首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

有关霍夫变换车道线检测论文

发布时间:

有关霍夫变换车道线检测论文

霍夫变换 是一种特征检测(feature extraction),被广泛应用在 图像分析 (image analysis)、计算机视觉(computer vision)以及数位影像处理(digital image processing)。霍夫变换是用来辨别找出物件中的特征,例如:线条。他的 算法 流程大致如下,给定一个物件、要辨别的形状的种类,算法会在参数空间(parameter space)中执行投票来决定物体的形状,而这是由累加空间(accumulator space)里的局部最大值(local maximum)来决定。 现在广泛使用的霍夫变换是由RichardDuda和PeterHart在公元1972年发明,并称之为广义霍夫变换(generalizedHoughtransform),广义霍夫变换和更早前1962年的PaulHough的专利有关。经典的霍夫变换是侦测图片中的 直线 ,之后,霍夫变换不仅能识别直线,也能够识别任何形状,常见的有圆形、椭圆形。1981年,因为DanaH.Ballard的一篇期刊论文"Generalizing the Hough transform to detect arbitrary shapes",让霍夫变换开始流行于计算机视觉界。

●源图像

●处理后图像

●函数原型 ○c++

○Android

●参数解释 ○image:输入图像:8-bit,灰度图 ○lines:存储线段极坐标的容器,每一条线由具有四个元素的矢量(x_1,y_1, x_2, y_2) 表示,其中,(x_1, y_1)和(x_2, y_2) 是每个检测到的线段的结束点。 ○rho:生成极坐标的像素扫描步长。 ○theta:生成极坐标的角度步长,一般是π/180。 ○threshold:要”检测” 一条直线所需最少的的曲线交点 。 ○minLineLength :默认值0,表示最低线段的长度,比这个设定参数短的线段就不能被显现出来。 ○maxLineGap :默认值0,允许将同一行点与点之间连接起来的最大的距离。

●c++中

●Android中

霍夫变换在图像处理里常用来在黑白图像里检测直线,matlab里有相应的几个函数,使用方便,这里把matlab帮助里介绍的例子演示一下。 matlab里霍夫变换主要包含一下三个函数:hough:实现霍夫变换,得到霍夫变换矩阵,用法如下[H, theta, rho] = hough(BW)[H, theta, rho] = hough(BW, ParameterName,ParameterValue)houghpeaks:在霍夫变换矩阵里找极值点peaks = houghpeaks(H, numpeaks)peaks = houghpeaks(..., param1, val1,param2, val2)houghlines:从霍夫变换矩阵中提取线段lines = houghlines(BW, theta, rho,peaks)lines = houghlines(..., param1, val1,param2, val2) 下面以一个例子来看看霍夫变换的效果,代码如下: % 测试霍夫变换clcclearclose all % 读取图像I = imread('circuit.tif');rotI = imrotate(I,80,'crop'); % 旋转33度,保持原图片大小fig1 = imshow(rotI); % 提取边BW = edge(rotI,'canny');figure, imshow(BW); % 霍夫变换[H,theta,rho] = hough(BW); % 计算二值图像的标准霍夫变换,H为霍夫变换矩阵,theta,rho为计算霍夫变换的角度和半径值figure, imshow(imadjust(mat2gray(H)),[],'XData',theta,'YData',rho,... 'InitialMagnification','fit');xlabel('\theta (degrees)'), ylabel('\rho');axis on, axis normal, hold on;colormap(hot) % 显示霍夫变换矩阵中的极值点P = houghpeaks(H,50,'threshold',ceil(0.3*max(H(:)))); % 从霍夫变换矩阵H中提取5个极值点x = theta(P(:,2));y = rho(P(:,1));plot(x,y,'s','color','black'); % 找原图中的线lines = houghlines(BW,theta,rho,P,'FillGap',18,'MinLength',180);figure, imshow(rotI), hold onmax_len = 0;for k = 1:length(lines) % 绘制各条线 xy = [lines(k).point1; lines(k).point2]; plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green'); % 绘制线的起点(黄色)、终点(红色) plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow'); plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red'); % 计算线的长度,找最长线段 len = norm(lines(k).point1 - lines(k).point2); if ( len > max_len) max_len = len; xy_long = xy; endend % 以红色线高亮显示最长的线plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','red'); 其中,同一条线段由于某些原因(比如光照、噪音等)变成了不连续的两条较短的线段,所以要进项合并,至于多少长度的才合并成同一条直线,是依据不同的图像而言的,由fillgap参数决定。而有些线段可能是噪声,所以小于7的舍去,这个也么有标准,需要根据不同的图像而定。

