的耐光性能。
要点1:CdS-Pd复合光催化剂合成
通过简单的一步诱导还原法将单原子Pd修饰在六方相CdSNPs表面,优化并制备出一种CdS-Pd纳米光催化剂。
图1.CdS-Pd复合光催化剂的合成示意图及结构表征。
要点2:CdS-Pd复合光催化剂结构、组成及形貌表征
通过XRD、Raman、XPS、XAFS和ac-STEM等表征研究发现:贵金属Pd是以单原子状态均匀分布在CdS 纳米催化剂表面,且单原子Pd与CdS 纳米催化剂表面的S原子形成了S-Pd配位作用,这有利于促进光诱导载流子的传导。
图2.CdS-Pd复合光催化剂的形貌、晶型及组成分析。
要点3:CdS-Pd复合催化剂模拟日光诱导产氢活性及稳定性
当反应体系pH = 10时,优化后的CdS-Pd纳米催化剂在模拟太阳光诱导下全分解水析氢速率为947.93 μmol·g -1 ·h -1 ,是纯CdS的110倍。如果进一步加入牺牲剂,其半分解水析氢速率可达到7335.83 μmol·g -1 ·h -1 。在λ = 420 nm的光波诱导下,其全分解水和半分解水的表观量子产率分别为4.47%和33.92%。即使在室外日光辐照下,也可以清晰地观察到大量气泡的产生。以上研究表明单原子Pd修饰后的纳米催化剂模拟日光诱导产氢活性显著提高。另外,通过评价该改性催化剂进行模拟日光诱导催化产氢的持久性及再生性,证明Pd单原子修饰后的CdS纳米催化剂具有稳定的光诱导催化活性和良好的结构稳定性。
图3.CdS-Pd复合光催化剂的催化产氢性能、持久性和重复使用性。
要点4:CdS-Pd复合光催化剂的协同作用增强光-电化学性能及机理分析
通过光-电化学各项表分析可知:Pd单原子修饰后的CdS纳米催化剂表现出良好的电子-空穴对分离特性,且由于协同的半导体(CdS)-金属(Pd)配位相互作用加快了载流子自体相向表面的迁移,有效抑制了CdS的光腐蚀,延长了光生载流子寿命,从而在长时间光诱导下呈现高密度且稳定的光电流信号。
图4. CdS-Pd复合光催化剂的光-电化学性能表征及机理分析。
要点5:CdS-Pd复合光催化剂的DFT计算及催化机制分析
通过DFT计算分析可知:CdS-Pd纳米催化剂表面全分解水产氢能垒相较于纯CdS NPs明显降低,且支撑了S-Pd配位键形成的可能性。最终证明氢气生成的主要活性位点为催化剂表面的S位点,而表面单原子Pd则促进了水分子的分解。综上所述,在模拟日光诱导下,CdS基体生成大量光诱导载流子,并快速迁移至表面。H 2 O分子首先在催化剂表面Pd位点处被分解为氢质子中间体和OH-离子,氢质子进一步在S位点处获得电子被还原成氢气,而OH - 离子则在CdS表面被光生空穴氧化为O 2 分子。由于该催化剂协同的金属-半导体作用机制,O 2 分子与部分光诱导电子作用被快速转化为超氧自由基(O 2 +e - O 2•- ),所以该催化剂更适合于在模拟日光诱导下催化水分解产氢应用。
图5. CdS-Pd复合光催化剂的DFT计算及全分解水机制
小结与展望
综上所述,针对纯CdS半导体光诱导过程中光腐蚀影响导致其结构稳定性较差的科学问题,本研究通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同配位作用,其光响应性及界面电荷传导特性均显著增强,光诱导电子-空穴对复合抑制效果明显。同时,单原子Pd修饰后的纳米催化剂明显降低了全分解水产氢过程的能垒,从而在模拟日光诱导下达到纯CdS纳米催化剂近110倍的全分解水产氢活性,并表现出优良的催化活性与结构稳定性。本研究对于通过简单有效的制备方法合成稳定且高效的全分解水产氢CdS基光催化剂具有理论与实际研究意义。
参考文献
W. Li, X. Chu, F. Wang, Y. Dang, X. Liu, T. Ma, J. Li, C. Wang, Pd single-atom decorated CdS nanocatalyst for highly efficient overall watersplitting under simulated solar light. Appl. Catal. B-Environ . 2021, DOI: 10.1016/j.apcatb.2021.121000.
作者介绍
李伟 ,陕西 科技 大学 化学与化工学院,副教授。从事光催化剂结构设计及合成、光催化污水处理、太阳能光伏氢能源生产相关研究。目前已发表国际SCI论文30余篇,总被引频次1000余次。部分研究被《Appl. Catal. B-Environ.》、《J. Mater. Chem. A》、《Environ. Sci.-Nano》、《ACS Sustainable Chem.Eng.》、《Chem. Eng. J.》、《ChemCatChem》、《Electrochim. Acta》等期刊报导。
王传义 ,陕西 科技 大学特聘教授。德国洪堡学者、英国皇家化学会会士、国家外专局高端外国专家创新团队负责人、德国洪堡基金会联合研究小组中方负责人、陕西 科技 大学特聘教授、武汉大学兼职教授、博士生导师。应邀担任中国可再生能源学会光化学专业委员会委员、中国感光学会光催化专业委员会委员及中国环境科学学会特聘理事、国家 科技 奖励和国家重点研发计划项目会评专家及国家基金委等机构项目评审专家。从事光催化技术在环境与能源领域的应用研究。
声明
ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......
请留下邮箱,传递论文,文章无法直接罗列
通过简易的溶剂热硫化得到的铁镍金属硫化物催化剂,对于电催化析氧反应表现出较好的活性。该电催化剂具有催化活性高、稳定性好,制备工艺简便的优点,具有较强的应用价值。铁镍双金属催化剂具有特殊的电子结构及独特的表面性质,使其在催化领域展现出良好的应用前景,常见的铁镍双金属催化剂有:镍铁合金催化剂、镍铁氧化物催化剂和镍铁氢氧化物催化剂等。铁镍双金属催化剂的合成方法主要包括固相法、气相法和液相法。其中熔融法、机械合金化法、热分解法都属于固相法,该方法具有产量大、易于实现工业化等特点,但需要长时间的高温加热或退火以及难以控制表面结构。气相法主要有热蒸发法、溅射法、化学气相沉积法和微波等离子体法等,气相法一般对仪器设备要求比较高,工艺技术也较为复杂,产量很小难以实现规模化的工业生产。液相合成法主要包括:液相还原法、沉淀法、水热法、溶胶-凝胶法和离子交换等,液相法的优点是操作方便、合成工艺简单、成本低、粒径均匀、力度可控,相对而言液相法应用更为广泛,但是液相合成法存在组成不均、颗粒易团聚等问题。