首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

关于行列式研究的论文

发布时间:

关于行列式研究的论文

引言: 问题的提出在实践中存在许多解n元一次方程组的问题,如① ② 运用行列式可以解决如②的n元一次方程组的问题。2 2.1排列定义1 由1.2……n组成的一个有序数组称为一个 级排列。n级排列的总数为(n的阶乘个)。定义2 在一个排列中,如果一队数的前后位置与大小顺序相反,即前面的大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。定义3 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列。 2.2行列式定义(设为n阶):n阶行列式是取自不同行不同列的n个元素的乘积的代数和,它由 项组成,其中带正号与带负号的项各占一半, 表示排列 的逆序数。 2.3 阶行列式具有的性质性质1 行列式与它的转置行列式相等.( ) 事实上,若记 则 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立.性质2 互换行列式的两行( )或两列( ),行列式变号. 例如 推论 若行列式 有两行(列)完全相同,则 . 证明: 互换相同的两行, 则有 , 所以 . 性质3 行列式某一行(列)的所有元素都乘以数 ,等于数 乘以此行列式,即推论:(1) 中某一行(列)所有元素的公因子可提到行列式符号的外面;(2) 中某一行(列)所有元素为零,则 ;性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零.性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即.证: 由行列式定义性质6 行列式 的某一行(列)的各元素都乘以同一数 加到另一行(列)的相应元素上,行列式的值不变 ,即计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 2.4行列式的计算2.4.1数字型行列式的计算 1. 三角化法例1 .解: 这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…, 列都加到第1列上,行列式不变,得. 例2 .解: 这是一个阶数不高的数值行列式,通常将它化为上(下)三角行列式来计算.2. 2.递推法 例3 计算行列式 之值。解 把各列均加至第1列,并按第1列展开,得到递推公式继续使用这个递推公式,有 而初始值 ,所以 例4 计算 .解:., ,,3.数学归纳法当 与 是同型的行列式时,可考虑用数学归纳法求之。 一般是利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明。因此,数学归纳法一般是用来证明行列式等式。 例5 计算行列式 .解:结合行列式的性质与次行列式本身的规律,可以采用数学归纳法对此行列式进行求解当 时, 假设 时,有 则当 时,把 按第一列展开,得由此,对任意的正整数 ,有4.公式法例6 计算行列式 之值。解 由于 ,故用行列式乘法公式,得因 中, 系数是+1,所以 。2.4.2行列式的概念与性质的例题 例7 已知 是6阶行列式中的一项,试确定 的值及此项所带的符号。解 根据行列式的定义,它是不同行不同列元素乘积的代数和。因此,行指标 应取自1至6的排列,故 ,同理可知 。直接计算行的逆序数与列的逆序数,有 。亦知此项应带负号。2.4.3抽象行列式的计算 例8 若4阶矩阵A与B相似,矩阵A的特征值为 则行列式 ( )。解 由A~B,知B的特征值是 。那么 的特征值是2,3,4,5.于是 的特征值是1,2,3,4。有公式得, 。2.4.4含参数行列式的计算 例9 已知 ,求 。解 将第3行的-1倍加至第1行,有所以 。2.4.5关于 的证明 解题思路:①设证法 ;②反证法:如 从A可逆找矛盾;③构造齐次方程组 ,设法证明它有非零解;④设法证矩阵的秩 ;⑤证明0是矩阵A的一个特征值。2.4.6特殊行列式的解法 1 范德蒙行列式定义:行列式 称为n级的范德蒙行列式。例10 计算行列式 之值。解 把1改写成 ,第一行成为两数之和, 可拆成两个行列式之和,即分别记这两个行列式为 和 ,则由范德蒙行列式得,故 2.4.7 拉普拉斯定理设在行列式D中任意取定了 个行,由这 行元素所组成的一切 级子式与它们的代数余子式的乘积的和等于行列式 。(其中:① 级子式:在一个 级行列式 中任意选定 行 列 。位于这些行和列的交点上的 个元素按照原来的次序组成一个 级行列式 ,称为行列式 的一个 级子式。②余子式:在 中划去这 行 列后余下的元素按照原来的次序组成的 级行列式 称为 级子式 的余子式。③代数余子式:设 的 级子式 在 中所在的行、列指标分别是 则 的余子式 前面加上符号 后称为 的代数余子式)。例11 求行列式 。解:在行列式 中取定第一、二行,得到六个子式:它们对应的代数余子式为根据拉普拉斯定理3 结束语老师渊博的学识、敏锐的思维、民主而严谨的作风,使我受益匪浅,终生难忘,严谨的治学态度和对工作的兢兢业业、一丝不苟的精神将永远激励和鞭策我认真学习、努力工作。感谢我的老师对我的关心、指导和教诲! 感谢我的学友和朋友对我的关心和帮助