1、基于霍夫变换的车道线检测2、基于仿射变换的车道线检测3、基于边缘拟合的车道线检测

车道线检测最新论文

之前也是为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,而且抄袭的东西肯定不行的,关键是没有数据和分析部分,我好不容易搞出来一篇,结果还过不了审。 还好后来找到文方网,直接让专业人士帮忙,效率很高,核心的部分帮我搞定了,也给了很多参考文献资料。哎,专业的事还是要找专业的人来做啊,建议有问题参考下文方网吧 下面是之前文方网王老师发给我的题目,分享给大家: 基于深度学习的无人机地面小目标算法研究 基于视觉的智能汽车面向前方车辆的运动轨迹预测技术研究 模拟射击训练弹着点检测定位技术研究 基于深度卷积神经网络的空中目标识别算法的研究 基于可见光图像的飞行器多目标识别及位置估计 无人驾驶车辆手势指令识别研究与实现 车载毫米波雷达目标检测技术研究 基于多传感融合的四足机器人建图方法 中老年人群跌倒风险评估的数据采集系统 基于深度学习的视觉SLAM闭环检测方法研究 真实图片比较视觉搜索任务的年龄效应及对策研究 室内复杂场景下的视觉SLAM系统构建与研究 基于双目内窥镜的软组织图像三维重建 学习资源画面色彩表征影响学习注意的研究 毫米波雷达与机器视觉双模探测关键技术的研究 语义地图及其关键技术研究 多重影响因素下的语音识别系统研究 基于卷积神经网络的自主空中加油识别测量技术研究 基于视觉语义的深度估计、实例分割与重建 重复视觉危险刺激——本能恐惧反应的“二态型”调控机制研究 低成本视觉下的三维物体识别与位姿估计 面向非规则目标的3D视觉引导抓取方法及系统研究 基于物体识别地理配准的跨视频行人检测定位技术研究 基于结构光的非刚体目标快速三维重建关键技术研究 基于机器视觉的动物交互行为与认知状态分析系统 关于单目视觉实时定位与建图中的优化算法研究 动态场景下无人机SLAM在智慧城市中的关键技术研究 面向视觉SLAM的联合特征匹配和跟踪算法研究 基于深度学习的显著物体检测 基于平面波的三维超声成像方法与灵长类动物脑成像应用研究 基于物体检测和地理匹配的室内融合定位技术研究 基于多模态信息融合的人体动作识别方法研究 基于视觉惯性里程计的SLAM系统研究 基于语义信息的图像/点云配准与三维重建 基于种子点选取的点云分割算法研究 基于深度学习的场景文字检测与识别方法研究 基于运动上下文信息学习的室内视频烟雾预警算法研究 基于深度学习的垃圾分类系统设计与实现 面向手机部件的目标区域检测算法的设计与实现 电路板自动光照检测系统的设计与实现 基于机器视觉的工件识别与定位系统的设计与实现 基于深度学习的物件识别定位系统的设计与实现 基于视觉四旋翼无人机编队系统设计及实现 基于视觉惯导融合的四旋翼自主导航系统设计与实现 面向城市智能汽车的认知地图车道层生成系统 基于深度学习的智能化无人机视觉系统的设计与仿真 基于知识库的视觉问答技术研究 基于深度学习的火灾视频实时智能检测研究 结构化道路车道线检测方法研究 基于机器视觉的带式输送机动态煤量计量研究 基于深度学习的小目标检测算法研究 基于三维激光与视觉信息融合的地点检索算法研究 动态环境下仿人机器人视觉定位与运动规划方法研究 瓷砖铺贴机器人瓷砖空间定位系统研究 城市街景影像中行人车辆检测实现 基于无线信号的身份识别技术研究 基于移动机器人的目标检测方法研究 基于深度学习的机器人三维环境对象感知 基于特征表示的扩展目标跟踪技术研究 基于深度学习的目标检测方法研究 基于深度学习的复杂背景下目标检测与跟踪 动态扩展目标的高精度特征定位跟踪技术研究 掩模缺陷检测仪的图像处理系统设计 复杂场景下相关滤波跟踪算法研究 基于多层级联网络的多光谱图像显著性检测研究 基于深度结构特征表示学习的视觉跟踪研究 基于深度网络的显著目标检测方法研究 基于深度学习的电气设备检测方法研究 复杂交通场景下的视频目标检测 基于多图学习的多模态图像显著性检测算法研究 基于面部视频的非接触式心率检测研究 单幅图像协同显著性检测方法研究 轻量级人脸关键点检测算法研究 基于决策树和最佳特征选择的神经网络钓鱼网站检测研究 基于深度学习的场景文本检测方法研究 RGB-D图像显著及协同显著区域检测算法研究 多模态融合的RGB-D图像显著目标检测研究 基于协同排序模型的RGBT显著性检测研究 基于最小障碍距离的视觉跟踪研究 基于协同图学习的RGB-T图像显著性检测研究 基于图学习与标签传播优化模型的图像协同显著性目标检测 姿态和遮挡鲁棒的人脸关键点检测算法研究 基于多模态和多任务学习的显著目标检测方法研究 基于深度学习的交通场景视觉显著性区域目标检测 基于生物视觉机制的视频显著目标检测算法研究 基于场景结构的视觉显著性计算方法研究 精神分裂症患者初级视觉网络的磁共振研究 基于fMRI与TMS技术研究腹侧视觉通路中结构优势效应的加工 脑机接口游戏神经可塑性研究 基于YOLOV3算法的FL-YOLO多目标检测系统 基于深度与宽度神经网络显著性检测方法研究 基于深度学习的零件识别系统设计与研究 基于对抗神经网络的图像超分辨算法研究 基于深度学习复杂场景下停车管理视觉算法的研究与实现 镍电解状态视觉检测与分析方法研究 跨界训练对提升舞者静态平衡能力的理论与方法研究 施工现场人员类型识别方法的研究与实现 基于深度学习的自然场景文字检测方法研究 基于嵌入式的交通标志识别器的设计 基于视觉感知特性与图像特征的图像质量评价

车道线检测比较权威的论文有哪些

本文将对论文 Towards End-to-End Lane Detection: an Instance Segmentation Approach 进行解读。这篇论文是于2018年2月挂在arxiv上的。        文中提出了一种端到端的车道线检测算法,包括LaneNet和H-Net两个网络模型。其中,LaneNet是一种将 语义分割 和 对像素进行向量表示 结合起来的多任务模型,负责对图片中的车道线进行 实例分割 ;H-Net是由卷积层和全连接层组成的网络模型,负责预测转换矩阵H,使用转换矩阵H对属于同一车道线的像素点进行回归(我的理解是对使用坐标y对坐标x进行修正)。        根据论文中的实验结果,该算法在图森的车道线数据集上的准确率为96.4%,在NVIDIA 1080 TI上的处理速度为52FPS。        如图1所示,对于同一张输入图片,LaneNet输出实例分割的结果,为每个车道线像素分配一个车道线ID,H-Net输出一个转换矩阵H,使用转换矩阵H对车道线像素进行修正,并对修正的结果拟合出一个三阶的多项式作为预测得到的车道线。       论文中将实例分割任务拆解为 语义分割 和 聚类 两部分,如图2所示,LaneNet中decoder分为两个分支,Embedding branch对像素进行嵌入式表示,训练得到的embedding向量用于聚类,Segmentation branch负责对输入图像进行语义分割(对像素进行二分类,判断像素属于车道线还是背景)。最后将两个分支的结果进行结合得到实例分割的结果。 在设计语义分割模型时,论文主要考虑了以下两个方面: 1.在构建label时,为了处理遮挡问题,论文对被车辆遮挡的车道线和虚线进行了还原; 2. Loss使用 交叉熵 ,为了解决样本分布不均衡的问题(属于车道线的像素远少于属于背景的像素),参考论文 ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation  ,使用了boundedinverse class weight对loss进行加权: 其中,p为对应类别在总体样本中出现的概率,c是超参数(ENet论文中是1.02,使得权重的取值区间为[1,50])。        为了区分车道线上的像素属于哪条车道,embedding_branch为每个像素初始化一个embedding向量,并且在设计loss时, 使得属于同一条车道线的像素向量距离很小,属于不同车道线的像素向量距离很大 。 这部分的loss函数是由两部分组成:方差loss(L_var)和距离loss(L_dist): 其中,x_i为像素向量,μ_c为车道线的均值向量,[x]+ = max(0,x)         为了方便在推理时对像素进行聚类,在图4中实例分割loss中设置δ_d > 6*δ_v。         在进行聚类时,首先使用mean shift聚类,使得簇中心沿着密度上升的方向移动,防止将离群点选入相同的簇中;之后对像素向量进行划分:以簇中心为圆心,以2δ_v为半径,选取圆中所有的像素归为同一车道线。重复该步骤,直到将所有的车道线像素分配给对应的车道。        LaneNet是基于 ENet 的encoder-decoder模型,如图5所示,ENet由5个stage组成,其中stage2和stage3基本相同,stage1,2,3属于encoder,stage4,5属于decoder。        如图2所示,在LaneNet中,语义分割和实例分割两个任务 共享stage1和stage2 ,并将stage3和后面的decoder层作为各自的分支(branch)进行训练;其中, 语义分割分支(branch)的输出shape为W*H*2,实例分割分支(branch)的输出shape为W*H*N,W,H分别为原图宽和高,N为embedding vector的维度;两个分支的loss权重相同。         LaneNet的输出是每条车道线的像素集合,还需要根据这些像素点回归出一条车道线。传统的做法是将图片投影到鸟瞰图中,然后使用2阶或者3阶多项式进行拟合。在这种方法中,转换矩阵H只被计算一次,所有的图片使用的是相同的转换矩阵,这会导致地平面(山地,丘陵)变化下的误差。         为了解决这个问题,论文训练了一个可以预测转置矩阵H的神经网络H-Net, 网络的输入是图片 , 输出是转置矩阵H :         由图6可以看出,转置矩阵H只有6个参数,因此H-Net的输出是一个6维的向量。H-Net由6层普通卷积网络和一层全连接网络构成,其网络结构如图7所示: Curve fitting的过程就是通过坐标y去重新预测坐标x的过程:LaneNet和H-Net是分别进行训练的。在论文的实验部分,两个模型的参数配置如下所示: •    Dataset : Tusimple •    Embedding dimension = 4 •    δ_v=0.5 •    δ_d=3 •    Image size = 512*256 •    Adam optimizer •    Learning rate = 5e-4 •    Batch size = 8 •    Dataset : Tusimple •    3rd-orderpolynomial •    Image size =128*64 •    Adam optimizer •    Learning rate = 5e-5 •    Batch size = 10