[1] 多元Pade表的方块结构,东北数学,5(1989),N.2,145-154(MR:91d65037)[2] 多元Pade逼近的恒等式,合肥工业大学学报,12(1989),N.4,14-20[3] 关于一类多元Pade逼近式,合肥工业大学学报,13(1990),N.4,24-32[4]用Goodman插值方法构造多元型Pade逼近,1991年第四届全国计算数学年会论文集,669-672[5] Multivariate Pade Approximants as limits of Multivariate Rational Functions of Best Approximation,in <>. Jilin University Press,1990[ISBN 7-5601-0551-3/0.63[6] 有理插值与广义正交性,大连理工大学博士学位论文,1991[7] 一种多元广义台劳展式,工科数学,7(1991),N.1,63[8] 关于一个行列式恒等式及其几何意义,工科数学,10(1994),N.2,49[9] 应用数学人才培养改革的实践与思考,上海交通大学高教研究1998年3期[10] A Convergence Theorem on the Multivariate Interpolating Rational Functions,J.Shanghai Jiaotong University,E4(1999),N.2,59-63[11] Vector Valued Rational Interpolants over Triangular Grids,submitted

关于行列式的毕业论文

数学专业毕业论文选题方向

1动态规划及其应用问题。

2计算方法中关于误差的分析。

3微分中值定理的应用。

4模糊聚类分析在学生素质评定中的应用。

5关于古典概型的几点思考。

6浅谈数形结合在数学解题中的应用。

7高校毕业生就业竞争力分析。

8最大模原理及其推广和应用。

9 最大公因式求解算法。

10行列式的计算。

数学专业毕业论文选题方向如下:

1、并行组合数学模型方式研究及初步应用。

2、数学规划在非系统风险投资组合中的应用。

3、金融经济学中的组合数学问题。

4、竞赛数学中的组合恒等式。

5、概率方法在组合数学中的应用。

6、组合数学中的代数方法。

7、组合电器局部放电超高频信号数学模型构建和模式识别研究。

8、概率方法在组合数学中的某些应用。

9、组合投资数学模型发展的研究。

10、高炉炉温组合预报和十字测温数学建模。

11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。

12、证券组合投资的灰色优化数学模型的研究。

13、一些算子在组合数学中的应用。

14、概率方法在组合数学及混合超图染色理论中的应用。

15、竞赛数学中的组合恒等式。

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

行列式论文的研究现状

中国期刊网,搜索一下相关课题的综述 你直接上当然要钱了。不过你们学校图书馆肯定买了,在你们学校图书馆的电子资源里面找找,肯定有账号或者可以用的镜像站点的。

什么专业什么题目啊?如果跟我论文差不多,可以把开题给你参考一下

4. 行列式的性质:

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

5. 注意区分行列式与矩阵

矩阵定义:由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。

矩阵样式:

主要书写区别便是行列式使用竖线,矩阵使用括号(通常使用中括号)。同时行列式一个数,而矩阵是数的集合。

范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。

行列式有关毕业论文

范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。

线性代数教学中线性相关性的一种解释和理解[摘要]线性相关性的内容是线性代数课程中的重点和难点,特别是被表示向量组的线性相关性与被表示向量组中向量的个数以及表示向量组中向量的个数之间的关系的有关结论,对学生来说是很难理解的,在教学中,我们把线性相关解释为“多余”,线性无关解释为“没有多余”,在教学上可收到较好的效果。[关键词]线性相关线性无关多余没有多余线性相关性在线性代数课程中是一个重要内容,对学生来说是非常困难的内容,许多学生学完线性代数后还没有弄懂,有的学生学到这一内容时觉得很难学,就丧失信心。认为整个线性代数都很难学,甚至放弃学习。线性相关性是线性代数课程中教学的难点,它与后面线性方程组的解的理论有密切的联系,对于这一难点的处理是非常重要的。根据不同层次的学生采用不同的教学要求。使得学生正确的理解线性相关性的定义,定理。大多数经济类的本科线性代数课程的教材在叙述向量组的极大无关组和向量组的秩的理论时,由于这一章节的理论性比较强,一般都是从定理到定理,从证明到证明,例子较少。在教学中,在讲完线性相关的定义和有关定理后,在介绍向量的极大无关组之前,用”多余”来解释线性相关性,可使后面的问题简单化,直观化。我们以龚德恩等主编的《经济数学基础》的第二分册线性代数的教材为例进行说明。首先来看线性组合的概念。对于向量组α1,α2,…,αs和向量β,如果存在s个数k1,k2,…,ks使得β=k1α1+k2α2+…+ksαs则称向量β是向量组α1,α2,…,αs的线性组合。换句话说向量β相对于向量组α1,α2,…,αs是“多余”的向量。关于线性相关概念,对于向量组α1,α2,…,αs,如果存在不全为零的数k1,k2,…,ks使得k1α1+k2α2+…+ksαs=0称向量组α1,α2,…,αs线性相关。因k1,k2,…,ks不全为零,不妨假设α1≠0则α1=-k2k1α2-…-ksk1αs。因此向量组α1,α2,…,αs线性相关,看成是向量组α1,α2,…,αs中至少有一个“多余”的向量。关于线性无关概念,对于向量组α1,α2,…,αs,如果仅当k1,k2,…,ks都等于零时,才能使得k1α1+k2α2+…+ksαs=0成立。称向量组α1,α2,…,αs线性无关。由于α1,α2,…,αs线性无关等价于其中任何一个向量不能由其余向量线性表示,因此向量组α1,α2,…,αs线性无关看成是α1,α2,…,αs中“没有多余”的向量。一些结论也可作相应的理解和解释。如:“如果一个向量组中的部分组线性相关,则整个向量组也线性相关”,解释为如果一个向量组中的部分组有多余的向量,则整个向量组也有多余的向量。“如果一个向量组线性无关,则它的任意一个部分组也线性无关”,解释为如果一个向量组中没有多余的向量,则该向量组去掉一些向量后也没有多余的向量。下面两个定理是学生们在学习向量组的线性相关性的过程中感到最难理解和掌握的。定理1设向量组(Ⅰ)α1,α2,…,αs可由向量组(Ⅱ)β1,β2,…,βt线性表示,且s>t,则α1,α2,…,αs线性相关。在课堂教学中我们是作如下解释的,向量组(Ⅰ)α1,α2,…,αs称为“被表示向量组”,向量组(Ⅱ)β1,β2,…,βt称为“表示向量组”。条件s>t,看成是有”多余”的向量。即“被表示向量组(Ⅰ)α1,α2,…,αs相对于表示向量组(Ⅱ)β1,β2,…,βt有多余的向量,则α1,α2,…,αs线性相关,这样解释便于学生理解和记忆。推论1如果一个向量组α1,α2,…,αs线性无关,并且可由向量组β1,β2,…,βt线性表示。则s≤t。推论1可解释为:如果“被表示向量组α1,α2,…,αs线性无关,则被表示的向量组α1,α2,…,αs相对于表示向量组β1,β2,…,βt没有多余的向量,即s≤t。推论2两个等价的线性无关向量组所含的向量的个数相同。两个向量组都线性无关,且彼此可相互线性表示,两个向量组彼此相对于另一个向量组都没有多余的向量,得两个向量组所含的向量的个数相同。下面再举一些例子进行说明。例1设向量组α1,α2,…,αs线性无关,且可由向量组β1,β2,…,βt线性表示,则必有()。

行列式的计算论文研究意义现状

行列式是研究《线性方程组》和《高次多项式》(即高等代数)的【基本工具】;因为线性方程组的研究,派生出 线性规划、最佳调度、。。。等等实际领域的应用。

行列式在数学中,是由解线性方程组产生的一种算式。[1]其定义域为nxn的矩阵A,取值为一个标量,写作det(A)或 | A | 。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和向量组的行列式的定义。

范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。

行列式在解矩阵相关问题(例如大型工程问题求解)时,非常有用。

相关百科

热门百科

首页
发表服务