霍乱检测论文

验证诊断或问题并确定患病率,描述该流行病的分布特征,制定和检验有关流行因素的假设,得出结论,并采取进一步的控制措施。

1、描述性研究:是流行病学研究的基础。主要方法是现状研究。通过调查和描述疾病的分布和各种可疑致病因素之间的关系,提出病因学假说。

2、分析性研究:一般选择特定人群对描述性研究提出的病因或流行因素假设进行分析和检验。分为病例对照研究和队列研究。

3、实验方法:在人群现场进行流行病学实验。将观察人群随机分为实验组和对照组,对实验组采取一定的干预措施。通过随访观察,确定干预措施的效果,进一步验证假说。

扩展资料:

1854年,伦敦爆发霍乱,10天内造成500多人死亡。根据流行的观点,霍乱是通过空气传播的。但是约翰·斯诺博士不相信。

他认为霍乱是通过水传播的。斯诺使用标点符号图来研究当地水井的分布和霍乱患者的分布之间的关系。

在布罗德街(Broad Street)一口井的范围内发现霍乱发病率明显较高,这一发现为霍乱爆发的原因提供了线索:一个受污染的水泵。

水泵被移除后不久,霍乱的发病率就显著下降。约翰·斯诺在这方面的工作被认为是流行病学的开端。1948年至1952年,理查德•多尔和布拉德福德•希尔进行了一项病例对照研究。

通过检查癌症患者的吸烟史,他们宣布了吸烟和肺癌之间的因果关系。在接下来的20年里,一项队列研究进一步证实了他们的发现。他们的研究结果为烟草控制工作提供了科学依据。

参考资料:百度百科-现场流行病学

武汉大学霍乱原因查明,在预防霍乱传播上给了我们很多启示,告诉我们不要喝生水、不要吃生食、砧板要生熟分开,同时在霍乱的防治上更加谨慎。

爱情,是人类永远无法绕开的一个问题,也是作家们常说常新的一个主题,更是加西亚·马尔克斯创作的一个最主要动力。基于对爱情的长期思考,加西亚·马尔克斯创作了《霍乱时期的爱情》。 小说内容以弗洛伦蒂诺和费尔米娜长达半个世纪的感情纠葛,以及乌尔比诺与费尔米娜的传统婚姻为主线,期间穿插了弗洛伦蒂诺的风流韵事和一段自我地位提升的奋斗史。作品最后以弗洛伦蒂诺和费尔米娜驶向永生永世的爱情为结局。这一结局象征着爱情的全面胜利。加西亚·马尔克斯告诉读者,只要拥有爱情,人就可以成为自己的主宰,只要爱情存在的地方就有幸福的乌托邦。小说勾勒出不同性质、不同类型的爱情,因此被誉为“爱情的百科全书”。而且,小说从爱情的角度切入,展示了加西亚·马尔克斯对现实生活的多维思考,反映了他对国际化、本土化等文化趋向问题的态度。 论文分为四个部分,引言介绍论文的选题与研究意义。《霍乱时期的爱情》自出版之日起,就受到评论界的关注和读者的好评,但由于《百年孤独》不可抵挡的影响,导致这本书长期处于“叫好不叫座”的尴尬局面。因此,研究《霍乱时期的爱情》,有助于跳出魔幻现实主义的“窠臼”,推动加西亚·马尔克斯研究的多元化。 论文第一章探讨《霍乱时期的爱情》选择爱情主题的缘由和爱情主题的升华。《霍乱时期的爱情》并不局限于狭义的男女层面的爱情描写,它的诞生不仅带来了加西亚·马尔克斯父子间亲情的缓和,还凝聚了作家对爱情主题的深思。 第二章是对加西亚·马尔克斯的爱情之思的具体剖析。通过探究《霍乱时期的爱情》表现出来的对于爱情的多维思考,揭示了爱情中的情与欲、得与施、爱情与婚姻、爱情与生命等复杂关系,以及加西亚·马尔克斯对爱情的辩证态度。他既对和谐稳定的婚姻生活十分肯定,又对浪漫激情的一见钟情赞赏有加。 第三章从小说的艺术手法、形式结构出发,探析爱情主题的艺术呈现,并进一步揭示出后殖民语境下小说的爱情主题所包蕴的深层文化意蕴。论文认为,《霍乱时期的爱情》的爱情主题具有文化意义上的象征意味,显示了加西亚·马尔克斯在本土化和全球化之间做出的选择和对拉美文化发展趋向的思考。 最后,结语部分总结全篇,并对某些女权主义批评误读加西亚·马尔克斯进行了辨析,提出了自己的一些独立见解,为今后的相关研究提供了思路。

当我们觉得人生不如意时,我们总会抱怨自己的运气不好,可你是否静下心来好好想过?你吃过多少苦,经历过多少磨难,哪里又觉得不如意了。我们都知道努力未必就能成功,但是努力之后不断的失败也是生命的财富,向死而生说的就是这样的道理。人的好运气会用光,坏运气也一样,总有用完的一天。努力过后积累的那些失败,也会成为一个久病成医的路霸,而这正是好运来临的拐点。也许有人会说,他比我聪明那么多,我怎么努力也追赶不上他的脚步,然后索性放弃。其实这只是一个让人滞留,让人安于现状的借口。更何况,你连跟别人拼努力你都达不到,更不用说拼天赋了。其实聪明只是少数人的属性。如果你没有这种属性,你也可以成为一个真诚的人,正直的人,单纯的人,勤奋的人,美好的人……因为这个世界,可不是单靠聪明就能支撑起来的。我曾经听到过一句话:身边的人要求你用功读书,不是因为他要你跟别人比成绩,而是因为他希望你将来会拥有选择的权利,选择有意义有时间的工作,而不是被迫谋生。努力变成更好的自己,只要你足够好,你就配得上这世上一切好的,并且可以选择想要的生活。都说贵在坚持,但是坚持在努力。越努力越幸运,百分百的付出或许得到的是百分之一的结果,但是只要心存信念_越努力,越幸运。我相信定能有所收获!

小波变换边缘检测论文

论文简介: 利用图像传输理论测量海水的点扩散函数和调制传递函数并且使用维纳滤波器复原模糊的图像。退化方程H(u,v)在水槽中测量得到。在实验中利用狭缝图像和光源,第一步:一维光照射到水中从而得到不同距离下的狭缝图像数据,这样一维的海水点扩散函数就可以通过去卷积得到。又因为点扩散函数的对称性二维的函数模型也可以通过数学方法得到。利用相似的方法调制传递函数也可以得到。这样传输方程便可以得到:

图像可以由下式获得:

论文简介: 论文中提出自然光照下的水下图像退化效果与光偏振相关,而场景有效箱射则与光偏振无关。在相机镜头端安装可调偏振器,使用不同偏振角度对同一场景成两幅图像,所得到的图像中的背景光会有明显不同。通过对成像物理模型的分析,利用这两幅图像和估计出的偏振度,就能恢复出有效场景辐射。他还提出了一个计算机视觉方法水下视频中的退化效应。分析清晰度退化的物理原因发现主要与光的部分偏振有关。然后提出一个逆成像方法来复原能见度。该方法基于几张通过不同偏振方向的偏振片采集图像。

论文简介: 论文提出了一种自适应滤波的水下图像复原方法。通过最优化图像局部对比度质量判决函数,可以估计出滤波器中所使用的参数值。 论文提出一种基于简化的Jaffe-McGlamery水下成像模型的自调谐图像复原滤波器。滤波器的最优参数值是针对每幅图像通过优化一个基于全局对比度的质量准则自动估算的。(对一幅图像滤波器能根据全局对比度自动估计最优参数值),简化的模型理想地适合后向散射较少的漫射光成像.1.首先简化Jaffe-McGlamery水下成像模型:假设光照均匀(浅水区阳光直射),并且忽略后向散射部分.然后基于简化后的成像模型设计一个简单的反滤波器2.将滤波器设计成自适应滤波器。

论文简介: 论文对于调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。同时他还建立了一个框架来最大限度复原水下图像,在这个框架下传统的图像复原方法得到了拓展,水下光学参数被包含了进去,尤其时域的点扩散函数和频域的调制传递函数。设计了一个根据环境光学特性进行调整的客观图像质量度量标准来测量复原的有效性。

论文简介: 调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。(这一部分在王子韬的论文中有比较详细介绍)

论文简介: 在散射媒介中的正则化图像复原。论文在基于物理原因的复原方法难以去除噪声以及透射率低的基础上,提出一种自适应的过滤方法,即能明显的改善可见性,又能抑制噪声放大。本质上,恢复方法的正规化,是适合变化媒介的透射率,因此这个正则化不会模糊近距离的目标。

论文简介: 论文提出一种基于对边缘进行GSA(灰度规范角度)加权的测量图像清晰度的方法。图像首先被小波变换分解,去除部分随机噪声,增加真实边缘检测的可能性。每个边缘锐度由回归分析方法基于灰度的一个角的正切来确定边缘像素的灰度值之间的斜率和位置。整个图像的清晰度是平均每个测量的GSA的比例加权的第一级分解细节的量,作为图像的总功率,最后通过图像噪声方差自适应的边缘宽度。

论文简介: 论文提出了基于主动偏振的人工光照下水下图像处理技术。在宽场人工光照下的水下成像中,在光源端或相机端安装可调偏振器。通过调整光源或相机端的偏振器,同时拍摄两幅或多幅同一场景的图像,从两幅图像中可估计出背景光的偏振度。结合水下成像物理模型,就可以进行图像复原和场景3D信息估计。该方法操作简单,设备筒易,适用于水下画定目标的成像。 大范围人工照明条件下研究成像过程,基于该成像模型,提出一种恢复object signal的方法,同时能获得粗糙的3D scene structure.相机配备检偏振器,瞬间获取同一场景的两帧图片with different states of the analyzer or light-source polarizer,然后用算法处理获取的图片.它统一并推广了以前提出的基于偏振的方法.后向散射可以用偏振技术降低,作者在此基础上又用图像后处理去除剩余的后向散射,同时粗糙估测出3D场景结构.创新:之前的方法有的认为目标物反射光的偏振度可以忽略(即认为只有后向散射是偏振的);另外还有的认为后向散射的偏振度可以忽略(即认为只有目标物反射光是偏振的)。本文作者认为两者都是部分偏振光。

论文简介: 论文在没有应用任何标准模式、图像先验、多视点或主动照明的条件下同时估算了水面形状和恢复水下二维场景。重点是应用水面波动方程建立紧凑的空间扭曲模型,基于这个模型,提出一个新的跟踪技术,该技术主要是解决对象模型的缺失以及水的波动存在的复杂的外观变化。在模拟的和真实的场景中,文本和纹理信息得到了有效的复原。

论文简介: 论文提出暗通道先验算法复原有雾图像。暗通道先验是一系列户外无雾图像的数理统计,基于观察户外无雾图像的大部分补丁补丁中包含至少一个颜色通道中低强度的像素点。在有雾图像中应用这些先验,我们可以直接的估算雾的厚度,复原成高质量的无雾图像,同时还能获得高质量的深度图。

论文简介: 论文比较研究了盲反卷积算法中的:R-L算法(Richardson-Lucy)、最小二乘法以及乘法迭代法。并且应用了水下图像去噪和威尔斯小角度近似理论推导出点分布函数。通过执行威尔斯的小角度散射理论和模糊度量方法对三种盲反卷积算法进行比较,确定总迭代次数和最佳图像复原结果。通过比较得出:最小二乘算法的复原率最高,但是乘法迭代的速度最好。

论文简介: 论文提出点扩算函数(PSF)和调制解调函数(MFT)的方法用于水下图像复原,应用基于威尔斯小角度近似理论来进行图像增强。在本文中作者分析了水下图像退化的原因,在强化超快激光成像系统中采用了距离选通脉冲的方法,降低了反向散射中的加性噪声。本文对图像的基本噪声模式进行了分析,并使用算术平均滤波首先对图像进行去噪,然后,使用执行迭代盲反褶积方法的去噪图像的初始点扩散函数的理想值,来获得更好的恢复结果。本文通过比较得出,盲反褶积算法中,正确使用点扩散函数和调制解调函数对于水下图像复原的重要性。

论文简介: 本文提出一种图像复原的新方法,该方法不需要专门的硬件、水下条件或现在知识结构只是一个与小波变换的融合框架支持相邻帧之间的时间相干性进行一个有效的边缘保留噪声的方法。该图像增强的特点是降低噪声水平、更好的暴露黑暗区域、改善全局对比、增强细节和边缘显著性。此算法不使用补充信息,只处理未去噪的输入退化图像,三个输入主要来源于计算输入图像的白平衡和min-max增强版本。结论证明,融合和小波变换方法的复原结果优于直接对水下退化图像进行去雾得到的结果。

论文简介: 本文是一篇综述性质的论文。介绍了:1、水下光学成像系统 2、图像复原的方法(对各种图像复原方法的总结) 3、图像增强和颜色校正的方法总结 4、光学问题总结。

论文简介: 论文针对普通水下图像处理的方法不适用于水下非均匀光场中的问题,提出一种基于专业区域的水下非均匀光场图像复原方法,在该算法中,考虑去除噪声和颜色补偿,相对于普通的水下图像复原和增强算法,该方法获得的复原复原的清晰度和色彩保真度通过视觉评估,质量评估的分数也很高。

论文简介: 论文基于水下图像的衰减与光的波长的关系,提出一种R通道复原方法,复原与短波长的颜色,作为水下图像的预期,可以对低对比度进行复原。这个R通道复原的方法可以看做大气中有雾图像的暗通道先验方法的变体。实验表明,该方法在人工照明领域应用良好,颜色校正和可见性得到提高。

论文简介: 作者对各种水下图像增强和复原的算法做了调查和综述,然后对自己的提高水下质量的方法做了介绍。作者依次用到了过滤技术中的同态滤波、小波去噪、双边过滤和对比度均衡。相比于其他方法,该方法有效的提高了水下目标物的可见性。

论文简介: 论文应用湍流退化模型以质量标准为导向复原因水下湍流退化的图像。参考大气湍流图像复原的算法,省略了盐分的影响,只考虑水中波动引起的湍流对水下成像的影响,应用一种自适应的平均各向异性的度量标准进行水下图像复原。经过验证,使用STOIQ的方法优于双频谱的复原方法。

论文简介: 本文提出了一种新的方法来提高对比度和降低图像噪声,该方法将修改后的图像直方图合并入RGB和HSV颜色模型。在RGB通道中,占主导地位的直方图中的蓝色通道以95%的最大限度延伸向低水平通道,RGB通道中的低水平通道即红色通道以5%的最低限度向上层延伸且RGB颜色模型中的所有处理都满足瑞利分布。将RGB颜色模型转化为HSV颜色模型,S和V的参数以最大限度和最小限度的1%进行修改。这种方法降低了输出图像的欠拟合和过拟合,提高了水下图像的对比度。

论文简介: 论文根据简化的J-M模型提出一种水下图像复原的有效算法。在论文中定义了R通道,推导估算得到背景光和变换。场景可见度被深度补偿,背景与目标物之间的颜色得到恢复。通过分析PSF的物理特性,提出一种简单、有效的低通滤波器来去模糊。论文框架如下:1.重新定义暗通道先验,来估算背景光和变化,在RGB的每个通道中通过标准化变换来复原扭曲颜色。2.根据PSF的性能,选择没有被散射的光,用低通滤波器进行处理来提高图片的对比度和可见度。

论文简介: 论文中对当代水下图像处理的复原与增强做了综述,作者阐明了两种方法的模型的假设和分类,同时分析了优缺点以及适用的场景。

参考:

信号的大小,因为有很多时候可能信号不好,或者说因为有很多家特殊的原因,所以这个基本上都是可以进行辨别的。

信号的多分辨率分析(MRA,Multi-resolution Analysis)又称为多尺度分析,是建立在函数空间概念的理论,创建者S.Mallat是在研究图像处理问题时建立这套理论,并提出了著名的Mallat算法。MRA不仅为正交小波基的构造提供了简单的方法,而且为正交小波变换的快速算法提供了理论依据。尤其是其基本思想与多抽样率滤波器组相一致,建立了小波变换与数字滤波器之间的联系。因此MRA在小波变换理论中具有十分重要的单位。

论文提出利用数据融合和小波变换进行图像边缘检测的一种方法。此方法首先对同一地区的多谱段图像用小波变换进行融合预处理 ,然后直接采用小波变换系数动态地调整边缘判别的阈值 ,对融合图像进行边缘检测 .试验结果表明 ,此方法不仅能有效地抑制噪声 ,而且对具有多种边缘特征的图像均有良好的适应性。

扩展资料:

多分辨率分析定义2:

这一系列近似具有不同的分辨率,因而称为多分辨率分析.借鉴于金字塔算法,人们将连续小波理论推广到离散领域.从滤波器概念上讲,小波变换就是不断以两组正交的高通和低通溥波器对愉入信号f(t)进行滤波

源自: 一种失真度可控的图像编码方法 《无线电通信技术》 1997年 徐佩霞,孙功宪

来源文章摘要:提出一种基于小波变换和误差反馈的可选失真度的图像编码方法,适用于远程数据库查询和可变比特率图像分层传输。它通过小波变换把图像分解到不同分辨率上,然后用误差反馈的方法进行逐级补偿。由于所有前级分辨率的编码误差都可以得到补偿,因而可以恢复无失真的图像。

多分辨率分析定义3:

它对信号局部化分析是在许多不同尺度上进行的,因而又称为多分辨率分析〔2,3〕.小波分析的范围十分广泛,它包括:在数学领域的数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等

源自: 反刍动物前胃舒缩应变的小波分析 《新疆农业大学学报》 2003年 刘后森,李志斌,魏俊智

参考资料:百度百科-多分辨率分析

举个例子,希望有所帮助。clc; clear all; close all;X=rgb2gray(imread('lena.jpg'));x=X;x=double(x);line=250;column=250;J=6;Tu=7;smooth_area_num=20;edge_area_num=40;for i=1:line coef1(i,:)=cwt(x(i,:),1,'bior4.4'); coef2(i,:)=cwt(x(i,:),2,'bior4.4'); coef3(i,:)=cwt(x(i,:),J,'bior4.4');endmax=0;max_loc=0;max_num=15;for i=1:line j=1; while j0 & coef3(i,j+1)<0) | (coef3(i,j)<0 & coef3(i,j+1)>0 )%找到左位置j for k=j+1:column-1 if coef3(i,k)*coef3(i,j)>=0%找到右位置k for m=j:k if abs(coef3(i,m))>max max=abs(coef3(i,m)); max_loc=m; end end if max>max_num form(i,max_loc)=1; end j=k; max=0; break; end end%for k if k==column-1 j=column-1; end else j=j+1; end%if end%whileend%对列作小波变换x=x';for i=1:line coef1(i,:)=cwt(x(i,:),1,'bior4.4'); coef2(i,:)=cwt(x(i,:),2,'bior4.4'); coef3(i,:)=cwt(x(i,:),J,'bior4.4');end%正值1,负值0的矩阵temp表示(突变点左位置)max=0;max_loc=0;for i=1:line j=1; while j0 & coef3(i,j+1)<0) | (coef3(i,j)<0 & coef3(i,j+1)>0 )%找到左位置j for k=j+1:column-1 if coef3(i,k)*coef3(i,j)>=0%找到右位置k for m=j:k if abs(coef3(i,m))>max max=abs(coef3(i,m)); max_loc=m; end end if max>max_num form(max_loc,i)=1; end j=k; max=0; break; end end%for k if k==column-1 j=column-1; end else j=j+1; end%if end%whileendfor i=2:line-2 for j=2:column-2 %链长为1 if form(i,j-1)==0 & form(i,j+1)==0 & form(i-1,j-1)==0 & form(i-1,j)==0 & form(i-1,j+1)==0 & form(i+1,j-1)==0 & form(i+1,j)==0 & form(i+1,j+1)==0 form(i,j)=0;% end if form(i,j)==1 & form(i,j+1)==1 & sum(sum(form(i-1:i+1,j-1:j+2)))==2 form(i,j)=0; form(i,j+1)=0; end if form(i,j)==1 & form(i+1,j)==1 & sum(sum(form(i-1:i+2,j-1:j+1)))==2 form(i,j)=0; form(i+1,j)=0; end if form(i,j)==1 & form(i+1,j+1)==1 & sum(sum(form(i:i+1,j:j+1)))==2 if sum(sum(form(i-1:i+2,j-1:j+2)))==3 & ( form(i-1,j+2)==1 | form(i+2,j-1)==1) form(i,j)=0; form(i+1,j+1)=0; end if sum(sum(form(i-1:i+2,j-1:j+2)))==4 & form(i-1,j+2)==1 & form(i+2,j-1)==1 form(i,j)=0; form(i+1,j+1)=0; end end if form(i,j+1)==1 & form(i+1,j)==1 & sum(sum(form(i:i+1,j:j+1)))==2 if sum(sum(form(i-1:i+2,j-1:j+2)))==3 & ( form(i-1,j-1)==1 | form(i+2,j+2)==1) form(i,j+1)=0; form(i+1,j)=0; end if sum(sum(form(i-1:i+2,j-1:j+2)))==4 & form(i-1,j-1)==1 & form(i+2,j+2)==1 form(i,j+1)=0; form(i+1,j)=0; end end endendmax=0;for i=3:line-3 for j=3:column-3 s=sum(sum(form(i-2:i+2,j-2:j+2))); for m=i-2:i+2 for n=j-2:j+2 if s>=7 & abs(coef3(m,n))<=s*3 form(m,n)=0; end end end endendfigure;imshow(form, []);

相关百科

热门百科

首页
发表服务